Enabling Scalable Data Analysis for Large Computational Structural Biology Datasets on Distributed Memory Systems

Michela Taufer
Global Computing Laboratory
Computer and Information Sciences
University of Delaware
In-situ Analysis

• The perfect in-situ analysis algorithm:
 • Avoids the need for moving data
 • Uses a limited amount of memory
 • Executes sufficiently fast

Can we perform in-situ analysis on trajectories generated in protein folding, prediction, or refinement simulations?

Dataset NleNle - PDB ID 2F4K from Vijay Pande group
Protein Folding Process

• Start from unfolded conformations of a protein with correct chemical bonds but random torsion angles
• Search for a conformation close to the observed native (folded) conformation

Protein Folding Process

- Start from unfolded conformations of a protein with correct chemical bonds but random torsion angles
- Search for a conformation close to the observed native (folded) conformation

Scientific Problem

• Cluster folding trajectories into recurrent patterns based on geometrical variations in time of the folding protein frames
Scientific Problem

- Cluster folding trajectories into recurrent patterns based on geometrical variations in time of the folding protein conformations
- Intra-trajectory analysis -> identify meta-stable and transition stages within trajectory
Limits of Current Practice

- Centralized clustering analysis [Phillips et al. 2013]
 - Wait for a job to end before to move its data (trajectory segment) to a centralize server
 - Does not scale when the dataset is large
 - May end up wasting computing resources e.g., by trying to further fold proteins that are already in a stable condition
From Protein Conformations to Metadata

- From a single protein conformation to a 3D point capturing the atom distances within the frame

Conformation (Data from F@H)

<table>
<thead>
<tr>
<th>atoms</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>2.0</td>
<td>1.8</td>
<td>3.2</td>
<td>...</td>
<td>10.4</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>0.0</td>
<td>2.3</td>
<td>2.1</td>
<td>...</td>
<td>9.3</td>
</tr>
<tr>
<td>3</td>
<td>1.8</td>
<td>2.3</td>
<td>0.0</td>
<td>0.7</td>
<td>...</td>
<td>9.4</td>
</tr>
<tr>
<td>4</td>
<td>3.2</td>
<td>2.1</td>
<td>0.7</td>
<td>0.0</td>
<td>...</td>
<td>8.9</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>N</td>
<td>10.4</td>
<td>9.3</td>
<td>9.4</td>
<td>8.9</td>
<td>...</td>
<td>0.0</td>
</tr>
</tbody>
</table>

distance matrix (DM)

<table>
<thead>
<tr>
<th>atoms</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>2.3</td>
<td>1.4</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>0.4</td>
<td>1.3</td>
</tr>
<tr>
<td>3</td>
<td>1.8</td>
<td>2.3</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>1.2</td>
<td>3.1</td>
<td>1.7</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>N</td>
<td>4.4</td>
<td>2.3</td>
<td>3.4</td>
</tr>
</tbody>
</table>

three leading eigenvalues

multi-dimensional scaling

metadata

B. Zhang, T. Estrada, P. Cicotti, and M. Taufer. Enabling In-situ Data Analysis for Large Protein-folding Trajectory Datasets. In *IPDPS*, 2014
From Metadata to Scientific Knowledge

Given a set of confirmations and their 3D points in a segment of the trajectory:

3 largest eigenvalues as (x,y,z)
From Metadata to Scientific Knowledge

Given a set of confirmations and their 3D points in a segment of the trajectory

- Partition the 3D points into 2 clusters using fuzzy c-means (with c = 2)
From Metadata to Scientific Knowledge

Given a set of confirmations and their 3D points in a segment of the trajectory:

• Partition the 3D points into 2 clusters using fuzzy c-means (with $c = 2$)

• Test the equality of the 2 clusters using Welch’s t-test with p-value < 0.01
From Metadata to Scientific Knowledge

Given a set of confirmations and their 3D points in a segment of the trajectory:

- Partition the 3D points into 2 clusters using fuzzy c-means (with $c = 2$)
- Test the equality of the 2 clusters using Welch’s t-test with p-value < 0.01
- Iterative partition on the cluster with more points
From Metadata to Scientific Knowledge

Given a set of confirmations and their 3D points in a segment of the trajectory:

- Partition the 3D points into 2 clusters using fuzzy c-means (with $c = 2$)
- Test the equality of the 2 clusters using Welch’s t-test with p-value < 0.01
- Iterative partition on the cluster with more points
- Finish when the 2 clusters are equal
From Metadata to Scientific Knowledge

- Intra-trajectory analysis of an ensemble of 400-conformations containing one meta-stable stage followed by a transition stage and another meta-stable stage

Our clustering identifies two stable stages and one transition stage
From Metadata to Scientific Knowledge

• Intra-trajectory analysis of an ensemble of 400 conformations containing one meta-stable stage followed by a transition stage and another meta-stable stage

Our clustering identifies two stable stages and one transition stage

RMSDs of protein conformations identify the same three stages
From Metadata to Scientific Knowledge

• Intra-trajectory analysis of an ensemble of 400-conformations containing one meta-stable stage only

Our clustering identifies one single stage
From Metadata to Scientific Knowledge

- Intra-trajectory analysis of an ensemble of 400-conformations containing one meta-stable stage only

Our clustering identifies one single stage

RMSDs of protein conformations identify one single stage
Performance

• Compare our approach with traditional clustering method proposed by Phillips et al.
 - Folding trajectories of villin headpiece subdomain (HP-35 NleNle)
 - Parallel MATLAB on 256 Gordon compute cores

Our method performs orders of magnitude better in terms of time, memory usage and data movement.
Lessons Learned and Future Directions

• The distributed analysis of structural biology data is feasible and scalable
• Our approach transforms data properties into metadata concurrently and extracts scientific insights from metadata with small data movement
• Our approach makes the in-situ analysis feasible by:
 ▪ By avoiding the need for moving data, using a limited amount of memory, and executing sufficiently fast

Can we extend our approach to larger scales, i.e., larger datasets and more diverse datasets?
Acknowledgments

Global Computing Lab:
 Boyu Zhang
 Travis Johnston

Collaborators:
 Trilce Estrada (UNM)
 Pietro Cicotti (SDSC)
 Roger Armen (TJU)

Special thanks to:
 D.E. Shaw group
 Vijay Pande group (Stanford)
 Docking@Home volunteers
 Folding@Home volunteer

Sponsors: