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ABSTRACT
Given a stream p1, . . . , pm of items from a universe U , which,
without loss of generality we identify with the set of inte-
gers {1, 2, . . . , n}, we consider the problem of returning all `2-
heavy hitters, i.e., those items j for which fj ≥ ε

√
F2, where

fj is the number of occurrences of item j in the stream, and
F2 =

∑
i∈[n] f

2
i . Such a guarantee is considerably stronger

than the `1-guarantee, which finds those j for which fj ≥
εm. In 2002, Charikar, Chen, and Farach-Colton suggested
the CountSketch data structure, which finds all such j using
Θ(log2 n) bits of space (for constant ε > 0). The only known
lower bound is Ω(logn) bits of space, which comes from the
need to specify the identities of the items found.

In this paper we show one can achieve O(logn log log n)
bits of space for this problem. Our techniques, based on
Gaussian processes, lead to a number of other new results for
data streams, including

1. The first algorithm for estimating F2 simultaneously at
all points in a stream using only O(logn log log n) bits
of space, improving a natural union bound and the al-
gorithm of Huang, Tai, and Yi (2014).
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2. A way to estimate the `∞ norm of a stream up to ad-
ditive error ε

√
F2 with O(logn log log n) bits of space,

resolving Open Question 3 from the IITK 2006 list for
insertion only streams.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and
Problem Complexity; G.3 [Mathematics of Computing]:
Probability and Statistics
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1. INTRODUCTION
There are numerous applications of data streams, for which

the elements pi may be numbers, points, edges in a graph, and
so on. Examples include internet search logs, network traf-
fic, sensor networks, and scientific data streams (such as in
astronomy, genomics, physical simulations, etc.). The sheer
size of the dataset often imposes very stringent requirements
on an algorithm’s resources. In many cases only a single pass
over the data is feasible, such as in network applications,
since if the data on a network is not physically stored some-
where, it may be impossible to make a second pass over it.
There are multiple surveys and tutorials in the algorithms,
database, and networking communities on the recent activity
in this area; we refer the reader to [43, 6] for more details and
motivations underlying this area.

Finding heavy hitters, also known as the top-k, most popu-
lar items, elephants, or iceberg queries, is arguably one of the
most fundamental problems in data streams. It has applica-
tions in flow identification at IP routers [21], iceberg queries
[22], iceberg datacubes [8, 24], association rules, and frequent
itemsets [2, 47, 51, 26, 25].

Formally, we are given a stream p1, . . . , pm of items from a
universe U , which, without loss of generality we identify with
the set {1, 2, . . . , n}. We make the common assumption that
logm = O(logn), though our results generalize naturally to
any m and n. Let fi denote the frequency, that is, the number
of occurrences, of item i. We would like to find those items
i for which fi is large, i.e., the “heavy hitters”. In this paper
we will consider algorithms that are allowed one pass over
the stream and must use as little space (memory) in bits as
possible, to maintain a succinct summary (“sketch”) so that



after processing the stream, we can output the identities of all
of the heavy hitters from the summary with large probability.

There are various notions of what it means for fi to be
large. One such notion is that we should return all indices
i ∈ [n] for which fi ≥ εm for a parameter ε ∈ (0, 1), and no
index i for which fi ≤ (ε−φ)m, for a parameter φ. It is typi-
cally assumed that φ ≥ cε for an absolute constant c > 0, and
we will do so in this paper. This notion has been extensively
studied, so much so, that the same streaming algorithm for
it was re-invented multiple times. The first algorithm was
given by Misra and Gries [41], who achieved O((logn)/ε)
bits of space. The algorithm was rediscovered by Demaine et
al. [20], and then later rediscovered by Karp et al. [33]. Cor-
mode and Muthukrishan [18] state that “papers on frequent
items are a frequent item!” While these algorithms are de-
terministic, there are also several randomized algorithms, in-
cluding the Count-Min sketch [19], sticky sampling [37], lossy
counting [37], sample and hold [21], multi-stage bloom fil-
ters [14], sketch-guided sampling [34], and CountSketch [16].
A useful (slightly suboptimal) intuition is that one can sam-
ple O((log 1/ε)/ε) random stream positions, remember the
identities of these positions, and then maintain the counts of
these items. By coupon collector arguments, all heavy hit-
ters will be found this way, and one can filter out the spurious
ones (those with fi ≤ (ε− φ)m).

One of these techniques, CountSketch [16], refined in [50],
gives a way of finding the `2-heavy hitters of a stream. Those
are the items for which f2

i ≥ ε2F2. Notice that this guarantee
is significantly stronger than the aforementioned guarantee
that fi ≥ εm, which we will call the `1-guarantee. Indeed,
if fi ≥ εm, then f2

i ≥ ε2m2 ≥ ε2F2. So, an algorithm for
finding the `2-heavy hitters will find all items satisfying the
`1-guarantee. On the other hand, given a stream of n distinct
items in which fi =

√
n for an i ∈ [n], yet fj = 1 for all

j 6= i, an algorithm satisfying the `2-heavy hitters guarantee
will identify item i with constant ε, but an algorithm which
only has the `1-guarantee would need to set ε = 1/

√
n, using

Ω(
√
n logn) bits of space. In fact, `2-heavy hitters are in

some sense the best one can hope for with a small amount of
space in a stream, as it is known for p > 2 that finding those
i for which fpi ≥ ε

pFp requires n1−2/p bits of space [7, 15].
The CountSketch has broad applications in compressed

sensing [23, 46, 40] and numerical linear algebra [17, 39, 44,
10], and are often used as a subroutine in other data stream
algorithms, such as `p-sampling [42, 4, 31], cascaded aggre-
gates [30], and frequency moments [29, 9].

Given the strong guarantees and many applications of `2-
heavy hitter algorithms, it is natural to ask what the best
space complexity for them is. Both the original algorithm
of [16] and the followup of [50] achieve Θ(log2 n) bits of space
for constant values of ε. On the other hand, the only known
lower bound is Ω(logn) bits, which is needed just to iden-
tify the heavy hitter. It is also known that one can find `p
heavy hitters insertion streams, for p > 3, in O(n1−2/p) bits

of space [12], while Ω(n1−2/p logn) bits are necessary when
the stream may have deletions [36]. The algorithm of [12] and
the related Pick-and-Drop sampling algorithm of [13], which

identifies `p, p ≥ 3, heavy hitters in O(n1−2/plogn) bits of
storage, face fundamental problems when p = 2. Naively
setting p = 2 in the bound suggests it is a candidate for an
O(logn) bits `2 heavy hitters algorithm, but both complexi-
ties hide additive poly(logn) or poly(n) factors that cannot

be eliminated. See the appendix of [11] for a counterexample
and explanation.

Despite the success had in obtaining space-optimal stream-
ing algorithms for estimating moments and p-norms, this has
remained a glaringly open problem. It is known that if one
allows deletions in the stream, in addition to insertions, then
Θ(log2 n) bits of space is optimal [5, 31]. However, in many
cases we just have a stream of insertions, such as in the model
studied in the seminal paper of Alon, Matias, and Szegedy [3].

1.1 Our Contributions
The main result of this paper is the near resolution of the

open question above.

Theorem 1 (`2-Heavy Hitters). For any ε > 0, there
is a 1-pass algorithm in the insertion-only model that, with
probability at least 2/3, finds all those indices i ∈ [n] for which
fi ≥ ε

√
F2, and reports no indices i ∈ [n] for which fi ≤

ε
2

√
F2. The space complexity is O( 1

ε2
log 1

ε
logn log logn) bits.

The intuition of the proof is as follows. Suppose there is
a single `2-heavy hitter H, ε > 0 is a constant, and we
are trying to find the identity of H. Suppose further we
could identify a substream S′ where H is very heavy, specif-
ically we want that the frequencies in the substream satisfy

f2H
poly(logn)

≥
∑
j∈S′,j 6=H f

2
j . Suppose also that we could find

certain R = O(logn) “breakpoints” in the stream correspond-
ing to jumps in the value of fH , that is, we knew a sequence
pq1 < pq2 < · · · < pqR which corresponds to positions in the
stream for which fH increases by a multiplicative factor of
(1 + 1/Θ(R)).

Given all of these assumptions, in between breakpoints we
can partition the universe randomly into two pieces and run
an F2-estimate [3] (AMS sketch) on each piece. Since f2

H

is more than a poly(logn) factor times
∑
j∈S′,j 6=H f

2
j , while

in between each breakpoint the squared frequency of H is

Ω
(
f2H

logn

)
, it follows that H contributes a constant fraction

of the F2-value in between consecutive breakpoints, and so,
upon choosing the constants appropriately, the larger in mag-
nitude of the two AMS sketches will identify a bit of informa-
tion aboutH, with probability say 90%. This is our algorithm
Sieve. Since we have Θ(logn) breakpoints, in total we will
learn all logn bits of information needed to identify H. One
view of this algorithm is that it is a sequential implementa-
tion of the multiple repetitions of CountSketch, namely, we
split the stream at the breakpoints and perform one “repeti-
tion” on each piece while discarding all but the single bit of
information we learn about H in between breakpoints.

However, it is not at all clear how to (1) identify S′ and
(2) find the breakpoints. For this, we resort to the theory
of Gaussian and Bernoulli processes. Throughout the stream

we can maintain a sum of the form Xt =
∑n
i=1 f

(t)
i Zi, where

the Zi are independent Normal(0, 1) or Rademacher random
variables. Either distribution is workable. One might think
as one walks through a stream of length poly(n), there will
be times for which this sum is much larger than

√
F2; indeed,

the latter is the standard deviation and a näıve union bound,
if tight, would imply positions in the stream for which |Xt| is
as large as

√
F2 logn. It turns out that this cannot happen!

Using a generic chaining bound developed by Fernique and



Talagrand [48], we can prove that there exists a universal
constant C′ such that

E sup
t
|Xt| ≤ C′

√
F2.

We call this the Chaining Inequality.
We now randomly partition the universe intoO( 1

ε2
)“parts”,

and run our algorithm independently on each part. This en-
sures that, for a large constant C, H is C-heavy, meaning,
f2
H ≥ C(F2 − f2

H), where here we abuse notation and use F2

to denote the moment of the part containing H. We run the
following two stage algorithm independently on each part.
The first stage, called Amplifier, conists of L = O(log log n)
independent and concurrent repetitions of the following: ran-
domly split the set of items into two buckets and maintain a
two Bernoulli processes, one for the updates in each bucket.
By the Chaining Inequality, a Markov bound, and a union
bound, the total F2 contribution, excluding that of H, in
each piece in each repetition at all times in the stream will
be O(

√
F2 − f2

H). Since H is sufficiently heavy, this means
after some time t∗, its piece will be larger in magnitude in
most, say 90%, of the L repetitions. Furthermore, H will be
among only n/2Ω(L) = n/poly logn items with this property.
At this point we can restrict our attention to a substream
containing only those items.

The substream has the property that its F2 value, not
counting H, will be a factor 1

log2 n
times the F2 value of the

original stream, making H Ω(log2 n)-heavy. Finally, to find
the breakpoints, our algorithm Timer maintains a Bernoulli
process on the substream, and every time the Bernoulli sum

increases by a multiplicative
(

1 + 1
θ(R)

)
factor, creates a new

breakpoint. By the Chaining Inequality applied in each con-
secutive interval of breakpoints, the F2 of all items other than
H in the interval is at most O(logn) larger than its expecta-
tion; while the squared frequency of H on the interval is at

least
f2H

logn
. Since H is Ω(log2 n)-heavy, this makes f2

H to be
the dominant fraction of F2 on the interval.

One issue with the techniques above is they assume a large
number of random bits can be stored. A standard way of
derandomizing this, due to Indyk [28] and based on Nisan’s
pseudorandom generator PRG [45], would increase the space
complexity by a logn factor, which is exactly what we are
trying to avoid. Besides, it is not clear we can even apply
Indyk’s method since our algorithm decides at certain points
in the stream to create new F2-sketches based on the past,
whereas Indyk’s derandomization relies on maintaining a cer-
tain type of linear sum in the stream, so that reordering of
the stream does not change the output distribution. A first
observation is that the only places we need more than limited
independence are in maintaining a collection of O(logn) hash
functions and the stochastic process

∑n
i=1 fiZi throughout

the stream. The former can, in fact, be derandomized along
the lines of Indyk’s method [28].

In order to reduce the randomness needed for the stochas-
tic process we use a Johnson-Lindenstrauss transformation
to reduce the number of Rademacher (or Gaussian) random
variables needed. The idea is to reduce the frequency vector
to O(logn) dimensions with JL and run the Bernoulli process
in this smaller dimensional space. The Bernoulli process be-

comes
∑O(logn)
i=1 Zi(Tf)i, where T is the JL matrix. The same

technique is used by Meka for approximating the supremum
of a Gaussian process [38]. It works because the Euclidean
length of the frequency vector describes the variance and co-

variances of the process, hence the transformed process has
roughly the same covariance structure as the original process.
An alternative perspective on this approach is that we use the
JL transformation in reverse, as a pseudorandom generator
that expands O(logn) random bits into O(n) random vari-
ables which fool our algorithm using the Bernoulli process.

In Section 5 we also use our techniques to prove the follow-
ing.

Theorem 2 (F2 at all points). For any ε > 0, there
is a 1-pass algorithm in the insertion-only model that, with
probability at least 2/3, outputs a (1± ε)-approximation of F2

at all points in the stream. The algorithm uses O( 1
ε2

logn(log 1
ε
+

log log n)) bits of space.

Recently the algorithm of [11] has achieved O(logn) bits
of storage for the `2 heavy hitters problem, which is opti-
mal. That algorithm builds on our idea of comparing Gaus-
sian processes to sequentially identify bits of a heavy hitter’s
identity.

Outline.
In Section 1.2, we give preliminaries and define our no-

tation. In Section 2 we prove Theorem 1. The proof of the
Chaining Inequality for Gaussian and Bernoulli processes, the
central tool used in Section 2, appears in Section 3. In Sec-
tion 4 we give details about how to implement the algorithm
with a reduced number of random bits. In Section 5 we prove
Theorem 2.

1.2 Preliminaries
Given a stream S = (p1, p2, . . . , pm), with pi ∈ [n] for

all i, we define the frequency vector at time 0 ≤ t ≤ m

to be the vector f (t) with coordinates f
(t)
j := #{t′ ≤ t |

pt′ = j}. When t = m we simply write f := f (m). Given

two times t1 ≤ t2 we use f (t1:t2) for the vector f (t2) − f (t1).
Notice that all of these vectors are nonnegative because S
has no deletions. An item H ∈ [n] is said to be an α-heavy
hitter, for α > 0, if f2

H ≥ α
∑
j 6=H f

2
j . The goal of our main

algorithm, CountSieve, is to identify a single α-heavy hitter
for α a large constant. We will assume logm = O(logn),
although our methods apply even when this is not true. It
will be occasionally helpful to assume that n is sufficiently
large. This is without loss of generality since in the case
n = O(1) the problem can be solved exactly in O(logm) bits.

A streaming algorithm is allowed to read one item at a
time from the stream in the order given. The algorithm is
also given access to a stream of random bits, it must pay
to store any bits that it accesses more than once, and it is
only required to be correct with constant probability strictly
greater than 1/2. Note that by repeating such an algorithm
k times and taking a majority vote, one can improve the
success probability to 1 − 2−Ω(k). We measure the storage
used by the algorithm on the worst case stream, i.e. worst
case item frequencies and order, with the worst case outcome
of its random bits.

The AMS sketch [3] is a linear sketch for estimating F2.
The sketch contains O(ε−2 log δ−1) independent sums of the
form

∑n
j=1 Sjfj , where S1, S2, . . . , Sn are four-wise indepen-

dent Rademacher random variables. By averaging and taking
medians it achieves a (1± ε)-approximation to F2 with prob-
ability at least (1− δ).

A Gaussian process is a stochastic process (Xt)t∈T such
that every finite subcollection (Xt)t∈T ′ , for T ′ ⊆ T , has



L amplifier size O(log log n) τ round expansion 100(R+ 1)
δ small constant Ω(1) St1:t2 interval of the stream (pt1+1, . . . , pt2)
H heavy hitter id ∈ [n] ej jth unit vector

T JL transformation ∈ Rk×n f
(k)
H frequency on S0:k

m stream length poly(n) f (k1:k2) frequency on Sk1:k2 f (k2) − f (k1)

n domain size R # of Sieve rounds O(logn)
k JL dimension O(logn) C′ Chaining Ineq. const. O(1)

d dim. of Bern. proc. O(log δ−1) C large const. ≥ d
3
2C′/δ

Table 1: Notation and parameters used throughout the paper.

a multivariate Gaussian distribution. When T is finite (as
in this paper), every Gaussian process can be expressed as
a linear transformation of a multivariate Gaussian vector
with mean 0 and covariance I. Similarly, a Bernoulli pro-
cess (Xt)t∈T , T finite, is a stochastic process defined as a
linear tranformation of a vector of i.i.d. Rademacher (i.e.
uniform ±1) random variables. Underpinning our results is

an analysis of the Gaussian process Xt =
∑
j∈[n] Zjf

(t)
j , for

t = 0, . . . ,m, where Z1, . . . , Zn
iid∼ N (0, 1) are independent

standard Normal random variables. The Bernoulli analogue
to our Gaussian process replaces the distribution of the ran-

dom vector Z as Z1, . . . , Zn
iid∼ Rademacher. Properties of

the Normal distribution make it easier for us to analyze the
Gaussian process rather than its Bernoulli cousin. On the
other hand, we find Bernoulli processes more desirable for
computational tasks. Existing tools, which we discuss further
in Section 3 and Section 4, allow us to transfer the needed
properties of a Gaussian process to its Bernoulli analogue.

A k×n matrix T is a (1± γ)-embedding of a set of vectors
X ⊆ Rn if

(1− γ)‖x− y‖2 ≤ ‖Tx− Ty‖2 ≤ (1 + γ)‖x− y‖2,

for all x, y ∈ X ∪ {0}. We also call such a linear transforma-
tion a JL Transformation. It is well-known that taking the
entries of the matrix T to be i.i.d. Normal random variables
with mean 0 and variance 1/k produces a JL transformation
with high probability. Many other randomized and determin-
istic constructions exist, we will use the recent construction
of Kane, Meka, and Nelson [32].

The development and analysis of our algorithm relies on
several parameters, some of which have already been intro-
duced. Table 1 lists those along with the rest of the param-
eters and some other notation for reference. In particular,
the values C, d, δ, and γ are constants that we will choose
in order to satisfy several inequalities. We will choose δ and
γ to be small, say 1/200, and d = O(log 1/δ). C and C′ are
sufficiently large constants, in particular C ≥ dC′/δ.

2. `2 HEAVY HITTERS ALGORITHM
This section describes the algorithm CountSieve, which

solves the heavy hitter problem for the case of a single heavy
hitter, i.e. top-1, in O(logn log logn) bits of space and proves
Theorem 1. By definition, the number of ε-heavy hitters is
at most 1 + 1/ε2, so, upon hashing the universe into O(1/ε2)
parts, the problem of finding all ε-heavy hitters reduces to
finding a single heavy hitter in each part. Collisions can be
easily handled by repeating the algorithm O(log 1/ε) times.
When ε = Ω(1), using this reduction incurs only a constant
factor increase in space over the single heavy hitter problem.

Suppose the stream has only a single heavy hitter H ∈
[n]. Sequentially, over the course of reading the stream,
CountSieve will hash the stream into two separate substreams
for O(logn) repetitions, and in each repetition it will try to
determine which of the two substreams has the heavy hitter
using the AMS Sketch. With high probability, H has a unique
sequence of hashes, so if we correctly identify the stream con-
taining H every time then we can correctly identify H. This
holds even if we only correctly identify the stream containing
H a large constant fraction of the repetitions. CountSketch
accomplishes this by performing the O(logn) rounds of hash-
ing in parallel, with Ω(log2 n) bits of storage. One of our
innovations is to implement this scheme sequentially by spec-
ifying intervals of updates, which we call rounds, during each
of which we run the two AMS Sketches. In total there could
be as many as Θ(log2 n) of these rounds, but we will discard
all except the last R = O(logn) of them.

Algorithm 1 is a simplified version of the Bernoulli process
used by CountSieve. It has all of the properties we need
for correctness of the algorithm, but it requires too many
random bits. Chief among these properties is the control on
the supremum of the process. The Chaining Inequality gives

Algorithm 1 One Bernoulli process.

procedure BP(Stream S)

Sample Z1, . . . , Zn
iid∼ Rademacher

return 〈Z, f (t)〉 at each time t
end procedure

us a uniform bound on the maximum value of the BP process
in terms of the standard deviation of the last value. This
property is formalized by the definition of a tame process.

Definition 3. Let f (t) ∈ Rn, for t ∈ [m], and let T :
Rn → Rk be a matrix. Let Z be a d × k matrix of i.i.d.
Rademacher random variables. A d-dimensional Bernoulli
process yt = d−

1
2ZTf (t), for t ∈ [m], is tame if, with proba-

bility at least 1− δ,

‖yt‖2 ≤ C

√√√√ n∑
j=1

f2
j , for all t ∈ [m]. (1)

The definition anticipates our need for dimension reduction
in order to reduce the number of random bits needed for
the algorithm. Our first use for it is for BP, which is very
simple with d = 1 and T the identity matrix. BP requires
n random bits, which is too many for a practical streaming
algorithm. JLBP, Algorithm 2, exists to fix this problem.
Still, if one is willing to disregard the storage needed for the



random bits, BP can be substituted everywhere for JLBP
without affecting the correctness of our algorithms because
our proofs only require that the processes are tame, and BP
produces a tame process, as we will now show. We have a
similar lemma for JLBP.

Lemma 4 (BP Correctness). Let f (t), for t ∈ [m], be
the frequency vectors of an insertion-only stream. The se-
quence Zf (t) returned by the algorithm BP is a tame Bernoulli
process.

Proof. By the Chaining Inequality, Theorem 15 below,
there exists a constant C′ such that E supt |Xt| ≤ C′(

∑
j f

2
j )1/2.

Let F be the event that the condition (1) holds. Then,
for C ≥ C′/δ, Markov’s Inequality implies that Pr(F ) =

Pr
(

supt |Xt| ≤ C
√∑

j f
2
j

)
≥ (1− δ).

In order to reduce the number of random bits needed for
the algorithms we first apply JL transformation T to the fre-
quency vector. The intuition for this comes from the co-
variance structure of the Bernoulli process, which is what
governs the behavior of the process and is fundamental for
the Chaining Inequality. The variance of an increment of
the Bernoulli process between times s and t > s is ‖f (s:t)‖22.
The JL-property of the matrix T guarantees that this value
is well approximated by ‖Tf (s:t)‖22, which is the increment
variance of the reduced-dimension process. Slepian’s Lemma
(Lemma 16) is a fundamental tool in the theory of Gaussian
processes that allows us to draw a comparison between the
suprema of the processes by comparing the increment vari-

ances instead. Thus, for Z1, . . . , Zn
iid∼ Rademacher, the ex-

pected supremum of the process Xt =
∑n
i=1 Zif

(t)
i is closely

approximated by that of X ′t =
∑k
i=1 Zi(Tf

(t))i, and the lat-
ter uses only k = O(logn) random bits. The following lemma
formalizes this discussion, its proof is given in Section 4.

Lemma 5 (JLBP Correctness). Suppose the matrix T

used by JLBP is an (1±γ)-embedding of (f (t))t∈[m]. For any

d ≥ 1, the sequence 1√
d
ZTf (t) returned by JLBP is a tame

d-dimensional Bernoulli process. Furthermore, there exists
d′ = O(log δ−1) such that for any d ≥ d′ and H ∈ [n] it holds

that Pr( 1
2
≤ ‖d−

1
2ZTeH‖ ≤ 3

2
) ≥ 1− δ.

Algorithm 2 A Bernoulli process with fewer random bits.

procedure JLBP(Stream S)
Let T be a JL Transformation

. The same T will suffice for every instance

Sample Z ∈ {−1, 1}d×k, s.t. Zi,j
iid∼ Rademacher

return 1√
d
ZTf (t) at each time t

end procedure

Now that we have established the tameness of our Bernoulli
processes, let us explain how we can exploit it. We typi-
cally exploit tameness in two ways, one works by splitting
the stream according to the items and the second splits the
stream temporally. Given a stream and a tame Bernoulli pro-
cess on that stream, every substream defines another Bernoulli
process, and the substream processes are tame as well. One
way to use this is for heavy hitters. If there is a heavy hitter
H, then the substream consisting of all updates except those
to the heavy hitter produces a tame process whose maximum

A`,1, . . . , A`,n
4-w∼ Bernoulli Z1, . . . , Zk

iid∼ Rademacher

Br,1, . . . , Br,n
4-w∼ Bernoulli Rr,1, .., Rr,n

4-w∼ Rademacher

Table 2: Random vectors for CountSieve. Each vec-
tor is independent of the others, and Z = (Zi)i∈[k] is
sampled independently for every instance of JLBP.

is bounded by C(F2 − f2
H)1/2, so the value of the process

in BP is ZHfH ± C(F2 − f2
H)1/2. When H is sufficiently

heavy, this means that the absolute value of the output of BP
tracks the value of fH , for example if H is a 4C2-heavy hitter
then the absolute value of BP’s output is always a (1 ± 1

2
)-

approximation to fH . Another way we exploit tameness is
for approximating F2 at all points. We select a sequnece of
times t1 < t2 < · · · < tj ∈ [m] and consider the prefixes of
the stream that end at times t1, t2, . . . , etc. For each ti, the
prefix stream ending at time ti is tame with the upper bound
depending on the stream’s F2 value at time ti. If the times ti
are chosen in close enough succession this observation allows
us to transform the uniform additive approximation guaran-
tee into a uniform multiplicative approximation.

2.1 Description of CountSieve
CountSieve primarily works in two stages that operate con-

currently. Each stage uses independent pairs of Bernoulli
processes to determine bits of the identity of the heavy hit-
ter. The first stage is the Amplifier, which maintains L =
O(log logn) independent pairs of Bernoulli processes. The
second stage is the Timer and Sieve. It consists of a series of
rounds where one pair of AMS sketches is maintained during
each round.

CountSieve and its subroutines are described formally in
Algorithm 4. The random variables they use are listed in
Table 2. Even though we reduce the number of random bits
needed for each Bernoulli process to a manageable O(logn)
bits, the storage space for the random values is still an issue
because the algorithm maintains O(logn) independent hash
functions until the end of the stream. We explain how to
overcome this barrier in Section 4 as well as show that the
JL generator of [32] suffices.

We can now state an algorithm that maintains a pair of
Bernoulli processes and prove that the bits that it outputs
favor the process in the pair with the heavy hitter.

Algorithm 3 Split the vector f into two parts depending
on A and run a Bernoulli process on each part. Return the
identity of the larger estimate at each time.

procedure Pair(Stream S, A1, . . . An ∈ {0, 1})
For b ∈ {0, 1} let Sb be the restriction

of S to {j ∈ [n] | Aj = b|}
X

(t)
0 =JLBP(S

(t)
0 ) at each time t

X
(t)
1 =JLBP(S

(t)
1 ) at each time t

bt = argmaxb∈{0,1} ‖X
(t)
b ‖2

return b1, b2, . . .
end procedure

Lemma 6 (Pair Correctness). Let t0 ∈ [m] be an in-

dex such that (f
(t0)
H )2 > 4C2∑

j 6=H f
2
j . Let A1, . . . , An

p.w.∼



Bernoulli and let b1, b2, . . . , bm be the sequence returned by
Pair(f,A1, . . . , An). Then

Pr(bt = AH for all t ≥ t0) ≥ 1− 3δ

and, for every j ∈ [n] \ {H} and t ≥ t0,

Pr(bt = Aj) ≤
1

2
+ 3δ.

Furthermore, if each JLBP is replaced by an AMS sketch with
size O(logn log δ−1) then, for all t ≥ t0 and j 6= H, P (bt =
AH) ≥ 1− 2δ and P (bt = Aj) ≤ 1

2
+ 3δ.

Proof. Let X
(t)
0 = d−

1
2ZTf (t) and X

(t)
1 = d−

1
2WTf (t)

be the two independent Bernoulli processes output by JLBP.
Without loss of generality, suppose that AH = 1, let v =

d−
1
2WTeH , and let Y (t) = X

(t)
1 − f

(t)
H v. By Lemma 5, with

probability at least 1− 2δ all three of the following hold

1. ‖X(t)
0 ‖22 ≤ C2∑

j:Aj=0 f
2
j , for all t,

2. ‖Y (t)‖22 ≤ C2∑
j 6=H
Aj=1

f2
j , for all t, and

3. ‖v‖2 ≥ 1/2.

If the three events above hold then, for all t ≥ t0,

‖X(t)
1 ‖2 − ‖X

(t)
0 ‖2 ≥ ‖vf

(t)
H ‖2 − ‖Y

(t)‖2 − ‖X(t)
0 ‖2

≥ 1

2
f

(t)
H − C

√∑
j 6=H

f2
j > 0,

which establishes the first claim. The second claim follows
from the first using

Pr(bt = Aj) = Pr(bt = Aj = AH) + Pr(bt = Aj 6= AH)

≤ Pr(Aj = AH) + Pr(bt 6= AH) =
1

2
+ 3δ.

The third and fourth inequalities follow from the correctness
of the AMS sketch [3].

2.2 Amplifier Correctness
The L = O(log log n) instances of Pair maintained by Am-

plifier in the first stage of CountSieve serve to identify a sub-
stream containing roughly n2−L = n/polylogn elements in
which H appears as a polylog(n)-heavy hitter. Correctness
of Amplifier means that, after some “burn-in” period which
we allow to include the first fH/2 updates to H, all of the
subsequent updates to H appear in the amplified substream
while the majority of other items do not. This is Lemma 7.

Lemma 7 (Amplifier Correctness). Let t0 ∈ [m] be

such that (f
(t0)
H )2 ≥ 4C2∑

j 6=H f
2
j , and let at = (a1,t, . . . , aL,t)

denote the length L bit-vector output by the Amplifier at step
t. Let Mj,t = #{` ∈ [L] | a`,t = A`,j} and W = {j ∈
[n] \ {H} | ∃t ≥ t0,Mj,t ≥ 0.9L}. Then, with probability at
least (1− 2δ), both of the following hold:

1. for all t ≥ t0 simultaneously, MH,t ≥ 0.9L and

2.
∑
j∈W f2

j ≤ exp(− L
25

)
∑
j 6=H f

2
j .

Proof. Let N = #{` | for all t ≥ t0, a`,t = A`,H}. If
N ≥ 0.9L then 1 holds. Lemma 6 implies EN ≥ (1− 3δ)L ≥
0.97L, so Chernoff’s Bound easily implies P (N < 0.9L) =
O(2−L) ≤ δ, where δ is a constant.

Algorithm 4 Algorithm for a single F2 heavy hitters.

procedure CountSieve(Stream S = (p1, p2, . . . , pm))
Maintain at = (a1,t, a2,t, . . . , aL,t)←Amplifier(S)
Let t1 < t2 < · · · =
{t ∈ [n] | A`,pt = a`,t for at least 0.9L values of `}

Let S0 = (pt1 , pt2 , . . . , )
q0, q1, . . . , qR ←Timer(S0)
b1, b2, . . . , bR ←Sieve(S0, q0, . . . , qR)
return Selector(b1, b2, . . . , bR) based on S0

end procedure

procedure Amplifier(Stream S) . Find a substream
where H is polylog(n)-heavy

for ` = 1, 2, . . . , L do
a`,1, a`,2, . . . , a`,m ←Pair(S,A`,1, . . . , A`,n)

end for
return a1,t, . . . , aL,t at each time t

end procedure

procedure Timer(Stream S) . Break the substream into
rounds so H is heavy in each

q′0 = 0
Yt ←JLBP(S), for t = 1, 2, . . . , over S
For each r ≥ 1, find q′r = min{t | ‖Yt‖2 > (1 + 1

τ
)r}

Let q0, q1, . . . , qR be the last R+ 1 of q′0, q
′
1, . . .

return q0, q1, . . . , qR
end procedure

procedure Sieve(Stream S, q0, . . . , qR) . Identify one
bit of information from each round

for r = 0, 1, . . . , R− 1 do
bqr+1, . . . , bqr+1 ←Pair(S(qr :qr+1), Br,1, . . . , Br,n)

. Replace JLBP here with AMS
end for
return bq1 , bq2 , . . . , bqR

end procedure

procedure Selector(b1, . . . , bR) . Determine H from
the round winners

return Any j∗ ∈ argmaxj #{r ∈ [R] : Br,j = br}.
end procedure

Now, let j 6= H be a member of W and suppose that
MH,t ≥ 0.9L. Let t ≥ t0 be such that Mj,t ≥ 0.9L. Then it
must be that

M ′j := #{` ∈ [L] | A`,j = A`,H} ≥ 0.8L.

However, EM ′j = 1
2
L by pairwise independence. Let Ej be

the event {j ∈ W and MH,t ≥ 0.9L}. Since the L instances
of Pair are independent, an application of Chernoff’s Inequal-

ity proves that Pr(Ej) ≤ Pr(M ′j ≥ 0.8L) ≤ exp{−0.62L
6
} ≤

e−L/20.
We have

E(
∑
j∈W

f2
j ) = E(

∑
j 6=H

1Ejf
2
j ) ≤ e−L/20

∑
j 6=H

f2
j .

Therefore Markov’s Inequality yields

Pr

∑
j∈W

f2
j ≥ e−L/25

∑
j 6=H

f2
j

 ≤ e−L/100 ≤ δ.

The lemma follows by a union bound.



2.3 Timer and Sieve Correctness
The timing of the rounds in the second stage of CountSieve

is determined by the algorithm Timer. Timer outputs a set
of times q0, q1, . . . , qR that break the stream into intervals
so that each interval has roughly a 1/ logn fraction of the
occurrences of H and not too many other items. Precisely,
we want that H is everywhere heavy for q, as stated in the
following definition. When this holds, in every round the Pair
is likely to identify one bit of H, and Sieve and Selector will
be likely to correctly identify H from these bits.

Definition 8. Given an item H ∈ [n] and a sequence of
times q0 < q1 < · · · < qR in a stream with frequency vectors
(f (t))t∈[m] we say that H is everywhere heavy for q if, for all
1 ≤ r ≤ R,

(f
(qr−1:qr)

H )2 ≥ C2
∑
j 6=H

(f
(qr−1:qr)

j )2.

Correctness for Timer means that enough rounds are com-
pleted and H is sufficiently heavy within each round, i.e., H
is everywhere heavy for q.

Lemma 9 (Timer Correctness). Let S be a stream with
an item H ∈ [n] such that the following hold:

1. fH ≥ τ4,

2. f2
H ≥ 400C2∑

j 6=H f
2
j , and

3. (f
(t∗:m)
H )2 = 1

4
f2
H ≥ 25C2τ2∑

j 6=H(f
(t∗:m)
j )2,

where t∗ = min{t ∈ [m] | f (t)
H ≥ 0.5fH} and C is the constant

from Definition 3. If q0, q1, . . . , qR is the sequence output by
Timer(S) then, with probability at least 1 − 4δ, H is every-
where heavy for q.

Proof. We begin by proving that at least R rounds occur
after t∗, which shows that q0, . . . , qR is well defined, and then
we show that H is everywhere heavy. Let Yt be the sequence

output by JLBP and let Xt = Yt−d−
1
2ZTeHf

(t)
H . Yt and Xt

are tame by Lemma 5 and Pr(0.5 ≤ α ≤ 1.5) ≥ 1 − δ where

α = ‖d−
1
2ZTeH‖2. Hereafter, we suppose that α ≥ 1/2 and

the tameness property holds for Yt and Xt. With probability
at least 1− δ, simultaneously for all t ∈ [m], we have

‖Xt‖22 ≤ C2
∑
j 6=H

f2
j ≤

1

400
f2
H . (2)

Therefore, ‖Yt∗‖2 ≤ ‖Xt∗‖2 + αf
(t∗)
H ≤ (α

2
+ 1

20
)fH and

‖Ym‖2 ≥ αf
(m)
H − ‖Xm‖2 ≥ (α − 1

20
)fH . This implies that

the number of rounds completed after t∗, which is

log1+1/τ

‖Ym‖2
‖Yt∗‖2

≥ log1+1/τ

α− 1/20

α/2 + 1/20
≥ log1+1/τ (3/2),

is at least R + 1 by our choice of τ = 100(R + 1). Similarly

‖Yt∗‖2 ≥ αf (t∗)
H − ‖Xt∗‖2 ≥ (α

2
− 1

20
)fH . Therefore we also

get qi > qi−1 because (1+τ−1)‖Yt∗‖2 ≥ 1 by our assumption
that fH ≥ τ4. Hence q0, . . . , qR are distinct times.

Now we show that H is everywhere heavy for q. Let Wt =
Xt − Xt∗ , for t ≥ t∗. By design, Wt −Ws = Xt − Xs, for
s, t ≥ t∗. By Lemma 5, Wt is also a tame process on the suffix
of the original stream that has its first item at time t∗ + 1.
Specifically with probability at least 1− δ, for all t ≥ t∗,

‖Wt‖22 ≤ C2
∑
j 6=H

(f
(t∗:m)
j )2 ≤ 1

400τ2
f2
H .

This inequality, with two applications of the triangle inequal-
ity, implies

αf
(qi−1:qi)

H ≥ ‖Yqi − Yqi−1‖2 − ‖Wqi −Wqi−1‖2

≥ ‖Yqi − Yqi−1‖2 −
2

20τ
fH . (3)

To complete the proof we must bound ‖Yqi − Yqi−1‖2 from
below and then apply the heaviness, i.e., assumption 3.

Equation (2) and the triangle inequality imply that, for

every t ≥ t∗, it holds that ‖Yt‖2 ≥ αf
(t)
H − ‖Xt‖2 ≥ (α

2
−

1
20

)fH . Recalling the definition of q′0, q
′
1, · · · from Timer, since

t∗ ≤ q0 < q1 < · · · < qR and the rounds expand at a rate
(1 + 1/τ),

‖Yqi+1 − Yqi‖2 ≥
1

τ

(
α

2
− 1

20

)
fH . (4)

Using what we have already shown in (3) we have

αf
(qi:qi+1)

H ≥ 1

τ

(
α

2
− 1

20
− 2

20

)
fH

so dividing and using α ≥ 1/2 and C sufficiently large we get

(f
(qi:qi+1)

H )2 ≥ 1

25τ2
f2
H ≥ C2

∑
j 6=H

(f
(t∗:m)
j )2

≥ C2
∑
j 6=H

(f
(qi:qi+1)

j )2.

Since this holds for all i, H is everywhere heavy for q. We
have used the tameness of the three processes (X, Y , and W )
and the bounds on α. Each of these fails with probability at
most δ, so the probability that Timer fails to achieve the
condition that H is everywhere heavy for q is at most 4δ.

During each round, the algorithm Sieve uses a hash func-
tion A to split the stream into two parts and then determines
which part contains H via Pair. For these instances of Pair,
we replace the two instances of JLBP with two instances of
AMS. This replacement helps us to hold down the storage
when we later use Nisan’s PRG, because computing the JL
transformation T from [32] requires O(logn log log n) bits.
Applying Nisan’s PRG to an algorithm that computes en-
tries in T would leave us with a bound of O(logn(log log n)2).
More details can be found in Section 4.

A total of O(logn) rounds is enough to identify the heavy
hitter and the only information that we need to save from
each round is the hash function A and the last bit output by
Pair. Selector does the work of finally identifying H from the
sequence of bits output by Sieve and the sequence of hash
functions used during the rounds. We prove the correctness
of Sieve and Selector together in the following lemma.

Lemma 10 (Sieve/Selector). Let q0, q1, . . . , qR be the
sequence output by Timer(S) and let b1, . . . , bR be the se-
quence output by Sieve(S, q0, . . . , qR). If H is everywhere
heavy for q on the stream S then, with probability at least
1− δ, Selector(b1, . . . , bR) returns H.

Proof. Lemma 6 in the AMS case implies that the out-
come of round r satisfies Pr(br = Br,H) ≥ 1−3δ and Pr(br =
Br,j) ≤ 1

2
+ 3δ. The random bits used in each iteration of

the for loop within Sieve are independent of the other itera-
tions. Upon choosing the number of rounds R = O(logn) to
be sufficiently large, Chernoff’s Inequality implies that, with
high probability, H is the unique item in argmaxj #{r ∈ [R] |
Br,j = br}. Therefore, Selector returns H.



Algorithm 5 `2 heavy hitters algorithm.

procedure `2HeavyHitters(S = (p1, p2, . . . , pm))
Q← O(log ε−1), B ← O(ε−2)
Select independent 2-universal hash functions

h1, . . . , hQ, h
′
1, . . . , h

′
Q : [n]→ [B]

and σ1, . . . , σQ : [n]→ {−1, 1}.
F̂2 ← (1± ε

10
)F2 using AMS [3]

Ĥ ← ∅
for (q, b) ∈ Q×B do

Let Sq,b be the stream of items i with hq(i) = b
cq,b ←

∑
j:h′q(j)=b σq(j)fj . The CountSketch [16]

H ← CountSieve(Sq,b)
end for
Remove from Ĥ any item i such that

medianq{|cq,hq(i)|} ≤ 3ε
4
F̂2.

return Ĥ
end procedure

2.4 CountSieve Correctness
We now have everything in place to prove that CountSieve

correctly identifies a sufficiently heavy heavy hitter H. As for
the storage bound and Theorem 1, the entire algorithm fits
within O(logn log log n) bits except the R = O(logn) hash
functions required by Sieve. We defer their replacement to
Theorem 21 in Section 4.

Theorem 11 (CountSieve Correctness). If H is a
400C2-heavy hitter then the probability that CountSieve re-
turns H is at least 0.95. The algorithm uses O(logn log logn)
bits of storage and can be implemented with O(logn log logn)
stored random bits.

Proof. We use Theorem 18 to generate the JL transfor-
mation T . Each of our lemmas requires that T embeds a
(possible different) polynomially sized set of vectors, so, for
δ = Ω(1), Theorem 18 implies that, with probability at least
1− δ, T embeds all of the necessary vectors with seed length
O(logn), and the entries in T can be computed in space
O(logn log logn) bits of space. Because of the heaviness as-
sumption, the conclusion of Lemma 7 fails to hold for t0 = t∗

(defined in Lemma 9) with probability at most 2δ. When
that failure does not occur, the second and third hypothe-
ses in Lemma 9 hold. The first hypothesis is that fH ≥ τ4,
suppose it holds. Then the probability that H fails to be
everywhere heavy for the sequence q that is output by Timer
is at most 4δ. In this case, according to Lemma 10, Sieve
and Selector correctly identify H except with probability at
most δ. Therefore, the algorithm is correct with probability
at least 1 − 8δ ≥ 0.95, by choosing δ ≤ 1/200. If fH < τ4,
then because H is a heavy hitter, we get

∑
j 6=H f

2
j ≤ τ8 =

O(log8 n). Then we choose the constant factor in L large
enough so that, the second conclusion of Lemma 7 implies∑
j∈W f2

j ≤ e−L/25 < 1. This means that H is the only item

that passes the amplifier for all t ≥ t∗, and, no matter what
is the sequence output by Timer, H is everywhere heavy be-
cause it is the only item in the substream. Thus, in this case
the algorithm also outputs H.

Now we analyze the storage and randomness. Comput-
ing the entries in the Kane-Meka-Nelson JL matrix requires
O(logn log log n) bits of storage, by Theorem 18, and there is
only one of these matrices. Amplifier stores L = O(log logn)
counters. Sieve, Timer, and Selector each require O(logn)

bits at a time (since we discard any value as soon as it is
no longer needed). Thus the total working memory of the
algorithm is O(logn log log n) bits. The random seed for
the JL matrix has O(logn) bits. Each of the O(log logn)
Bernoulli processes requires O(logn) random bits. By The-
orem 21 below, the remaining random bits can be generated
with Nisan’s generator using a seed of O(logn log logn) bits.
Using Nisan’s generator does not increase the storage of the
algorithm. Accounting for all of these, the total number of
random bits used by CountSieve, which also must be stored,
is O(logn log logn). Therefore, the total storage used by the
algorithm is O(logn log logn) bits.

Theorem 1 (`2-Heavy Hitters). For any ε > 0, there
is a 1-pass algorithm in the insertion-only model that, with
probability at least 2/3, finds all those indices i ∈ [n] for which
fi ≥ ε

√
F2, and reports no indices i ∈ [n] for which fi ≤

ε
2

√
F2. The space complexity is O( 1

ε2
log 1

ε
logn log logn) bits.

Proof. The algorithm is Algorithm 5. It has the form
of a CountSketch [16] with Q = O(log 1/ε) “rows” and B =
8(10C)2/ε2 “buckets”per row, wherein we run one instance of
CountSieve in each bucket to identify potential heavy hitters
and also the usual CountSketch counter in each bucket. Fi-
nally, the algorithm discriminates against non-heavy hitters
by testing their frequency estimates from the CountSketch.
We will assume that the AMS estimate F̂2 is correct with
probability at least 8/9.

Let Hk = {i | fi ≥ ε
k

√
F2} and let Ĥ be set of distinct

elements returned by Algorithm 5. To prove the theorem,
it is sufficient to prove that, with probability at least 2/3,

H1 ⊆ Ĥ ⊆ H2.
Let H ∈ H1 and consider the stream Sq,hq(H) at position

(q, hq(H)). We have

E(
∑
j 6=H

hq(j)=hq(H)

f2
j ) ≤ ε2

8(10C)2
F2.

Let Eq,H be the event that∑
j 6=H

hq(j)=hq(H)

f2
j ≤

ε2

(10C)2
F2,

so by Markov’s Inequality Pr(Eq,H) ≥ 7/8. When Eq,H
occurs H is sufficiently heavy in Sq,hq(H) for CountSieve.

By Theorem 11, with probability at least 7
8
− 1

20
≥ 0.8,

CountSieve identifies H. Therefore, with the correct choice
of the constant factor for Q, a Chernoff bound and a union
bound imply that, with probability at least 1 − 1/9, every
item in H1 is returned at least once by a CountSieve.

Let Ĥ′ denote the set Ĥ before any elements are removed
in the final step. Since CountSieve identifies at most one item
in each bucket, |Ĥ′| = O(ε−2 log ε−1). By the correctness of

CountSketch [16] and the fact that it is independent of Ĥ ′,

we get that, with probability at least 1− 1/9, for all i ∈ Ĥ ′∣∣fi −medianq{|cq,hq(i)|}
∣∣ ≤ ε

10C

√
F2.

When this happens and the AMS estimate is correct, the final
step of the algorithm correctly removes any items i /∈ H2

and all items i ∈ H1 remain. This completes the proof of
correctness.

The storage needed by the CountSketch is O(BQ logn), the
storage needed for the CountSieves is O(BQ logn log logn),



and the storage needed for AMS is O(ε−2 logn). Therefore,
the total number of bits of storage is

O(BQ logn log log n) = O(
1

ε2
log

1

ε
logn log logn).

Corollary 12. There exists an insertion-only streaming
algorithm that returns an additive ±ε

√
F2 approximation to

`∞, with probability at least 2/3. The algorithm requires
O( 1

ε2
log 1

ε
logn log logn) bits of space.

Proof. Use Algorithm 5. If no heavy-hitter is returned
then the `∞ estimate is 0, otherwise return the largest of the
CountSketch medians among the discovered heavy hitters.
The correctness follows from Theorem 1 and the correctness
of CountSketch.

3. CHAINING INEQUALITY
We call these inequalities Chaining Inequalities after the

Generic Chaining, which is the technique that we use to prove
it. The book [49] by Talagrand contains an excellent expo-
sition of the subject. Let (Xt)t∈T be a Gaussian process.
The Generic Chaining technique concerns the study of the
supremum of Xt in a particular metric space related to the
variances and covariances of the process. The metric space

is (T, d) where d(s, t) = (E(Xs −Xt)2)
1
2 . The method takes

any finite chain of finite subsets T0 ⊆ T1 ⊆ · · · ⊆ Tn ⊆ T and
uses (Xt)t∈Ti as a sequence of successive approximations to
(Xt)t∈T wherein Xt, for t /∈ Ti, is approximated by the value
of the process at some minimizer of d(t, Ti) = min{d(t, s) |
s ∈ Ti}. To apply the Generic Chaining one must judiciously
choose the chain in order to get a good bound, and the best
choice necessarily depends on the structure of the process.
We will exploit the following lemma.

Lemma 13 ([49]). Let {Xt}t∈T be a Gaussian process
and let T0 ⊆ T1 · · · ⊆ Tn ⊆ T be a chain of sets such that

|T0| = 1 and |Ti| ≤ 22i

for i ≥ 1. Then

E sup
t∈T

Xt ≤ O(1) sup
t∈T

∑
i≥0

2i/2d(t, Ti). (5)

The Generic Chaining also applies to Bernoulli processes,
but, for our purposes, it is enough that we can compare re-
lated Gaussian and Bernoulli processes.

Lemma 14 ([49]). Let A ∈ Rm×n be any matrix and let
G and B be n-dimensional vectors with independent coor-
dinates distributed as N(0, 1) and Rademacher, respectively.
Then the Gaussian process X = AG and Bernoulli process
Y = AB satisfy

E sup
t∈T

Yt ≤
√
π

2
E sup
t∈T

Xt.

Theorem 15 (Chaining Inequality). Define indepen-

dent N (0, 1) random variables Z1, . . . , Zn and let (f (t))t∈[m]

be the sequence of frequency vectors of an insertion-only stream.
There exists a universal constant C′ > 0 such that if Xt =∑n
j=1 Zjf

(t)
j , for t ∈ [m], then

E sup
i
|Xi| ≤ C′

√
Var(Xm) = C′‖f (m)‖2. (6)

If Z̄1, . . . , Z̄n . . .
iid∼ Rademacher and Yt =

∑n
j=1 Z̄jf

(t)
j , for

t ∈ [m], then

E sup
i
|Yi| ≤ C′

√
Var(Ym) = C′‖f (m)‖2. (7)

Proof. Let T = [m]. Define T0 = {t0}, where t0 is
the index such that Var(Xt0) < 0.5 Var(Xm) ≤ Var(Xt0+1)
and Ti = {1, ti,1, ti,2, . . . } where for each index ti,j ∈ Ti
Var(Xti,j ) < j

22i
Var(Xm) ≤ Var(Xti,j+1). This is well-

defined because Var(Xt) = ‖f (t)‖22 is the second moment of
an insertion-only stream, which must be monotonically in-

creasing. By construction |Ti| ≤ 22i

and, for each t ∈ T , there
exist ti,j ∈ Tj such that d(t, Ti) = min(d(t, ti,j), d(t, ti,j+1)) ≤
d(ti,j , ti,j+1) = (E(Xti,j+1−Xti,j )2)

1
2 , where the last inequal-

ity holds because E(X2
t ) monotonically increasing with t.

Notice that every pair of increments has nonnegative co-
variance because the stream is insertion-only. Thus, the fol-
lowing is true:

d(t, ti,j+1)2 ≤ E(Xti,j+1 −Xti,j )2

≤ E(Xti,j+1 −Xti,j )2 + 2EXti,j (Xti,j+1 −Xti,j )

= EX2
ti,j+1

− EX2
ti,j

≤ j + 1

22i EX2
m −

j − 1

22i EX2
m =

2

22i EX
2
m.

Then we can conclude that∑
i≥0

2i/2d(t, Ti) ≤
∑
i≥0

2i/2
2

22i

√
EX2

m = O(1)
√

Var(Xm).

Applying inequality (5) we obtain E supt∈T Xt ≤ O(1)
√

Var(Xm).
In order to bound the absolute value, observe

sup
t
|Xt| ≤ |X1|+ sup |Xt −X1|

≤ |X1|+ sup
s,t

(Xt −Xs)

= |X1|+ sup
t
Xt + sup

s
(−Xs). (8)

Therefore, E supt |Xt| ≤ E|X1|+2E supXt ≤ O(1)
√

Var(Xm),
because −Xt is also Gaussian process with the same distri-
bution as Xt and E|X1| = O(

√
Var(Xm)) because f (1) = 1.

This establishes (6) and (7) follows immediately by an appli-
cation of Lemma 14.

Theorem 15 would obviously not be true for a stream with
deletions, since we may have Var(Xm) = 0. One may wonder
if the theorem would be true for streams with deletions upon
replacing Var(Xm) by maxt Var(Xt). This is not true, and a
counter example is the stream (e1,−e1, e2, . . . , en,−en) which
yields maxt Var(Xt) = 1, but E supt |Xt| = Θ(

√
logn).

Theorem 15 does not apply to the process ouput by JLBP,
but the covariance structures of the two processes are very
similar because T is an embedding. We can achieve basi-
cally the same inequality for the JLBP process by applying
Slepian’s Lemma, mimicking the stategy in [38].

Lemma 16 (Slepian’s Lemma [35]). Let Xt and Yt, for
t ∈ T , be Gaussian processes such that E(Xs−Xt)2 ≤ E(Ys−
Yt)

2, for all s, t ∈ T . Then, E supt∈T Xt ≤ E supt∈T Yt.

Corollary 17 (Chaining Inequality with JL). Let T

be a (1 ± γ)-embedding of (f (t))t∈[m] and let Z1, . . . , Zk
iid∼

N (0, 1). There exists a universal constant C′ > 0 such that



if Xt = 〈Z, Tf (t)〉, for t ∈ [m], then E supi |Xi| ≤ C′‖f (m)‖2.

If Z̄1, . . . , Z̄k
iid∼ Rademacher and Yt = 〈Z̄, Tf (t)〉, for t ∈ [m],

then E supi |Yi| ≤ C′‖f (m)‖2.

Proof. Let Wt be the Gaussian process from Theorem 15.
Since T is a JL transformation

E(Xt −Xs)2 = ‖Tf (s:t)‖22 ≤ (1 + γ)2‖f (s:t)‖22
= (1 + γ)2E(Wt −Ws)

2.

The first claim of the corollary follows from Slepian’s Lemma,
Equation (8), and Theorem 15. The second inequality follows
from the first and Lemma 14.

4. REDUCED RANDOMNESS
This section describes how CountSieve can be implemented

with only O(logn log logn) random bits. There are two main
barriers to reducing the number of random bits. We have
already partially overcome the first barrier, which is to reduce
the number of bits needed by a Bernoulli process from n, as
in the algorithm BP, to O(logn) by introducing JLBP. JLBP
runs d = O(1) independent Bernoulli processes in dimension
k = O(logn) for a total of dk = O(logn) random bits. This
section proves the correctness of that algorithm.

The second barrier is to find a surrogate for the R =
O(logn) independent vectors of pairwise independent Bernoulli
random variables that are used during the rounds of Sieve.
We must store their values so that Selector can retroactively
identify a heavy hitter, but, näıvely, they require Ω(log2 n)
random bits. We will show that one can use Nisan’s pseudo-
random generator (PRG) with seed length O(logn log logn)
bits to generate these vectors. A priori, it is not obvious that
this is possible. The main sticking point is that the stream-
ing algorithm that we want to derandomize must store the
random bits it uses, which means that these count against
the seed length for Nisan’s PRG. Specifically, Nisan’s PRG
reduces the number of random bits needed by a space S algo-
rithm usingR random bits toO(S logR). Because CountSieve
must pay to store the R random bits, the storage used is
S ≥ R = Ω(log2 n), so Nisan’s PRG appears even to increase
the storage used by the algorithm! We can overcome this by
introducing an auxiliary (non-streaming) algorithm that has
the same output as Sieve and Selector, but manages without
storing all of the random bits. This method is similar in spirit
to Indyk’s derandomization of linear sketches using Nisan’s
PRG [28]. It is not a black-box reduction to the auxiliary
algorithm and it is only possible because we can exploit the
structure of Sieve and Selector.

We remark here that we are not aware of any black-box de-
randomization of the Bernoulli processes that suits our needs.
This is for two reasons. First, we cannot reorder the stream
for the purpose of the proof because the order of the com-
putation is important. Reordering the stream is needed for
Indyk’s argument [28] for applying Nisan’s PRG. Second, the
seed length of available generators is too large, typically in
our setting we would require a seed of length at least log1+δ n,
for some δ > 0.

4.1 The Bernoulli Process with O(log n) Ran-
dom Bits

The main observation that leads to reducing the number
of random bits needed by the algorithm is that the distri-
bution of the corresponding Gaussian process depends only

on the second moments of the increments. These moments
are just the square of the Euclidean norm of the change in
the frequency vector, so applying a Johnson-Lindenstrauss
transformation to the frequency vector nearly preserves the
distribution of the process and allows us to get away with
O(logn) random bits. One trouble with this approach is that
the heavy hitter H could be “lost”, whereby we mean that al-
though ‖TeH‖ ≈ 1 it may be that 〈Z, TeH〉 ≈ 0, for the
Rademacher random vector Z, whereupon H’s contribution
to the sum 〈Z, Tf (t)〉 is lost among the noise. To avoid this
possibility we keep d = O(1) independent Bernoulli processes
in parallel.

First, we state the correctness of the Johnson-Lindenstrauss
transformation that we use and the storage needed for it.

Theorem 18 (Kane, Meka, & Nelson [32]). Let V =
{v1, . . . , vn} ⊆ Rn. For any constant δ > 0 there exists a k =

O(γ−2 log(n/δ) and generator G : {0, 1}O(logn)×[k]×[n]→ R
such that, with probability at least 1− δ, the k × n matrix T
with entries Tij = G(R, i, j) is a (1 ± γ)-embedding of V ,

where R ∈ {0, 1}O(logn) is a uniformly random string. The
value of G(R, i, j) can be computed with O(logn log logn) bits
of storage.

Lemma 5 (JLBP Correctness). Suppose the matrix T

used by JLBP is an (1±γ)-embedding of (f (t))t∈[m]. For any

d ≥ 1, the sequence 1√
d
ZTf (t) returned by JLBP is a tame

d-dimensional Bernoulli process. Furthermore, there exists
d′ = O(log δ−1) such that for any d ≥ d′ and H ∈ [n] it holds

that Pr( 1
2
≤ ‖d−

1
2ZTeH‖ ≤ 3

2
) ≥ 1− δ.

Proof. Let Xi,t =
∑k
j=1 Zij(Tf

(t))j and

Xt = ‖ 1√
d
ZTf (t)‖22 =

1

d

d∑
i=1

X2
i,t,

for t = 1, . . . ,m. Each process Xi,t is a Bernoulli process
with Var(Xi,t) = ‖Tf (t)‖22 ≤ (1 + γ)2‖f (t)‖22 and, for s < t,

E(Xi,t −Xi,s)2 = ‖Tf (s:t)‖22 ≤ (1 + γ)2‖f (s:t)‖22.
Notice that for all i Gaussian processes (Xi,t)t∈[m] are from

same distribution. Let X ′t be a Gaussian process that is iden-
tical to Xi,t, except that the Rademacher random variables
are replaced by standard Gaussians. X ′t and Xi,t have the
same means, variances, and covariances. Thus, E supt |Xi,t| ≤√

π
2
E supt |X ′t|, by Lemma 14.

Let N1, . . . , Nn
iid∼ N(0, 1). We will compare X ′t against

the Gaussian process X ′′t = (1 + γ) 1√
d
〈N, f (t)〉. By the

Chaining Inequality, there exists C′ such that E sup |X ′′t | ≤
C′
√

Var(X ′′m) = C′(1+γ)√
d
‖f (m)‖2. We have E(X ′′t − X ′′s )2 =

1
d
(1 + γ)2‖f (s:t)‖22, so by Slepian’s Lemma applied to X ′t and

X ′′t and by (8) we have

E sup
t
|Xi,t| ≤

√
π

2
E sup |X ′t| ≤

√
π

2

√
dE sup

t
|X ′′t |

≤
√
π

2
(1 + γ)C′‖f (m)‖2.

Now we apply Markov’s Inequality to get Pr(supt |Xi,t| ≥
C√
d
‖f (m)‖2) ≤ δ

d
, by taking C ≥

√
π
2

(1 + γ)C′d3/2/δ. From

a union bound we find Pr(supi,t |Xi,t| ≥ C√
d
‖f (m)‖2) ≤ δ,

and that event implies supt |Xt| ≤ C‖f (m)‖2, which is (1)
and proves that the process is tame.



For the second claim, we note that the matrix 1√
d
Z is

itself a type of Johnson-Lindenstrauss transformation (see

[1]), hence 1
2
≤ ‖d−1/2ZTeH‖ ≤ 3

2
, with probability at least

1 − 2−d ≥ (1 − δ). The last inequality follows by our choice
of d.

4.2 Sieve and Selector
In the description of the algorithm, the Sieve and Selector

use O(logn) many pairwise independent hash functions that
are themselves independent. Nominally, this needs O(log2 n)
bits. However, as we show in this section, it is sufficient
to use Nisan’s pseudorandom generator [45] to generate the
hash functions. This reduces the random seed length from
O(log2 n) to O(logn log log n). Recall the definition of a pseu-
dorandom generator.

Definition 19. A function G : {0, 1}m → {0, 1}n is called
a pseudorandom generator (PRG) for space(S) with parame-
ter ε if for every randomized space(S) algorithm A and every
input to it we have that ‖Dy(A(y)) − Dx(A(G(x))‖1 < ε,
where y is chosen uniformly at random in {0, 1}n, x uni-
formly in {0, 1}m, and D(·) is the distribution of · as a vector
of probabilities.

Nisan’s PRG [45] is a pseudorandom generator for space S
with parameter 2−S that takes a seed of length O(S logR)
bits to R bits. The total space used by Sieve and Selector is
O(logn) bits for the algorithm workspace and O(log2 n) bits
to store the hash functions.

We will be able to apply Nisan’s PRG because Sieve only
accesses the randomness in O(logn) bit chunks, where the
rth chunk generates the 4-wise independent random variables
needed for the rth round, namely Br1, . . . , Brn and the bits
for two instances of the AMS sketch. We can discard the
AMS sketches at the end of each round, but in order to com-
pute its output after reading the entire stream, Selector needs
access to the bit sequence b1, b2, . . . , bR as well as Bri, for
r ∈ [R] and i ∈ [n]. Storing the B random variables, by their
seeds, requires O(log2 n) bits. This poses a problem for de-
randomization with Nisan’s PRG because it means that Sieve
and Selector are effectively a O(log2 n) space algorithm, even
though most of the space is only used to store random bits.

We will overcome this difficulty by derandomizing an aux-
iliary algorithm. The auxiliary algorithm computes a piece of
the information necessary for the outcome, specifically for a
given item j ∈ [n] in the stream the auxiliary item will com-
pute Nj := #{r | br = Brj} the number of times j is on the
“winning side” and compare that value to 3R/4. Recall that
the Selector outputs as the heavy hitter a j that maximizes
Nj . By Lemma 6 for the AMS case, ENj is no larger than
( 1

2
+ 3δ)R, if j is not the heavy element, and ENH is at least

(1−3δ)R if H is the heavy element. When the Sieve is imple-
mented with fully independent rounds, Chernoff’s Inequality
implies that NH > 3R/4 or Nj ≤ 3R/4 with high probability.
When we replace the random bits for the independent rounds
with bits generated by Nisan’s PRG we find that for each j
with high probability Nj remains on the same side of 3R/4.

Here is a formal description of the auxiliary algorithm. The
auxiliary algorithm takes as input the sequence q0, q1, . . . , qR
(which is independent of the bits we want to replace with
Nisan’s PRG), the stream S, and an item label j, and it
outputs whether Nj > 3R/4. It initializes Ni = 0, and then
for each round r = 1, . . . , R it drawsO(logn) random bits and
computes the output br of the round. If br = Brj then Ni is

incremented, and otherwise it remains unchanged during the
round. The random bits used by each round are discarded at
its end. At the end of the stream the algorithm outputs 1 if
Nj > 3R/4.

Lemma 20. Let X ∈ {0, 1} be the bit output by the aux-

iliary algorithm, and let X̃ ∈ {0, 1} be the bit output by the
auxiliary algorithm when the random bits it uses are gener-
ated by Nisan’s PRG with seed length O(logn log logn). Then

|Pr(X = 1)− Pr(X̃ = 1)| ≤ 1
n2 .

Proof. The algorithm uses O(logn) bits of storage and
O(log2 n) bits of randomness. The claim follows by applying
Nisan’s PRG [45] with parameters ε = 1/n2 and seed length
O(logn log log n).

Theorem 21. Sieve and Selector can be implemented with
O(log(n) log logn) random bits.

Proof. Let Nj be the number of rounds r for which br =
Brj when the algorithm is implemented with independent

rounds, and let Ñj be that number of rounds when the algo-
rithm is implemented with Nisan’s PRG. Applying Lemma 20

we have for every item j that |Pr(Ñj > 3R/4) − P (Nj >
3R/4)| ≤ 1/n2. Thus, by a union bound, the probabil-
ity that the heavy hitter H is correctly identified changes
by no more than n/n2 = 1/n. The random seed requires
O(logn log log n) bits of storage, and aside from the random
seeds the algorithms use O(logn) bits of storage. Hence the
total storage is O(logn log logn) bits.

5. F2 AT ALL POINTS
One approach to tracking F2 at all times is to use the me-

dian of O(logn) independent copies of an F2 estimator like
the AMS algorithm [3]. A Chernoff bound drives the error
probability to 1/poly(n), which is small enough for a union
bound over all times, but it requires O(log2 n) bits of storage
to maintain all of the estimators. The Chaining Inequality
allows us to get a handle on the error during an interval of
times. Our approach to tracking F2 at all times is to take
the median of O(log 1

ε
+log logn) Bernoulli processes. In any

short enough interval—where F2 changes by only a (1+Ω(ε2))
factor—each of the processes will maintain an accurate esti-
mate of F2 for the entire interval, with constant probability.
Since there are only O(ε−2 log2(n)) intervals we can apply
Chernoff’s Inequality to guarantee the tracking on every in-
terval, which gives us the tracking at all times. This is a
direct improvement over the F2 tracking algorithm of [27]
which for constant ε requires O(logn(logn+ log logm)) bits.

The algorithm has the same structure as the AMS algo-
rithm, except we replace their sketches with instances of
JLBP. Theorem 2 follows immediately from Theorem 23.

Algorithm 6 An algorithm for approximating F2 at all
points in the stream.

procedure F2Always(Stream S)
N ← O( 1

ε2
), R← O(log( 1

ε2
logn))

X
(t)
i,r ← JLBP(S) for i ∈ [N ] and r ∈ [R].

. Use a (1± ε
3
)-embedding T in this step.

Y
(t)
r = 1

N

∑N
i=1 ‖X

(t)
i,r ‖

2
2

return F̂
(t)
2 = medianr∈R{Y (t)

r } at each time t
end procedure



Lemma 22. Let N = O( 1
δε2

) and let X
(t)
i , for i = 1, . . . , N ,

be independent copies of the output of JLBP(S) using a fixed
(1 ± ε

8
)-embedding T on an insertion only stream S. Let

Yt = 1
N

∑N
i=1 ‖X

(t)
i ‖

2
2. Suppose that for two given times

1 ≤ u < v ≤ m the stream satisfies 256C2F
(u:v)
2 ≤ ε2F

(u)
2 ,

where F
(u:v)
2 =

∑n
i=1(f

(u:v)
i )2 is the second moment of the

change in the stream. Then

Pr
(
|Yt − F (t)

2 | ≤ εF
(t)
2 , for all u ≤ t ≤ v

)
≥ 1− 2δ.

Proof. We first write |Yt−F (t)
2 | ≤ |Yt−Yu|+|Yu−F

(u)
2 |+

|F (t)
2 − F (u)

2 |. It follows from the arguments of AMS and the
fact that T is a (1±ε/8)-embedding that, with an appropriate
choice for N = O( 1

δε2
), we arrive at

Pr(|Yu − F (u)
2 | ≤

ε

4
F

(u)
2 ) ≥ 1− δ. (9)

For the third term we have F
(t)
2 ≥ F (u)

2 because t ≥ u and
the stream is insertion only. We can bound the difference
with

F
(t)
2 = ‖f (u) + f (u:t)‖22 ≤ ‖f (u)‖22

(
1 +
‖f (u:t)‖2
‖fu‖2

)2

≤ F (u)
2 (1 +

ε

4
),

where the last inequality follows because C ≥ 2 and ε ≤ 1/2.

For the first term, since X
(t)
i , i ∈ [n], are independent d-

dimensional Bernoulli processs, it follows that

X(t) =
1√
N

((X
(t)
1 )T , (X

(t)
2 )T , . . . , (X

(t)
N )T )T

is an Nd-dimensional Bernoulli process. By Lemma 5 and
due to the fact that X(t) can be represented as an output of
JLBP procedure, the process X(u:t) = X(t)−X(u), is a tame
process, so with probability at least 1 − δ, for all u ≤ t ≤ v
we have

‖X(u:t)‖22 ≤ C2
n∑
j=1

(f
(u:v)
j )2.

Therefore, assuming the inequality inside (9),

Yt = ‖X(u) +X(u:t)‖22 ≤ Yu
(

1 +
‖X(u:t)‖2
‖X(u)‖2

)2

≤ Yu
(

1 +

√
1 + ε√
1− ε

‖F (u:t)‖2
‖F (u)‖2

)2

≤ Yu
(

1 +
2ε

16C

)2

≤ F (u)
2 (1 + ε/4),

where the last inequality follows because C ≥ 2 and ε ≤ 1/2.

The reverse bound Yt ≥ F (u)
2 (1− ε/4) follows similarly upon

applying the reverse triangle inequality in place of the triangle
inequality.

With probability at least 1− 2δ,

|Yt−F (t)
2 | ≤ |Yt−Yu|+|Yu−F

(u)
2 |+|F

(t)
2 −F

(u)
2 | ≤ εF

(u)
2 ≤ εF (t)

2 .

Theorem 23. Let S be an insertion only stream and, for

t = 1, 2, . . . ,m, let F
(t)
2 =

∑n
i=1(f

(t)
i )2 and let F̂

(t)
2 be the

value that is output by Algorithm 6. Then

P (|F̂ (t)
2 − F (t)

2 | ≤ εF
(t)
2 , for all t ∈ [m]) ≥ 2/3.

The algorithm uses O
(

1
ε2

logn
(
log log n+ log 1

ε

))
bits of space.

Proof. By Lemma 18, the (single) matrix used by all in-
stances of JLBP is a (1± ε/3)-embedding with probability at
least 0.99, henceforth assume it is so. Let q0 = 0 and

qi = max
t

{
t |F (t)

2 ≤ (1 +
ε2

256C2
)i
}
,

until qK = m for some K. Notice that K = O( 1
ε2

logn).
Here, C is the constant from Definition 3.

By definition of qi and using the fact that (a−b)2 ≤ a2−b2

for real numbers 0 ≤ b ≤ a we have F
(qi:qi+1)
2 ≤ (F

(qi+1)
2 −

F
(qi)
2 ) ≤ ε2

256C2F
(qi)
2 .

Applying Lemma 22 with δ = 1/10, we have, for every
r ∈ [R] and i ≥ 0 that

P (|Y (t)
r − F (t)

2 | ≤ εF
(t)
2 , for all qi ≤ t ≤ qi+1) ≥ 0.8.

Thus, by Chernoff bound, the median satisfies

P (|F̂ (t)
2 − F (t)

2 | ≤ εF
(t)
2 , for all qi ≤ t ≤ qi+1)

≥ 1− e−R/12 ≥ 1− 1

4K
,

by our choice of R = 12 log 4K = O(log(ε−2 logn)). Thus, by
a union bound over all of the intervals and the embedding T
we get

P (|F̂ (t)
2 − F (t)

2 | ≤ εF
(t)
2 , for all t ∈ [m]) ≥ 2

3
,

which completes the proof of correctness.
The algorithm requires, for the matrix T , the JL trans-

form of Kane, Meka, and Nelson [32] with a seed length of
O(log(n) log( 1

ε
logn)) bits, and it takes only O(log(n/ε)) bits

of space to compute any entry of T . The algorithm maintains
NR = O(ε−2 log( 1

ε
logn)) instances of JLBP which each re-

quires O(logn) bits of storage for the sketch and random
bits. Therefore, the total storage used by the algorithm is
O(ε−2 log(n) log( 1

ε
logn)).
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