
Improved Distributed Principal Component Analysis

Maria-Florina Balcan
School of Computer Science
Carnegie Mellon University
ninamf@cs.cmu.edu

Vandana Kanchanapally
School of Computer Science

Georgia Institute of Technology
vvandana@gatech.edu

Yingyu Liang
Department of Computer Science

Princeton University
yingyul@cs.princeton.edu

David Woodruff
Almaden Research Center

IBM Research
dpwoodru@us.ibm.com

Abstract

We study the distributed computing setting in which there are multiple servers,
each holding a set of points, who wish to compute functions on the union of their
point sets. A key task in this setting is Principal Component Analysis (PCA), in
which the servers would like to compute a low dimensional subspace capturing as
much of the variance of the union of their point sets as possible. Given a proce-
dure for approximate PCA, one can use it to approximately solve problems such
as k-means clustering and low rank approximation. The essential properties of an
approximate distributed PCA algorithm are its communication cost and computa-
tional efficiency for a given desired accuracy in downstream applications. We give
new algorithms and analyses for distributed PCA which lead to improved com-
munication and computational costs for k-means clustering and related problems.
Our empirical study on real world data shows a speedup of orders of magnitude,
preserving communication with only a negligible degradation in solution quality.
Some of these techniques we develop, such as a general transformation from a
constant success probability subspace embedding to a high success probability
subspace embedding with a dimension and sparsity independent of the success
probability, may be of independent interest.

1 Introduction
Since data is often partitioned across multiple servers [20, 7, 18], there is an increased interest in
computing on it in the distributed model. A basic tool for distributed data analysis is Principal
Component Analysis (PCA). The goal of PCA is to find an r-dimensional (affine) subspace that
captures as much of the variance of the data as possible. Hence, it can reveal low-dimensional
structure in very high dimensional data. Moreover, it can serve as a preprocessing step to reduce
the data dimension in various machine learning tasks, such as Non-Negative Matrix Factorization
(NNMF) [15] and Latent Dirichlet Allocation (LDA) [4].

In the distributed model, approximate PCA was used by Feldman et al. [9] for solving a number
of shape fitting problems such as k-means clustering, where the approximation is in the form of a
coreset, and has the property that local coresets can be easily combined across servers into a global
coreset, thereby providing an approximate PCA to the union of the data sets. Designing small
coresets therefore leads to communication-efficient protocols. Coresets have the nice property that
their size typically does not depend on the number n of points being approximated. A beautiful
property of the coresets developed in [9] is that for approximate PCA their size also only depends
linearly on the dimension d, whereas previous coresets depended quadratically on d [8]. This gives
the best known communication protocols for approximate PCA and k-means clustering.

1

Despite this recent exciting progress, several important questions remain. First, can we improve the
communication further as a function of the number of servers, the approximation error, and other
parameters of the downstream applications (such as the number k of clusters in k-means clustering)?
Second, while preserving optimal or nearly-optimal communication, can we improve the computa-
tional costs of the protocols? We note that in the protocols of Feldman et al. each server has to
run a singular value decomposition (SVD) on her local data set, while additional work needs to be
performed to combine the outputs of each server into a global approximate PCA. Third, are these al-
gorithms practical and do they scale well with large-scale datasets? In this paper we give answers to
the above questions. To state our results more precisely, we first define the model and the problems.

Communication Model. In the distributed setting, we consider a set of s nodes V = {vi, 1 ≤ i ≤
s}, each of which can communicate with a central coordinator v0. On each node vi, there is a local
data matrix Pi ∈ Rni×d having ni data points in d dimension (ni > d). The global data P ∈ Rn×d
is then a concatenation of the local data matrix, i.e. P> =

[
P>1 ,P

>
2 , . . . ,P

>
s

]
and n =

∑s
i=1 ni.

Let pi denote the i-th row of P. Throughout the paper, we assume that the data points are centered
to have zero mean, i.e.,

∑n
i=1 pi = 0. Uncentered data requires a rank-one modification to the

algorithms, whose communication and computation costs are dominated by those in the other steps.

Approximate PCA and `2-Error Fitting. For a matrix A = [aij], let ‖A‖2F =
∑
i,j a

2
ij be its

Frobenius norm, and let σi(A) be the i-th singular value of A. Let A(t) denote the matrix that
contains the first t columns of A. Let LX denote the linear subspace spanned by the columns of X.
For a point p, let πL(p) be its projection onto subspace L and let πX(p) be shorthand for πLX

(p).
For a point p ∈ Rd and a subspace L ⊆ Rd, we denote the squared distance between p and L by

d2(p, L) := min
q∈L
‖p− q‖22 = ‖p− πL(p)‖22.

Definition 1. The linear (or affine) r-Subspace k-Clustering on P ∈ Rn×d is

min
L
d2(P,L) :=

n∑
i=1

min
L∈L

d2(pi, L) (1)

where P is an n× d matrix whose rows are p1, . . . , pn, and L = {Lj}kj=1 is a set of k centers, each
of which is an r-dimensional linear (or affine) subspace.

PCA is a special case when k = 1 and the center is an r-dimensional subspace. This optimal r-
dimensional subspace is spanned by the top r right singular vectors of P, also known as the principal
components, and can be found using the singular value decomposition (SVD). Another special case
of the above is k-means clustering when the centers are points (r = 0). Constrained versions of this
problem include NNMF where the r-dimensional subspace should be spanned by positive vectors,
and LDA which assumes a prior distribution defining a probability for each r-dimensional subspace.
We will primarily be concerned with relative-error approximation algorithms, for which we would
like to output a set L′ of k centers for which d2(P,L′) ≤ (1 + ε) minL d

2(P,L).

For approximate distributed PCA, the following protocol is implicit in [9]: each server i computes
its top O(r/ε) principal components Yi of Pi and sends them to the coordinator. The coordinator
stacks the O(r/ε) × d matrices Yi on top of each other, forming an O(sr/ε) × d matrix Y, and
computes the top r principal components of Y, and returns these to the servers. This provides a
relative-error approximation to the PCA problem. We refer to this algorithm as Algorithm disPCA.

Our Contributions. Our results are summarized as follows.

Improved Communication: We improve the communication cost for using distributed PCA for k-
means clustering and similar `2-fitting problems. The best previous approach is to use Corollary 4.5
in [9], which shows that given a data matrix P, if we project the rows onto the space spanned by
the top O(k/ε2) principal components, and solve the k-means problem in this subspace, we obtain a
(1+ε)-approximation. In the distributed setting, this would require first running Algorithm disPCA
with parameter r = O(k/ε2), and thus communication at least O(skd/ε3) to compute the O(k/ε2)
global principal components. Then one can solve a distributed k-means problem in this subspace,
and an α-approximation in it translates to an overall α(1 + ε) approximation.

Our Theorem 3 shows that it suffices to run Algorithm disPCA while only incurring O(skd/ε2)
communication to compute the O(k/ε2) global principal components, preserving the k-means solu-
tion cost up to a (1 + ε)-factor. Our communication is thus a 1/ε factor better, and illustrates that

2

for downstream applications it is sometimes important to “open up the box” rather than to directly
use the guarantees of a generic PCA algorithm (which would giveO(skd/ε3) communication). One
feature of this approach is that by using the distributed k-means algorithm in [3] on the projected
data, the coordinator can sample points from the servers proportional to their local k-means cost
solutions, which reduces the communication roughly by a factor of s, which would come from each
server sending their local k-means coreset to the coordinator. Furthermore, before applying the
above approach, one can first run any other dimension reduction to dimension d′ so that the k-means
cost is preserved up to certain accuracy. For example, if we want a 1+ε approximation factor, we can
set d′ = O(log n/ε2) by a Johnson-Lindenstrauss transform; if we want a larger 2+ε approximation
factor, we can set d′ = O(k/ε2) using [5]. In this way the parameter d in the above communication
cost bound can be replaced by d′. Note that unlike these dimension reductions, our algorithm for
projecting onto principal components is deterministic and does not incur error probability.

Improved Computation: We turn to the computational cost of Algorithm disPCA, which to the best
of our knowledge has not been addressed. A major bottleneck is that each player is computing
a singular value decomposition (SVD) of its point set Pi, which takes min(nid

2, n2i d) time. We
change Algorithm disPCA to instead have each server first sample an oblivious subspace embedding
(OSE) [22, 6, 19, 17] matrix Hi, and instead run the algorithm on the point set defined by the rows
of HiPi. Using known OSEs, one can choose Hi to have only a single non-zero entry per column
and thus HiPi can be computed in nnz(Pi) time. Moreover, the number of rows of Hi isO(d2/ε2),
which may be significantly less than the original ni number of rows. This number of rows can be
further reducted to O(d logO(1) d/ε2) if one is willing to spend O(nnz(Pi) logO(1) d/ε) time [19].
We note that the number of non-zero entries of HiPi is no more than that of Pi.

One technical issue is that each of s servers is locally performing a subspace embedding, which
succeeds with only constant probability. If we want a single non-zero entry per column of Hi, to
achieve success probability 1 − O(1/s) so that we can union bound over all s servers succeeding,
we naively would need to increase the number of rows of Hi by a factor linear in s. We give a
general technique, which takes a subspace embedding that succeeds with constant probability as a
black box, and show how to perform a procedure which applies it O(log 1/δ) times independently
and from these applications finds one which is guaranteed to succeed with probability 1− δ. Thus,
in this setting the players can compute a subspace embedding of their data in nnz(Pi) time, for
which the number of non-zero entries of HiPi is no larger than that of Pi, and without incurring
this additional factor of s. This may be of independent interest.

It may still be expensive to perform the SVD of HiPi and for the coordinator to perform an SVD
on Y in Algorithm disPCA. We therefore replace the SVD computation with a randomized approx-
imate SVD computation with spectral norm error. Our contribution here is to analyze the error in
distributed PCA and k-means after performing these speedups.

Empirical Results: Our speedups result in significant computational savings. The randomized tech-
niques we use reduce the time by orders of magnitude on medium and large-scal data sets, while
preserving the communication cost. Although the theory predicts a new small additive error because
of our speedups, in our experiments the solution quality was only negligibly affected.

Related Work A number of algorithms for approximate distributed PCA have been proposed [21,
2, 14, 16, 9], but either without theoretical guarantees, or without considering communication. Most
closely related to our work is [9, 12]. [9] observes that the top singular vectors of the local data is its
summary and the union of these summaries is a summary of the global data, i.e., Algorithm disPCA
discussed above. [12] studies algorithms in the arbitrary partition model in which each server holds
a matrix Pi and P =

∑s
i=1 Pi. More details and more related work can be found in the appendix.

2 Tradeoff between Communication and Solution Quality
Algorithm disPCA for distributed PCA is suggested in [21, 9], which consists of a local stage and a
global stage. In the local stage, each node performs SVD on its local data matrix, and communicates
the first t1 singular values Σi

(t1) and the first t1 right singular vectors Vi
(t1) to the central coordi-

nator. Then in the global stage, the coordinator concatenates Σi
(t1)(Vi

(t1))> to form a matrix Y,
and performs SVD on it to get the first t2 right singular vectors.

To get some intuition, consider the easy case when the data points actually lie in an r-dimensional
subspace. We can run Algorithm disPCA with t1 = t2 = r. Since Pi has rank r, its projection to

3

P =

 P1

...
Ps


Local PCA−−−−−→

...
Local PCA−−−−−→


Σ

(t1)
1

(
V

(t1)
1

)>
...

Σ
(t1)
s

(
V

(t1)
s

)>
 =

 Y1

...
Ys

 = Y
Global PCA−−−−−−→ V(t2)

Figure 1: The key points of the algorithm disPCA.

the subspace spanned by its first t1 = r right singular vectors, P̂i = UiΣi
(r)(Vi

(r))>, is identical
to Pi. Then we only need to do PCA on P̂, the concatenation of P̂i. Observing that P̂ = ŨY where
Ũ is orthonormal, it suffices to compute SVD on Y, and only Σi

(r)Vi
(r) needs to be communicated.

In the general case when the data may have rank higher than r, it turns out that one needs to set t1
sufficiently large, so that P̂i approximates Pi well enough and does not introduce too much error
into the final solution. In particular, the following close projection property about SVD is useful:

Lemma 1. Suppose A has SVD A = UΣV and let Â = AV(t)(V(t))> denote its SVD truncation.
If t = O(r/ε), then for any d× r matrix X with orthonormal columns,

0 ≤ ‖AX− ÂX‖2F ≤ εd2(A, LX), and 0 ≤ ‖AX‖2F − ‖ÂX‖2F ≤ εd2(A, LX).

This means that the projections of Â and A on any r-dimensional subspace are close, when the
projected dimension t is sufficiently large compared to r. Now, note that the difference between
‖P − PXX>‖2F and ‖P̂ − P̂XX>‖2F is only related to ‖PX‖2F − ‖P̂X‖2F =

∑
i[‖PiX‖2F −

‖P̂iX‖2F]. Each term in which is bounded by the lemma. So we can use P̂ as a proxy for P in
the PCA task. Again, computing PCA on P̂ is equivalent to computing SVD on Y, as done in
Algorithm disPCA. These lead to the following theorem, which is implicit in [9], stating that the
algorithm can produce a (1 + ε)-approximation for the distributed PCA problem.
Theorem 2. Suppose Algorithm disPCA takes parameters t1 ≥ r + d4r/εe − 1 and t2 = r. Then

‖P−PV(r)(V(r))>‖2F ≤ (1 + ε) min
X
‖P−PXX>‖2F

where the minimization is over d×r orthonormal matrices X. The communication isO(srdε) words.

2.1 Guarantees for Distributed `2-Error Fitting
Algorithm disPCA can also be used as a pre-processing step for applications such as `2-error fitting.
In this section, we prove the correctness of Algorithm disPCA as pre-processing for these applica-
tions. In particular, we show that by setting t1, t2 sufficiently large, the objective value of any solu-
tion merely changes when the original data P is replaced the projected data P̃ = PV(t2)(V(t2))>.
Therefore, the projected data serves as a proxy of the original data, i.e., any distributed algorithm
can be applied on the projected data to get a solution on the original data. As the dimension is lower,
the communication cost is reduced. Formally,
Theorem 3. Let t1 = t2 = O(rk/ε2) in Algorithm disPCA for ε ∈ (0, 1/3). Then there exists a
constant c0 ≥ 0 such that for any set of k centers L in r-Subspace k-Clustering,

(1− ε)d2(P,L) ≤ d2(P̃,L) + c0 ≤ (1 + ε)d2(P,L).

The theorem implies that any α-approximate solution L on the projected data P̃ is a (1 + 3ε)α-
approximation on the original data P. To see this, let L∗ denote the optimal solution. Then

(1− ε)d2(P,L) ≤ d2(P̃,L) + c0 ≤ αd2(P̃,L∗) + c0 ≤ α(1 + ε)d2(P,L∗)

which leads to d2(P,L) ≤ (1 + 3ε)αd2(P,L∗). In other words, the distributed PCA step only
introduces a small multiplicative approximation factor of (1 + 3ε).

The key to prove the theorem is the close projection property of the algorithm (Lemma 4): for any
low dimensional subspace spanned by X, the projections of P and P̃ on the subspace are close. In

4

Algorithm 1 Distributed k-means clustering
Input: {Pi}si=1, k ∈ N+ and ε ∈ (0, 1/2), a non-distributed α-approximation algorithm Aα

1: Run Algorithm disPCA with t1 = t2 = O(k/ε2) to get V, and send V to all nodes.
2: Run the distributed k-means clustering algorithm in [3] on {PiVV>}si=1, using Aα as a sub-

routine, to get k centers L.
Output: L.

particular, we choose X to be the orthonormal basis of the subspace spanning the centers. Then the
difference between the objective values of P and P̃ can be decomposed into two terms depending
only on ‖PX−P̃X‖2F and ‖PX‖2F−‖P̃X‖2F respectively, which are small as shown by the lemma.
The complete proof of Theorem 3 is provided in the appendix.

Lemma 4. Let t1 = t2 = O(k/ε) in Algorithm disPCA. Then for any d×k matrix X with orthonor-
mal columns, 0 ≤ ‖PX− P̃X‖2F ≤ εd2(P, LX), and 0 ≤ ‖PX‖2F − ‖P̃X‖2F ≤ εd2(P, LX).

Proof Sketch: We first introduce some auxiliary variables for the analysis, which act as intermediate
connections between P and P̃. Imagine we perform two kinds of projections: first project Pi to
P̂i = PiVi

(t1)(Vi
(t1))>, then project P̂i to Pi = P̂iV

(t2)(V(t2))>. Let P̂ denote the vertical
concatenation of P̂i and let P denote the vertical concatenation of Pi. These variables are designed
so that the difference between P and P̂ and that between P̂ and P are easily bounded.

Our proof then proceeds by first bounding these differences, and then bounding that between P and
P̃. In the following we sketch the proof for the second statement, while the other statement can be
proved by a similar argument. See the appendix for details.

‖PX‖2F − ‖P̃X‖2F =
[
‖PX‖2F − ‖P̂X‖2F

]
+
[
‖P̂X‖2F − ‖PX‖2F

]
+
[
‖PX‖2F − ‖P̃X‖2F

]
.

The first term is just
∑s
i=1

[
‖PiX‖2F − ‖P̂iX‖2F

]
, each of which can be bounded by Lemma 1,

since P̂i is the SVD truncation of P. The second term can be bounded similarly. The more difficult
part is the third term. Note that Pi = P̂iZ, P̃i = PiZ where Z := V(t2)(V(t2))>X, leading to
‖PX‖2F −‖P̃X‖2F =

∑s
i=1

[
‖P̂iZ‖2F − ‖PiZ‖2F

]
. Although Z is not orthonormal as required by

Lemma 1, we prove a generalization (Lemma 7 in the appendix) which can be applied to show that
the third term is indeed small.

Application to k-Means Clustering To see the implication, consider the k-means clustering prob-
lem. We can first perform any other possible dimension reduction to dimension d′ so that the k-
means cost is preserved up to accuracy ε, and then run Algorithm disPCA and finally run any
distributed k-means clustering algorithm on the projected data to get a good approximate solution.
For example, in the first step we can set d′ = O(log n/ε2) using a Johnson-Lindenstrauss transform,
or we can perform no reduction and simply use the original data.

As a concrete example, we can use original data (d′ = d), then run Algorithm disPCA, and finally
run the distributed clustering algorithm in [3] which uses any non-distributed α-approximation al-
gorithm as a subroutine and computes a (1 + ε)α-approximate solution. The resulting algorithm is
presented in Algorithm 1.

Theorem 5. With probability at least 1− δ, Algorithm 1 outputs a (1 + ε)2α-approximate solution
for distributed k-means clustering. The total communication cost of Algorithm 1 is O(skε2) vectors

in Rd plus O
(

1
ε4 (k

2

ε2 + log 1
δ) + sk log sk

δ

)
vectors in RO(k/ε2).

3 Fast Distributed PCA
Subspace Embeddings One can significantly improve the time of the distributed PCA algorithms
by using subspace embeddings, while keeping similar guarantees as in Lemma 4, which suffice for
l2-error fitting. More precisely, a subspace embedding matrix H ∈ R`×n for a matrix A ∈ Rn×d
has the property that for all vectors y ∈ Rd, ‖HAy‖2 = (1 ± ε)‖Ay‖2. Suppose independently,

5

each node vi chooses a random subspace embedding matrix Hi for its local data Pi. Then, they run
Algorithm disPCA on the embedded data {HiPi}si=1 instead of on the original data {Pi}si=1.

The work of [22] pioneered subspace embeddings. The recent fast sparse subspace embeddings [6]
and its optimizations [17, 19] are particularly suitable for large scale sparse data sets, since their
running time is linear in the number of non-zero entries in the data matrix, and they also preserve
the sparsity of the data. The algorithm takes as input an n×dmatrix A and a parameter `, and outputs
an `×d embedded matrix A′ = HA (the embedded matrix H does need to be built explicitly). The
embedded matrix is constructed as follows: initialize A′ = 0; for each row in A, multiply it by +1
or −1 with equal probability, then add it to a row in A′ chosen uniformly at random.

The success probability is constant, while we need to set it to be 1 − δ where δ = Θ(1/s). Known
results which preserve the number of non-zero entries of H to be 1 per column increase the dimen-
sion of H by a factor of s. To avoid this, we propose an approach to boost the success probability
by computing O(log 1

δ) independent embeddings, each with only constant success probability, and
then run a cross validation style procedure to find one which succeeds with probability 1− δ. More
precisely, we compute the SVD of all embedded matrices HjA = UjΣjV

>
j , and find a j ∈ [r]

such that for at least half of the indices j′ 6= j, all singular values of ΣjV
>
j Vj′Σ

>
j′ are in [1±O(ε)]

(see Algorithm 4 in the appendix). The reason why such an embedding HjA succeeds with high
probability is as follows. Any two successful embeddings HjA and Hj′A, by definition, satisfy
that ‖HjAx‖22 = (1 ± O(ε))‖Hj′Ax‖22 for all x, which we show is equivalent to passing the test
on the singular values. Since with probability at least 1 − δ, 9/10 fraction of the embeddings are
successful, it follows that the one we choose is successful with probability 1− δ.

Randomized SVD The exact SVD of an n × d matrix is impractical in the case when n or d
is large. Here we show that the randomized SVD algorithm from [11] can be applied to speed
up the computation without compromising the quality of the solution much. We need to use their
specific form of randomized SVD since the error is with respect to the spectral norm, rather than the
Frobenius norm, and so can be much smaller as needed by our applications.

The algorithm first probes the row space of the `× d input matrix A with an `× 2t random matrix
Ω and orthogonalizes the image of Ω to get a basis Q (i.e., QR-factorize A>Ω); projects the data to
this basis and computes the SVD factorization on the smaller matrix AQ. It also performs q power
iterations to push the basis towards the top t singular vectors.

Fast Distributed PCA for l2-Error Fitting We modify Algorithm disPCA by first having each
node do a subspace embedding locally, then replace each SVD invocation with a randomized SVD
invocation. We thus arrive at Algorithm 2. For `2-error fitting problems, by combining approxima-
tion guarantees of the randomized techniques with that of distributed PCA, we are able to prove:
Theorem 6. Suppose Algorithm 2 takes ε ∈ (0, 1/2], t1 = t2 = O(max

{
k
ε2 , log s

δ

}
), ` =

O(d
2

ε2), q = O(max{log d
ε , log sk

ε }) as input, and sets the failure probability of each local sub-
space embedding to δ′ = δ/2s. Let P̃ = PVV>. Then with probability at least 1− δ, there exists
a constant c0 ≥ 0, such that for any set of k points L,

(1− ε)d2(P,L)− ε‖PX‖2F ≤ d2(P̃,L) + c0 ≤ (1 + ε)d2(P,L) + ε‖PX‖2F
where X is an orthonormal matrix whose columns span L. The total communication is O(skd/ε2)

and the total time is O
(

nnz(P) + s
[
d3k
ε4 + k2d2

ε6

]
log d

ε log sk
δε

)
.

Proof Sketch: It suffices to show that P̃ enjoys the close projection property as in Lemma 4, i.e.,
‖PX − P̃X‖2F ≈ 0 and ‖PX‖2F − ‖P̃X‖2F ≈ 0 for any orthonormal matrix whose columns
span a low dimensional subspace. Note that Algorithm 2 is just running Algorithm disPCA (with
randomized SVD) on TP where T = diag(H1,H2, . . . ,Hs), so we first show that TP̃ enjoys
this property. But now exact SVD is replaced with randomized SVD, for which we need to use
the spectral error bound to argue that the error introduced is small. More precisely, for a matrix A

and its SVD truncation Â computed by randomized SVD, it is guaranteed that the spectral norm of
A − Â is small, then ‖(A − Â)X‖F is small for any X with small Frobenius norm, in particular,
the orthonormal basis spanning a low dimensional subspace. This then suffices to guarantee TP̃

enjoys the close projection property. Given this, it suffices to show that P̃ enjoys this property as
TP̃, which follows from the definition of a subspace embedding.

6

Algorithm 2 Fast Distributed PCA for l2-Error Fitting
Input: {Pi}si=1; parameters t1, t2 for Algorithm disPCA; `, q for randomized techniques.

1: for each node vi ∈ V do
2: Compute subspace embedding P′i = HiPi.
3: end for
4: Run Algorithm disPCA on {P′i}si=1 to get V, where the SVD is randomized.

Output: V.

4 Experiments
Our focus is to show the randomized techniques used in Algorithm 2 reduce the time taken signif-
icantly without compromising the quality of the solution. We perform experiments for three tasks:
rank-r approximation, k-means clustering and principal component regression (PCR).

Datasets We choose the following real world datasets from UCI repository [1] for our experiments.
For low rank approximation and k-means clustering, we choose two medium size datasets News-
Groups (18774 × 61188) and MNIST (70000 × 784), and two large-scale Bag-of-Words datasets:
NYTimes news articles (BOWnytimes) (300000 × 102660) and PubMed abstracts (BOWpubmed)
(8200000 × 141043). We use r = 10 for rank-r approximation and k = 10 for k-means clus-
tering. For PCR, we use MNIST and further choose YearPredictionMSD (515345 × 90), CTslices
(53500× 386), and a large dataset MNIST8m (800000× 784).

Experimental Methodology The algorithms are evaluated on a star network. The number of nodes
is s = 25 for medium-size datasets, and s = 100 for the larger ones. We distribute the data over
the nodes using a weighted partition, where each point is distributed to the nodes with probability
proportional to the node’s weight chosen from the power law with parameter α = 2.

For each projection dimension, we first construct the projected data using distributed PCA. For low
rank approximation, we report the ratio between the cost of the obtained solution to that of the
solution computed by SVD on the global data. For k-means, we run the algorithm in [3] (with
Lloyd’s method as a subroutine) on the projected data to get a solution. Then we report the ratio
between the cost of the above solution to that of a solution obtained by running Lloyd’s method
directly on the global data. For PCR, we perform regression on the projected data to get a solution.
Then we report the ratio between the error of the above solution to that of a solution obtained by
PCR directly on the global data. We stop the algorihtm if it takes more than 24 hours. For each
projection dimension and each algorithm with randomness, the average ratio over 5 runs is reported.

Results Figure 2 shows the results for low rank approximation. We observe that the error of the fast
distributed PCA is comparable to that of the exact solution computed directly on the global data.
This is also observed for distributed PCA with one or none of subspace embedding and randomized
SVD. Furthermore, the error of the fast PCA is comparable to that of normal PCA, which means
that the speedup techniques merely affects the accuracy of the solution. The second row shows the
computational time, which suggests a significant decrease in the time taken to run the fast distributed
PCA. For example, on NewsGroups, the time of the fast distributed PCA improves over that of
normal distributed PCA by a factor between 10 to 100. On the large dataset BOWpubmed, the
normal PCA takes too long to finish and no results are presented, while the speedup versions produce
good results in reasonable time. The use of the randomized techniques gives us a good performance
improvement while keeping the solution quality almost the same.

Figure 3 and Figure 4 show the results for k-means clustering and PCR respectively. Similar to
that for low rank approximation, we observe that the distributed solutions are almost as good as that
computed directly on the global data, and the speedup merely affects the solution quality. We again
observe a huge decrease in the running time by the speedup techniques.

Acknowledgments This work was supported in part by NSF grants CCF-0953192 and CCF-
1101215, AFOSR grant FA9550-09-1-0538, ONR grant N00014-09-1-0751, a Google Research
Award, and a Microsoft Research Faculty Fellowship. David Woodruff would like to acknowledge
the XDATA program of the Defense Advanced Research Projects Agency (DARPA), administered
through Air Force Research Laboratory contract FA8750-12-C0323, for supporting this work.

7

5 10 15 20 25
1

1.02

1.04

1.06

1.08

1.12

1.14

Fast_PCA
Only_Subspace
Only_Randomized
Normal_PCA

(a) NewsGroups
14 24 34 44 541

1.04

1.08

1.12

1.16

1.2

(b) MNIST
10 15 20 25 30

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

(c) BOWnytimes
10 15 20 25 30
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

(d) BOWpubmed

5 10 15 20 25101

102

103

104

Fast_PCA
Only_Subspace
Only_Randomized
Normal_PCA

(e) NewsGroups
14 24 34 44 54100

101

102

103

(f) MNIST
10 15 20 25 30103

104

105

(g) BOWnytimes
10 15 20 25 30

104.7

104.8

104.9

(h) BOWpubmed

Figure 2: Low rank approximation. First row: error (normalized by baseline) v.s. projection
dimension. Second row: time v.s. projection dimension.

5 10 15 20 251.02

1.04

1.06

1.08

1.1

Fast_PCA
Only_Randomized
Only_Subspace
Normal_PCA

(a) NewsGroups
14 24 34 44 54
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

(b) MNIST
10 15 20 25 301.035

1.055

1.075

1.095

1.115

1.135

(c) BOWnytimes
10 15 20 25 301

1.02

1.04

1.06

1.08

1.1

(d) BOWpubmed

5 10 15 20 25101

102

103

104

Fast_PCA
Only_Subspace
Only_Randomized
Normal_PCA

(e) NewsGroups
14 24 34 44 54101

102

103

(f) MNIST
10 15 20 25 30101

102

103

104

(g) BOWnytimes
10 15 20 25 30

104

(h) BOWpubmed

Figure 3: k-means clustering. First row: cost (normalized by baseline) v.s. projection dimension.
Second row: time v.s. projection dimension.

14 24 34 44 541.002

1.004

1.006

1.008

1.01

1.012

Fast_PCA
Only_Subspace
Only_Randomized
Normal_PCA

(a) MNIST
10 15 20 25 30

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

(b) YearPredictionMSD
10 15 20 25 301

1.002

1.004

1.006

1.008

1.01

1.012

1.014

(c) CTslices
14 24 34 44 54

1.001

1.0015

1.002

1.0025

1.003

(d) MNIST8m

14 24 34 44 54100

101

102

103

Fast_PCA
Only_Subspace
Only_Randomized
Normal_PCA

(e) MNIST
10 15 20 25 30100

101

102

103

(f) YearPredictionMSD
10 15 20 25 30100

101

102

(g) CTslices
14 24 34 44 54102

103

104

(h) MNIST8m

Figure 4: PCR. First row: error (normalized by baseline) v.s. projection dimension. Second row:
time v.s. projection dimension.

8

References
[1] K. Bache and M. Lichman. UCI machine learning repository, 2013.
[2] Z.-J. Bai, R. H. Chan, and F. T. Luk. Principal component analysis for distributed data sets with

updating. In Proceedings of the International Conference on Advanced Parallel Processing
Technologies, 2005.

[3] M.-F. Balcan, S. Ehrlich, and Y. Liang. Distributed k-means and k-median clustering on gen-
eral communication topologies. In Advances in Neural Information Processing Systems, 2013.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the Journal of machine
Learning research, 2003.

[5] C. Boutsidis, A. Zouzias, M. W. Mahoney, and P. Drineas. Stochastic dimensionality reduction
for k-means clustering. CoRR, abs/1110.2897, 2011.

[6] K. L. Clarkson and D. P. Woodruff. Low rank approximation and regression in input sparsity
time. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing, 2013.

[7] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, et al. Spanner: Googles globally-distributed database. In Proceedings
of the USENIX Symposium on Operating Systems Design and Implementation, 2012.

[8] D. Feldman and M. Langberg. A unified framework for approximating and clustering data. In
Proceedings of the Annual ACM Symposium on Theory of Computing, 2011.

[9] D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size core-
sets for k-means, pca and projective clustering. In Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms, 2013.

[10] M. Ghashami and J. M. Phillips. Relative errors for deterministic low-rank matrix approxima-
tions. CoRR, abs/1307.7454, 2013.

[11] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM review, 2011.

[12] R. Kannan, S. Vempala, and D. Woodruff. Nimble algorithms for cloud computing. arXiv
preprint arXiv:1304.3162, 2013.

[13] N. Karampatziakis and P. Mineiro. Combining structured and unstructured randomness in large
scale pca. CoRR, abs/1310.6304, 2013.

[14] Y.-A. Le Borgne, S. Raybaud, and G. Bontempi. Distributed principal component analysis for
wireless sensor networks. Sensors, 2008.

[15] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. Advances in
Neural Information Processing Systems, 2001.

[16] S. V. Macua, P. Belanovic, and S. Zazo. Consensus-based distributed principal component
analysis in wireless sensor networks. In Proceedings of the IEEE International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC), 2010.

[17] X. Meng and M. W. Mahoney. Low-distortion subspace embeddings in input-sparsity time
and applications to robust linear regression. In Proceedings of the Annual ACM symposium on
Symposium on theory of computing, 2013.

[18] S. Mitra, M. Agrawal, A. Yadav, N. Carlsson, D. Eager, and A. Mahanti. Characterizing web-
based video sharing workloads. ACM Transactions on the Web, 2011.

[19] J. Nelson and H. L. Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser
subspace embeddings. arXiv preprint arXiv:1211.1002, 2012.

[20] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over distributed data
streams. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, 2003.

[21] Y. Qu, G. Ostrouchov, N. Samatova, and A. Geist. Principal component analysis for dimension
reduction in massive distributed data sets. In Proceedings of IEEE International Conference
on Data Mining, 2002.

[22] T. Sarlós. Improved approximation algorithms for large matrices via random projections. In
FOCS, pages 143–152, 2006.

9

A Related Work

A number of algorithms for approximate distributed PCA have been proposed [21, 2, 14, 16, 9],
but either without theoretical guarantees, or without considering communication. [21] proposed
an algorithm but provided no analysis on the tradeoff between communication and approximation.
Most closely related to our work is [9], which observes that the top singular vectors of the local point
set can be viewed as its summary and the union of the local summaries can be viewed as a summary
of the global data, i.e., Algorithm disPCA discussed above.

In [12] the authors study algorithms in the arbitrary partition model in which each server holds a
matrix Pi and P =

∑s
i=1 Pi. Thus, each row of P is additively shared across the s servers, whereas

in our model each row of P belongs to a single server, though duplicate rows are allowed. Our model
is motivated by applications in which points are indecomposable entities. As our model is a special
case of the arbitrary partition model, we can achieve more efficient algorithms. For instance, our
distributed PCA algorithms provide much stronger guarantees, see, e.g., Lemma 4, which are needed
for the downstream k-means application. Moreover, our k-means algorithms are more general,
in the sense that they do not make a well-separability assumption, and more efficient in that the
communication of [12] isO(sd2)+s(k/ε)O(1) words as opposed to ourO(sdk/ε2)+sk+(k/ε)O(1).

After the announce of this work, [Michael Cohen, Sam Elder, Cameron Musco, Christopher Musco,
Madalina Persu] improve the guarantee for the k-means application in two ways. First, they tighten
the result in [9], showing that projecting to just the O(k/ε) rather than O(k/ε2) top singular vec-
tors is sufficient to approximate k-means with (1 + ε) error. Second, they show that performing
a Johnson-Lindenstrauss transformation down to O(k/ε2) dimension gives (1 + ε) approximation
without requiring a log(n) dependence. This can be used as a preprocessing step before our algo-
rithm, replacing d with O(k/ε2) in our communication bounds. They further show how to reduce
the dimension to O(k/ε) using only O(sk/ε)vectors, but by a technique different from distributed
PCA.

Other related work includes the recent [10] (see also the references therein), who give a determinis-
tic streaming algorithm for low rank approximation in which each point of P is seen one at a time
and uses O(dk/ε) words of communication. Their algorithm naturally gives an O(sdk/ε) commu-
nication algorithm for low rank approximation in the distributed model. However, their algorithm
for PCA doesn’t satisfy the stronger guarantees of Lemma 4, and therefore it is unclear how to use
it for k-means clustering. It also involves an SVD computation for each point, making the overall
computation per server O(nidr

2/ε2), which is slower than what we achieve, and it is not clear how
their algorithm can exploit sparsity.

Speeding up large scale PCA using different versions of subspace embeddings was also considered
in [13], though not in a distributed setting and not for `2-error shape fitting problems. Also, their
error guarantees are in terms of the r-th singular value gap, and are incomparable to ours.

B Guarantees for Distributed PCA

B.1 Proof of Lemma 1

We first prove a generalization of Lemma 1.

Lemma 7. Let A ∈ Rn×d be an n × d matrix with singular value decomposition A = UΣV>.
Let ε ∈ (0, 1] and r, t ∈ N+ with d− 1 ≥ t ≥ r + dr/εe − 1, and let Â = AV(t)(V(t))>. Then for
any matrix X with d rows and ‖X‖2F ≤ r, we have

‖(A− Â)X‖2F = ‖AX‖2F − ‖ÂX‖2F ≤ ε
d∑

i=r+1

σ2
i (A).

Proof. The proof follows the idea in the proof of Lemma 6.1 in [9].

10

For convenience, let Σ(t) denote the diagonal matrix that contains the first t diagonal entries in Σ

and is 0 otherwise. Then Â = UΣ(t)V> We first have

‖AX‖2F − ‖ÂX‖2F = ‖UΣV>X‖2F − ‖UΣ(t)V>X‖2F
= ‖ΣV>X‖2F − ‖Σ(t)V>X‖2F
= ‖(Σ−Σ(t))V>X‖2F
= ‖U(Σ−Σ(t))V>X‖2F
= ‖AX− ÂX‖2F .

where the second and fourth equalities follow since U has orthonormal columns, and the third
equality follows since for M = V>X we have

‖ΣM‖2F − ‖Σ(t)M‖2F =

d∑
i=1

d∑
j=1

σ2
i (A)m2

ij −
t∑
i=1

d∑
j=1

σ2
i (A)m2

ij

=

d∑
i=t+1

d∑
j=1

σ2
i (A)m2

ij = ‖(Σ−Σ(t))M‖2F .

Next, we bound ‖AX− ÂX‖2F . We have

‖AX− ÂX‖2F = ‖(Σ−Σ(t))V>X‖2F ≤ ‖(Σ−Σ(t))‖2S‖X‖2F = rσ2
t+1(A)

where the inequality follows because the spectral norm is consistent with the Euclidean norm. This
implies the lemma since

rσ2
t+1(A) ≤ ε(t− r + 1)σ2

t+1(A) ≤ ε
t+1∑
i=r+1

σ2
i (A) ≤ ε

d∑
i=r+1

σ2
i (A). (2)

where the first inequality follows for our choice of t.

Then Lemma 1 immediately follows from Lemma 7 since any d × r orthonormal matrix A has
‖A‖2F ≤ r, and

∑d
i=r+1 σ

2
i (A) ≤ d2(A, LX) by the property of the singular value decomposition.

B.2 Proof of Theorem 2

Theorem 2. Suppose Algorithm disPCA takes parameters t1 ≥ r + d4r/εe − 1 and t2 = r, and
outputs V(r). Then

‖P−PV(r)(V(r))>‖2F ≤ (1 + ε) min
X

d2(P, LX)

where the minimization is over d×r orthonormal matrices X. The communication isO(srdε) words.

Proof. Let P̂i := PiV
(t)
i (V

(t)
i)>, and let P̂ be the concadenation of P̂i.

First, we show that P̂ serves as a proxy of P for optimizing d2(P, LX). By Pythagorean Theorem,
for any orthonormal matrix X of size d× r,

d2(P̂, LX)− d2(P, LX)

= (‖P̂‖2F − ‖P̂X‖2F)− (‖P‖2F − ‖PX‖2F)

= ∆(X)− c0 (3)

where ∆(X) := ‖PX‖2F − ‖P̂X‖2F and c0 := ‖P‖2F − ‖P̂‖2F . Since ∆(X) is small by Lemma 1
and c0 is a constant, P̂ approximates P for optimizing d2(P, LX).

Next, we note that the optimal principal components for P̂ are V(r). This is because P̂ = ŨY
where Ũ is a block-diagonal matrix with blocks U1, . . . ,Us, and thus the right singular vectors of
Y are also the right singular vectors of P̂.

11

P

P̂

LX∗

LV(r)

Figure 5: Illustration of low rank approximation.

Now, we are ready to bound ‖P − PV(r)(V(r))>‖2F = d2(P, LV(r)). Suppose the r optimal
loadings for P are X∗. See Figure 5 for an illustration. Then

‖P−PV(r)(V(r))>‖2F = d2(P̂, LV(r)) + c0 −∆(V(r))

≤ d2(P̂, LX∗) + c0 −∆(V(r))

= d2(P, LX∗) + ∆(X∗)−∆(V(r)) (4)

where the first and third line follow from (3) and the second follows from the fact that V(r) are
the optimal principal loadings for P̂. By Lemma 1, ∆(V(r)) ≥ 0 and ∆(X∗) ≤ εd2(P, LX∗).
Combining these with (4) leads to the theorem.

Note A refinement of the proof of Lemma 1 leads to the following data dependent bound.
Lemma 8. The statement in Lemma 7 holds if t > τ(A, r, ε) where

τ(A, r, ε) := argmin
t

{
σ2
t (A) ≤ ε

r

∑
i>r

σ2
i (A)

}
.

Furthermore, τ(A, r, ε) = O(rε).

Proof. Note that the bound on t is only used in proving (2), for which t > τ(A, r, ε) suffices.
τ(A, r, ε) = O(rε) follows by definition.

Theorem 9. Suppose Algorithm disPCA takes parameters t1 ≥ maxi τ(Pi, r, ε) and t2 = r,and
outputs V(r). Then

‖P−PV(r)(V(r))>‖2F ≤ (1 + ε) min
X

d2(P, LX)

where the minimization is over orthonormal matrices X ∈ Rd×r. The total communication cost is
O(sdmaxi τ(Pi, r, ε)) words.

τ(Pi, r, ε) is typically much less than O(r/ε) in practice. This provides an explanation for the fact
that t1 much smaller thanO(r/ε) can still lead to good solution for many practical instances. Similar
data dependent bounds can be derived for the other theorems in our paper.

C Guarantees for Distributed `2-Error Fitting

C.1 Proof of Lemma 4

We first introduce some intermediate variables for our analysis. Imagine we perform two projec-
tions: first project Pi to P̂i = PiVi

(t)(Vi
(t))>, then project P̂i to Pi = P̂iV

(t)(V(t))> where

12

t = t1 = t2. Let P̂ denote the vertical concatenation of P̂i and let P denote the vertical concatena-
tion of Pi, i.e.

P̂ =

 P̂1

...
P̂s

 and P =

 P1

...
Ps


Lemma 4. Let t1 = t2 ≥ k + d8k/εe − 1 in Algorithm disPCA for k ∈ N+ and ε ∈ (0, 1). Then
for any d× k matrix X with orthonormal columns,

0 ≤ ‖PX− P̃X‖2F ≤ εd2(P, LX),

0 ≤ ‖PX‖2F − ‖P̃X‖2F ≤ εd2(P, LX).

Proof. For the first statement, we have

‖PX− P̃X‖2F ≤ 2‖PX− P̂X‖2F (5)

+ 2‖P̂X−PX‖2F (6)

+ 2‖PX− P̃X‖2F . (7)

For (5), we have by Lemma 7

‖PX− P̂X‖2F =

s∑
i=1

‖PiX− P̂iX‖2F ≤
s∑
i=1

ε

4
d2(Pi, LX) =

ε

8
d2(P, LX). (8)

Similarly, for (6) we have by Lemma 7

‖P̂X−PX‖2F ≤
ε

8
d2(P̂, LX). (9)

To bound (7), let Y = V(t)(V(t))>X. Then by definition, PiX = P̂iY and P̃iX = PiY. By
Lemma 7, we have

‖PX− P̃X‖2F =

s∑
i=1

‖P̂iY −PiY‖2F (10)

≤
s∑
i=1

ε

8

s∑
i=r+1

σ2
i (Pi) ≤

ε

8

s∑
i=1

d2(Pi, LX) =
ε

8
d2(P, LX). (11)

Combining (8)(9) and (11) leads to

‖PX− P̃X‖2F ≤
ε

2
d2(P, LX) +

ε

4
d2(P̂, LX). (12)

We now only need to bound d2(P̂, LX) is similar to d2(P, LX), which is done in Lemma 10. The
first statement then follows.

For the second statement, we have a similar argument.

‖PX‖2F − ‖P̃X‖2F = ‖PX‖2F − ‖P̂X‖2F (13)

+ ‖P̂X‖2F − ‖PX‖2F (14)

+ ‖PX‖2F − ‖P̃X‖2F . (15)

For (13), we have by Lemma 7

‖PX‖2F − ‖P̂X‖2F =

s∑
i=1

[
‖PiX‖2F − ‖P̂iX‖2F

]
≤

s∑
i=1

ε

4
d2(Pi, LX) =

ε

4
d2(P, LX). (16)

Similarly, for (14) we have by Lemma 7

‖P̂X‖2F − ‖PX‖2F ≤
ε

4
d2(P̂, LX). (17)

13

By Lemma 7, we have

‖PX‖2F − ‖P̃X‖2F =

s∑
i=1

[
‖P̂iY‖2F − ‖PiY‖2F

]
≤

s∑
i=1

ε

4

s∑
i=r+1

σ2
i (Pi) ≤

ε

4

s∑
i=1

d2(Pi, LX) =
ε

4
d2(P, LX). (18)

Combining (16)(17) and (18) leads to

‖PX‖2F − ‖P̃X‖2F ≤
ε

2
d2(P, LX) +

ε

4
d2(P̂, LX). (19)

The second statement then follows from (19) and Lemma 10.

The following is a technical lemma that will be used in the proof of Lemma 4.

Lemma 10.
d2(P̂, LX) ≤ (1 + ε)d2(P, LX).

Proof. We have

d2(P̂, LX)− d2(P, LX) = ‖P̂− P̂XX>‖2F − ‖P−PXX>‖2F
= ‖P̂‖2F − ‖P̂XX>‖2F − (‖P‖2F − ‖PXX>‖2F)

=

s∑
i=1

[
‖P̂i‖2F − ‖Pi‖2F

]
+

s∑
i=1

[
‖PiXX>‖2F − ‖P̂iXX>‖2F

]
.

By the Pythagorean Theorem, ‖P̂i‖2F ≤ ‖Pi‖2F . Also, since X is orthonormal, ‖PiXX>‖2F =

‖PiX‖2F and ‖P̂iXX>‖2F = ‖P̂iX‖2F . Then

d2(P̂, LX)− d2(P, LX) ≤
s∑
i=1

[
‖PiX‖2F − ‖P̂iX‖2F

]
≤

s∑
i=1

εd2(Pi, LX) = εd2(P, LX) (20)

where the second inequality follows from Lemma 1.

C.2 Proof of Theorem 3

The following weak triangle inequality is useful for our analysis.

Fact 1. For any a, b ∈ R and ε ∈ (0, 1), |a2 − b2| ≤ 3(a−b)2
ε + 2εa2.

Proof. Either |a| ≤ |a−b|ε or |a− b| ≤ ε|a|, so we have |a||a− b| ≤ (a−b)2
ε + εa2. This leads to

|a2 − b2| = |a− b||a+ b| ≤ |a− b|(|2a|+ |b− a|) = 2|a||a− b|+ (a− b)2 ≤ 2(a− b)2

ε
+ 2εa2 + (a− b)2

which completes the proof.

We first prove the theorem for the special case of k-means clustering, and the same argument leads
to the guarantee for general l2-error fitting problems.

Theorem 11. Let t1 = t2 ≥ k + d4k/ε2e − 1 in Algorithm disPCA.Then there exists a constant
c0 ≥ 0, such that for any set of k points L,

(1− ε)d2(P,L) ≤ d2(P̃,L) + c0 ≤ (1 + ε)d2(P,L).

14

Algorithm 3 Fast Sparse Subspace Embedding [6]
Input: parameters n, ` ∈ N+.

1: Let h : [n] 7→ [`] be a random map, so that for each i ∈ [n], h(i) = j for j ∈ [`] with probability
1/`.

2: Let Φ be an `× n binary matrix with Φh(i),i = 1, and all remaining entries 0.
3: Let Σ be an n×n diagonal matrix, with each diagonal entry independently chosen as +1 or−1

with equal probability.
Output: H = ΦΣ.

Proof. The proof follows that in [9], with slight modification for the distributed setting.

Let X ∈ Rd×k has orthonormal columns that span L. Let p̃i be the point in P̃ corresponding to pi
in P. Let c0 = ‖P‖2F − ‖P̃‖2F . Then by Pythagorean theorem we have

|d2(P,L)− d2(P̃,L)− c0| ≤
∣∣∣∣d2(P, L(X))− d2(P̃, LX)− c0

∣∣∣∣+

∣∣∣∣ |P|∑
i=1

[
d(πX(pi),L)2 − d(πX(p̃i),L)2

]∣∣∣∣.
For the first part, we have by Pythagorean theorem

d2(P, L(X))− d2(P̃, LX)− c0 = (‖P‖2F − ‖PX‖2F)− (‖P̃‖2F − ‖P̃X‖2F)− c0 = ‖P̃X‖2F − ‖PX‖2F . (21)

For the second part, by Fact 1 we have
|P|∑
i=1

∣∣d(πX(pi),L)2 − d(πX(p̃i),L)2
∣∣ ≤ |P|∑

i=1

[
12d(πX(pi), πX(p̃i))

2

ε
+
ε

2
d(πX(pi),L)2

]

=
12

ε
‖(P− P̃)X‖2F +

ε

2

|P|∑
i=1

d(πX(pi),L)2

≤ 12

ε
‖(P− P̃)X‖2F +

ε

2

|P|∑
i=1

d(pi,L)2. (22)

Combining (21)(22) with Lemma 4 leads to the theorem, since d2(P, LX) ≤ d2(P,L).

The general statement for `2-error geometric fitting problems follows from the same argument.

Theorem 3. Let t1 = t2 = O(rk/ε2) in Algorithm disPCA for ε ∈ (0, 1/3). Then there exists a
constant c0 ≥ 0 such that for any set of k centers L in r-Subspace k-Clustering,

(1− ε)d2(P,L) ≤ d2(P̃,L) + c0 ≤ (1 + ε)d2(P,L).

D Fast Distributed PCA

D.1 Proofs for Subspace Embedding

The construction of the embedding matrix H is presented in Algorithm 3. Note that the embedding
matrix H does not need to be built explicitly; we can compute the embedding HA for an given
matrix A in a direct and faster way. Algorithm 3 has the following guarantee.

Theorem 12. [6, 17, 19] Suppose n > d and ` = O(d
2

ε2). With probability at least 99/100,
‖HAy‖2 = (1 ± ε)‖Ay‖2 for all vectors y ∈ Rd. Moreover, HA can be computed in time
O(nnz(A)) where nnz(A) is the number of non-zero entries in A.
Lemma 13. Let ε ∈ (0, 1/2] and k, t ∈ N+ with d− 1 ≥ t ≥ k + d4k/εe − 1. Suppose Algorithm
disPCA takes input {HiPi}si=1 and outputs V(t). Let P̃ = PV(t)(V(t))>. Then for any d × k
matrix X with orthonormal columns,

‖PX− P̃X‖2F ≤ εd2(P, LX),∣∣‖PX‖2F − ‖P̃X‖2F
∣∣ ≤ 3ε‖PX‖2F + εd2(P, LX).

15

Algorithm 4 Boosting success probability of embedding
Input: A ∈ Rn×d, parameters ε, δ.

1: Construct r = O(log 1
δ) independent subspace embeddings HjA, each having accuracy ε/9

and success probability 99/100.
2: Compute SVD HjA = UjΣjV

>
j for j ∈ [r].

3: for j ∈ [r] do
4: Check if for at least half j′ 6= j,

σi(Σj′V
>
j′VjΣ

−1
j) ∈ [1± ε/3],∀i.

5: If so, output HjA.
6: end for

Proof. First note that the input to Algorithm disPCA is TP where T is a block-diagonal matrix
with blocks H1, . . . ,Hs. Then the projection of the input to V(t) is TPV(t)(V(t))> = TP̃. By
Lemma 4, for any d× k matrix X with orthonormal columns, we have

0 ≤ ‖TPX−TP̃X‖2F ≤ ε

4
d2(TP, LX), (23)

0 ≤ ‖TPX‖2F − ‖TP̃X‖2F ≤ ε

4
d2(TP, LX). (24)

By properties of T, we have

‖TPX−TP̃X‖2F = ‖T(PX− P̃X)‖2F ≥ (1− ε)‖PX− P̃X‖2F
and

d2(TP, LX) = ‖TP−TPXX>‖2F ≤ (1 + ε)‖P−PXX>‖2F = (1 + ε)d2(P, LX).

Combined with (23), these lead to the first claim.

Similarly, we also have ‖TPX‖2F = (1 ± ε)‖PX‖2F and ‖TP̃X‖2F = (1 ± ε)‖P̃X‖2F . Plugging
these into (24), we obtain

−3ε‖PX‖2F ≤ ‖PX‖2F − ‖P̃X‖2F ≤ 3ε‖PX‖2F + εd2(P, LX)

which establishes the lemma.

Theorem 14. Algorithm 4 outputs a subspace embedding with probability at least 1− δ. In expec-
tation Step 3 is run only a constant number of times with expected time O(d3r2/ε2).

Proof. For each j, HjA succeeds with probability 99/100, meaning that for all x we have
‖HjAx‖2 = (1 ± ε/9)‖Ax‖2. Suppose for some j 6= j′, HjA and Hj′A are both successful.
By definition we have

‖HjAx‖2 = (1± ε/3)‖Hj′Ax‖2
for all x. Taking the SVD of the embeddings, this is equivalent to

‖ΣjV
>
j x‖2 = (1± ε/3)‖Σj′V

>
j′x‖2

for all x. Making the change of variable y := ΣjV
>
j x, this is equivalent to

‖y‖2 = (1± ε/3)‖Σj′V
>
j′VjΣ

−1
j y‖2

for all y, which is true if and only if all singular values of Σj′V
>
j′VjΣ

−1
j are in [1− ε/3, 1 + ε/3].

Conversely, if all singular values of Σj′V
>
j′VjΣ

−1
j are in [1− ε/3, 1 + ε/3], one can trace the steps

backward to conclude that ‖HjAx‖2 = (1± ε/3)‖Hj′Ax‖2 for all x.

Since with probability at least 1− δ, a 9/10 fraction of the embeddings succeed with accuracy ε/9,
there exists a j that can pass the test. It follows that any index j which passes the test in the algorithm
with a majority of the j′ 6= j is a successful subspace embedding with accuracy ε.

16

Algorithm 5 Randomized SVD [11]
Input: matrix A ∈ R`×d; parameters t, q ∈ N+.

1: � Stage A
2: Generate an `× 2t Gaussian test matrix Ω.
3: Set Y = (A>A)qA>Ω, and compute QR-factorization: Y = QR.
4: � Stage B
5: Set B = AQ, and compute SVD: B = UΣṼ>.
6: Set V = QṼ.

Output: Σ,V.

Moreover, if we choose a random j to compare to the remaining j′, the expected number of choices
of j until the test passes is only constant. Then finding the index j only takes an expected O(r)
SVDs.

The time to do the SVD naively is O(d4/ε2). We can improve this by letting T be a fast Johnson-
Lindenstrauss transform matrix of dimensionO(dr/ε2)×O(d2/ε2), then we can replace HjA with
THjA for all j ∈ [d]. Then the verification procedure would only take O(d3r2/ε2) time.

D.2 Proofs for Randomized SVD

The details of randomized SVD are presented in Algorithm 5, rephrased in our notations. We have
the following analog of Lemma 1.
Lemma 15. Let A ∈ R`×d be an `× d matrix (` > d). Let ε ∈ (0, 1], k, t ∈ N+ with d− 1 ≥ t ≥
k+d6k/ε2e−1. Let Â = AVV> where V is computed by Algorithm 5 with q = O(log max{`, d}).
Then with probability at least 1− 3e−t, for any matrix X with d rows and ‖X‖2F ≤ k, we have

‖(A− Â)X‖2F ≤ ε2

3

d∑
i=k+1

σ2
i (A),

∣∣‖AX‖2F − ‖ÂX‖2F
∣∣ ≤ ε

d∑
i=k+1

σ2
i (A) + 2ε‖AX‖2F .

The algorithm runs in time O(qt`d+ t2(`+ d)).

Proof. As stated in Section 10.4 in [11], with probability at least 1− 3e−t, we have

‖A− Â‖S ≤ 2σt+1(A). (25)

Then we have

‖(A− Â)X‖2F ≤ ‖X‖2F ‖A− Â‖2S ≤ 2kσ2
t+1(A)

where the first inequality follows because the spectral norm is consistent with the Euclidean norm,
and the second inequality follows from (25). For our choice of t, we have

kσ2
t+1(A) ≤ ε2

6
(t− k + 1)σ2

t+1(A) ≤ ε2

6

t+1∑
i=k+1

σ2
i (A) ≤ ε2

6

d∑
i=k+1

σ2
i (A) ≤ ε2

6
d2(A, LX),

which leads to the first claim in the lemma.

To prove the second claim, first note that∣∣‖AX‖F − ‖ÂX‖F
∣∣2 ≤ ‖(A− Â)X‖2F ≤

ε2

3
d2(A, LX).

Then by Fact 1, we have∣∣‖AX‖2F − ‖ÂX‖2F
∣∣ ≤ 3

ε

∣∣‖AX‖F − ‖ÂX‖F
∣∣2 + 2ε‖AX‖2F ≤ εd2(A, LX) + 2ε‖AX‖2F

which completes the proof.

17

D.3 Proof of Theorem 6

Let T to be a diagonal block matrix with H1,H2, . . . ,Hs on the diagonal. Then Algorithm 2 is
just to run Algorithm disPCA on TP to get the principal components V. Recall that the goal is to
show P̃ = PVV> is a good proxy for the original data P with respect to `2 error fitting problems.
It suffices to show that P̃ satisfies enjoys properties similar to those stated in Lemma 4.

To prove this, we begin with a lemma saying that TP̃ enjoys such properties, i.e. such properties are
approximately preserved when replacing exact SVD with randomized SVD in Algorithm disPCA
(Lemma 16). Then we can show that P̃ enjoys similar properties as TP̃, i.e. these properties are
approximately preserved under subspace embedding (Lemma 18).
Lemma 16. For any d× k matrix X with orthonormal columns,

‖TPX−TP̃X‖2F ≤ O(ε2)d2(TP, LX) +O(ε3)‖TPX‖2F ,∣∣∣‖TPX‖2F − ‖TP̃X‖2F
∣∣∣ ≤ O(ε)d2(TP, LX) +O(ε)‖TPX‖2F .

Proof. The proof follows that of Lemma 4 to TP. But now exact SVD is replaced with randomized
SVD, so we need to argue that randomized SVD produces similar result as exact SVD in the sense of
Lemma 7. This is already proved in Lemma 15. Also note that we need a technical lemma bounding
the small error terms incurred on the intermediate result TP̂. This is done by Lemma 17.

Lemma 17.

‖TP̂X‖2F ≤ εd2(TP, LX) + (1 + 2ε)‖TPX‖2F ,
d2(TP̂, LX) ≤ (1 + ε)d2(TP, LX) + ε‖TPX‖2F .

Proof. For the first statement, by Lemma 15, we have∣∣∣‖TP̂X‖2F − ‖TPX‖2F
∣∣∣ ≤ s∑

i=1

∣∣∣‖TPiX‖2F − ‖TP̂iX‖2F
∣∣∣

≤ ε

s∑
i=1

d2(TPi, LX) + 2ε

s∑
i=1

‖TPiX‖2F

≤ εd2(TP, LX) + 2ε‖TPX‖2F . (26)

For the second statement, by Pythagorean Theorem,

d2(TP̂, LX)− d2(TP, LX) =
[
‖TP̂‖2F − ‖TP̂X‖2F

]
−
[
‖TP‖2F − ‖TPX‖2F

]
=

[
‖TP̂‖2F − ‖TP‖2F

]
+
[
‖TPX‖2F − ‖TP̂X‖2F

]
≤ ‖TPX‖2F − ‖TP̂X‖2F .

The second statement then follows from the last inequality and (26).

Lemma 18. For any d× k matrix X with orthonormal columns,

‖PX− P̃X‖2F ≤ O(ε2)d2(P, LX) +O(ε3)‖PX‖2F ,∣∣∣‖PX‖2F − ‖P̃X‖2F
∣∣∣ ≤ O(ε)d2(P, LX) +O(ε)‖PX‖2F .

Proof. By the property of subspace embedding, we have ‖TPX−TP̃X‖2F = (1±ε)‖PX−P̃X‖2F ,
‖TPX‖2F = (1±ε)‖PX‖2F and d2(TP, LX) = ‖TP−TPXX>‖2F = (1±ε)‖P−PXX>‖2F =
(1± ε)d2(P, LX). Then

(1 + ε)‖PX− P̃X‖2F ≤ ‖TPX−TP̃X‖2F
≤ O(ε2)d2(TP, LX) +O(ε3)‖TPX‖2F
≤ O(ε2)d2(P, LX) +O(ε3)‖PX‖2F

18

where the second inequality is from Lemma 16. This then leads to the first statement.

For the second statement, we have

(1 + ε)‖PX‖2F − (1− ε)‖P̃X‖2F ≤ ‖TPX‖2F − ‖TP̃X‖2F
≤ O(ε)d2(TP, LX) +O(ε)‖TPX‖2F
≤ O(ε)d2(P, LX) +O(ε)‖PX‖2F

which leads to

‖PX‖2F − ‖P̃X‖2F ≤ O(ε)d2(P, LX) +O(ε)‖PX‖2F .

A similar argument bounds ‖P̃X‖2F − ‖PX‖2F , which completes the proof.

We represent Theorem 6 in a general form for `2-error geometric fitting problems.

Theorem 6. Suppose Algorithm 2 takes ε ∈ (0, 1/2], t1 = t2 = O(max
{
k
ε2 , log s

δ

}
), ` =

O(d
2

ε2), q = O(max{log d
ε , log sk

ε }) as input, and sets the failure probability of each local sub-
space embedding to δ′ = δ/2s. Let P̃ = PVV>. Then with probability at least 1− δ, there exists
a constant c0 ≥ 0, such that for any set of k points L,

(1− ε)d2(P,L)− ε‖PX‖2F ≤ d2(P̃,L) + c0 ≤ (1 + ε)d2(P,L) + ε‖PX‖2F
where X is an orthonormal matrix whose columns span L. The total communication is O(skd/ε2)

and the total time is O
(

nnz(P) + s
[
d3k
ε4 + k2d2

ε6

]
log d

ε log sk
δε

)
.

Proof. The proof of correctness follows the proof of Theorem 3, replacing the use of Lemma 4 with
Lemma 18.

On each node vi, the subspace embedding takes time O(nnz(Pi)), and the randomized SVD takes
timeO(qt1`d+t21(`+d)); on the central coordinator, the randomized SVD takes timeO(qt1(st1)d+
t21(st1 +d)) since Y hasO(st1) non-zero rows. The total running time then follows from the choice
of the parameters. The total communication cost follows from the fact that the algorithm only sends
Σi

(t1),Vi
(t1) from each node to the central coordinator.

19

	Introduction
	Tradeoff between Communication and Solution Quality
	Guarantees for Distributed 2-Error Fitting

	Fast Distributed PCA
	Experiments
	Related Work
	Guarantees for Distributed PCA
	Proof of Lemma 1
	Proof of Theorem 2

	Guarantees for Distributed 2-Error Fitting
	Proof of Lemma 4
	Proof of Theorem 3

	Fast Distributed PCA
	Proofs for Subspace Embedding
	Proofs for Randomized SVD
	Proof of Theorem 6

