
Brief Announement: Applications of Uniform Sampling:
Densest Subgraph and Beyond∗

Hossein Esfandiari
University of Maryland

Hossein@cs.umd.edu

MohammadTaghi

Hajiaghayi
†

University of Maryland
hajiagha@cs.umd.edu

David P. Woodruff
IBM Almaden

dpwoodru@us.ibm.com

ABSTRACT
In this paper we provide a framework to analyze the effect
of uniform sampling on graph optimization problems. In-
terestingly, we apply this framework to a general class of
graph optimization problems that we call heavy subgraph
problems, and show that uniform sampling preserves a 1− ε
approximate solution to these problems. This class con-
tains many interesting problems such as densest subgraph,
directed densest subgraph, densest bipartite subgraph, d-
max cut, and d-sum-max clustering. As an immediate im-
pact of this result, one can use uniform sampling to solve
these problems in streaming, turnstile or Map-Reduce set-
tings. Indeed, our results by characterizing heavy subgraph
problems address Open Problem 13 at the IITK Workshop
on Algorithms for Data Streams in 2006 regarding the effects
of subsampling, in the context of graph streams.

Recently Bhattacharya et al. in STOC 2015 provide the
first one pass algorithm for the densest subgraph problem
in the streaming model with additions and deletions to its
edges, i.e., for dynamic graph streams. They present a (0.5−
ε)-approximation algorithm using Õ(n) space, where factors

of ε and log(n) are suppressed in the Õ notation. In this
paper we improve the (0.5− ε)-approximation algorithm of
Bhattacharya et al. by providing a (1 − ε)-approximation

algorithm using Õ(n) space.

1. INTRODUCTION
In this paper we consider a general class of graph opti-

mization problems that we call heavy subgraph problems in
the streaming setting with additions and deletions, i.e., in
dynamic graph streams. We show that many interesting

∗A full version of this paper is available at:
http://arxiv.org/abs/1506.04505
†Supported in part by NSF CAREER award CCF-1053605,
NSF BIGDATA grant IIS-1546108, NSF AF:Medium grant
CCF-1161365, DARPA GRAPHS/AFOSR grant FA9550-
12-1-0423, and another DARPA SIMPLEX grant.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA ’16 July 11-13, 2016, Pacific Grove, CA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4210-0/16/07.

DOI: http://dx.doi.org/10.1145/2935764.2935813

problems such as densest subgraph, directed densest sub-
graph, densest bipartite subgraph, d-max cut, and d-sum-
max clustering fit in this general class of problems. To the
best of our knowledge, we are the first to consider densest bi-
partite subgraph and d-sum-max clustering in the streaming
setting.

Finding the densest subgraph of a graph is one of the
fundamental problems in computer science. This problem
has many applications across different areas that deal with
massive datasets such as Community detection [5, 19, 9,
7], Link spam detection [11], distance query indexing [8,
13], analyzing communication in social networks [9], and,
Computational biology [20] among others. We refer to [16]
for a survey of applications of the densest subgraph problem.

In an instance of the densest subgraph problem we are
given a graph G and want to find a subgraph sol ⊆ G, that

maximizes |Esol|
|Vsol|

, where Vsol and Esol are the vertex set and

the edge set of sol, respectively. Similarly, in an instance of
the directed densest subgraph problem we are given a directed
graph G = (VG, EG) and want to find a pair A,B ⊆ VG, that

maximizes |E(A,B)|√
|A|·|B|

, where E(A,B) is the number of edges

from A to B in EG.
There are polynomial time algorithms for the densest sub-

graph problem in the classical setting [6, 10, 12, 15]. Specif-
ically, Charikar [6] studies the densest subgraph problem in
the classical setting and provides an exact algorithm with
Õ(nm) running time, where n and m are the number of
vertices and edges, respectively. He also provides a 0.5-
approximation algorithm with running time O(n + m). To
the best of our knowledge, this is the fastest known con-
stant factor approximation algorithm for the densest sub-
graph problem. Moreover, he provides a 0.5-approximation
algorithm for the directed densest subgraph problem as well.

Later, Bahmani, Kumar and Vassilvitskii [3], consider the
densest subgraph problem and the directed densest sub-
graph problem in the streaming setting with only insertions
of edges. For both problems, they present streaming algo-
rithms with a 1

2(1+ε)
-approximation factor using log1+ε(n)

passes over the input. To the best of our knowledge, their
results for directed graphs are the only non-trivial results
for the directed densest subgraph problem in the stream-
ing setting, prior to our work. Recently, Bahmani, Goel
and Munagala [2] improve this result and provide a (1− ε)-
approximation algorithm using O(log(n

ε2
)) passes over the

input.
Very recently, Bhattacharya et al. [4] present the first

single pass streaming algorithm for dynamic graph streams.

http://dx.doi.org/10.1145/2935764.2935813

Their first algorithm provides a (0.5− ε)-approximation us-

ing Õ(n) bits of space. The update time of this algorithm is

Õ(1), though the query time is inefficient. They provide a
second algorithm with a (0.25− ε)-approximation factor for

which the update time and query time are only Õ(1), again

using Õ(n) bits of space.
In the d-max cut problem, we are given a graph G, and

we want to decompose the vertices of G into d partitions
such that the number of edges between different partitions
is maximized. To the best of our knowledge, we are the
first to consider this problem for general d in the streaming
setting. A restricted version of this problem where d = 2,
is the classic max cut problem. One can store a sparsifier
[1] of the input graph in Õ(n) space, and preserve a (1− ε)-
approximation of the max cut. However, it is not clear if
sparsifiers preserve d-max cut or not. Recently, Kapralov,
Khanna and Sudan [14] show that any (1−ε)-approximation
to the max cut problem in the streaming setting requires
n1−O(ε) space.

1.1 Our Results
In this paper, we first consider the densest subgraph prob-

lem in the streaming setting where we have both insertions
and deletions to the edges as they arrive in the stream,
i.e., in a dynamic graph stream. We improve the (0.5 − ε)-
approximation algorithm of Bhattacharya et al. (STOC’15)
[4] by providing a (1 − ε)-approximation algorithm for this

problem using Õ(n) space. Indeed, our algorithm simply

samples Õ(n) edges uniformly at random, and finds the
densest subgraph on the sampled graph. We also achieve
update time Õ(1). To achieve this, we use min-wise inde-
pendent hashing together with fast multi-point polynomial
evaluation.

Theorem 1.1. There exists a semi-streaming algorithm
in dynamic graph streams for the densest subgraph problem
with space Õ(n) which gives a (1− ε)-approximate solution,

with probability 1− 1/n. The update time is Õ(1).

We note that Bhattacharya et al. [4] provide a (0.25− ε)
approximation streaming algorithm with update time and
query time Õ(1) as well. Our update time matches their

Õ(1) update time, which is important since it multiplies the
time to process each stream update. We note, though, that
they provide a better query time, which is useful if one re-
peatedly queries the data structure, as may often be the
case in the study of dynamic graph algorithms. However,
especially in the data stream setting, which is the setting
considered in this paper, getting a (1− ε)-approximation in-
stead of a (0.25− ε)-approximation is often more important.
This is true if one is only interested in querying the data
structure at the end of the stream, or at a few intermediate
positions, for which one can amortize the cost of the query,
which is at most Õ(n), over the next n stream updates. We
also note that the query time of [4] et al. can be as large

as Ω̃(n), that is, it is proportional to the current number of
nodes of the densest subgraph, so to take advantage of it
one should apply it to graphs with small densest subgraphs.

Next, we extend our results to a general family of graph
optimization problems that we call heavy subgraph problems.
Interestingly, we show that by uniformly sampling edges we
obtain enough information about the solution of any heavy
subgraph problem. Since the solution of a heavy subgraph

problem itself may be as large as the whole graph, here we
just claim that we can estimate the size of the optimum solu-
tion. However, in some cases, like for the densest subgraph
problem, it might be possible to also obtain the optimum so-
lution itself, and not just the size, from the sampled graph.

A graph optimization problem is defined by, an input
graph G, a set of feasible solutions SolG, which are sub-
graphs of G, and an objective function f : Sol → R. In
a graph optimization problem we aim to find a solution
sol ∈ SolG that maximizes f . In fact, the number of feasible
solutions for a graph G may be exponential in the size of G.
We say a graph optimization problem on graph G is a (γ, l)-
heavy subgraph problem if there exist l [not necessarily dis-
joint] sets Sol1G, Sol

2
G, . . . , Sol

l
G, such that SolG = ∪lk=1Sol

k
G

and for any k:

• Local Linearity: There exists a number fk ≥ 1 such
that for any solution sol ∈ SolkG, we have f(sol) =
fk · |Esol|, where Esol is the edge set of sol. Without
loss of generality we assume f1 ≥ f2 ≥ · · · ≥ fl = 1.

• Hereditary Property: For any spanning subgraph
H ⊆ G, we have solH ∈ SolkH if and only if there exists
a solution solG ∈ SolkG such that solH = solG ∩H.

• γ Bound: γ is chosen such that the optimum solution
is lower bounded by γ log(|SolkG|)fk mn .

Let P(γ, l) be a heavy subgraph problem, and let Alg be
an α-approximation algorithm for P. Algorithm 1 samples

O(nδ log(l)
γε2

) edges of the input graph and runs Alg on the

sampled graph. Interestingly, the following Theorem shows
Algorithm 1 is an (α− ε)-approximation algorithm for P on
G.

Theorem 1.2. Let P(γ, l) be a heavy subgraph prob-
lem. Let G be an arbitrary graph, and let Alg be an α-
approximation algorithm for P. With probability 1 − e−δ,
Algorithm 1 is an (α− ε)-approximation algorithm for P on

G, using O(nδ log(l)
γε2

) space.

Finally, we show several applications of Theorem 1.2. In-
deed, we show that directed densest subgraph, densest bi-
partite subgraph, d-max cut and d-sum-max clustering all
fits in the general family of heavy subgraph problems, and
thus, Theorem 1.2 holds for them.

Theorem 1.3. The following statements hold.

• Densest bipartite subgraph is a (γ = 1
2(log(n)+1)

, l = n)

heavy subgraph problem.

• Directed densest subgraph is a (γ = 1
2
√
n log(n)

, l = n2)

heavy subgraph problem.

• d-max cut is a (γ = 1
2 log(d)

, l = 1) heavy subgraph

problem.

• d-sum-max clustering is a (γ = n−2d
n log(d)

, l = 1) heavy

subgraph problem.

In fact, understanding the structure of the problems that
can be solved using sampling, and specifically uniform sam-
pling, is a well-motivated challenge, which was highlighted
as a direction in the IITK Workshop on Algorithms for Data

Algorithm 1 A General Algorithm

Input: A graph G, a heavy subgraph problem P(γ, l) and an α approximation algorithm Alg for P.
Output: An α− ε estimator of P on graph G, w.pr. 1− e−δ.
1: Set C = 12n(4+δ) log(l)

γε2

2: if |E| ≤ C then
3: Return Alg(G).
4: else
5: Sample C edges uniformly at random, without replacement from G.
6: Let H be the sampled graph.

7: Return |E|
C
Alg(H).

Streams in 2006. Our structural results, as well as our char-
acterization for heavy subgraph problems, give partial an-
swers to this open question in the context of graphs.

In simultaneous and independent work McGregor et al.
[17] present a single pass (1 − ε)-approximation algorithm
for the densest sugraph problem in the dynamic graph
streaming model with update time Õ(1), that uses Õ(n)
space. Also, simultaneously and independently of our work,
Mitzenmacher et al. [18] show if one samples each edge with
a small probability, then with high probability the sampled
graph preserves the densest subgraph of the input graph.
Mitzenmacher et al. do not provide a way to implement the
sampling efficiently in dynamic graph streams.

2. REFERENCES
[1] K. J. Ahn, S. Guha, and A. McGregor. Graph

sketches: sparsification, spanners, and subgraphs. In
Proceedings of the 31st symposium on Principles of
Database Systems, pages 5–14. ACM, 2012.

[2] B. Bahmani, A. Goel, and K. Munagala. Efficient
primal-dual graph algorithms for mapreduce. In
Algorithms and Models for the Web Graph - 11th
International Workshop, WAW 2014, Beijing, China,
December 17-18, 2014, Proceedings, pages 59–78.
Springer, 2014.

[3] B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest
subgraph in streaming and mapreduce. Proceedings of
the VLDB Endowment, 5(5):454–465, 2012.

[4] S. Bhattacharya, M. Henzinger, D. Nanongkai, and
C. E. Tsourakakis. Space-and time-efficient algorithm
for maintaining dense subgraphs on one-pass dynamic
streams. In STOC, 2015.

[5] G. Buehrer and K. Chellapilla. A scalable pattern
mining approach to web graph compression with
communities. In Proceedings of the 2008 International
Conference on Web Search and Data Mining, pages
95–106. ACM, 2008.

[6] M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. In
Approximation Algorithms for Combinatorial
Optimization, pages 84–95. Springer, 2000.

[7] J. Chen and Y. Saad. Dense subgraph extraction with
application to community detection. Knowledge and
Data Engineering, IEEE Transactions on,
24(7):1216–1230, 2012.

[8] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels.
SIAM Journal on Computing, 32(5):1338–1355, 2003.

[9] Y. Dourisboure, F. Geraci, and M. Pellegrini.

Extraction and classification of dense communities in
the web. In Proceedings of the 16th international
conference on World Wide Web, pages 461–470. ACM,
2007.

[10] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast
parametric maximum flow algorithm and applications.
SIAM Journal on Computing, 18(1):30–55, 1989.

[11] D. Gibson, R. Kumar, and A. Tomkins. Discovering
large dense subgraphs in massive graphs. In
Proceedings of the 31st international conference on
Very large data bases, pages 721–732. VLDB
Endowment, 2005.

[12] A. V. Goldberg. Finding a maximum density subgraph.
University of California Berkeley, CA, 1984.

[13] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a
high-compression indexing scheme for reachability
query. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data,
pages 813–826. ACM, 2009.

[14] M. Kapralov, S. Khanna, and M. Sudan. Streaming
lower bounds for approximating max-cut. In
Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1263–1282.
SIAM, 2015.

[15] S. Khuller and B. Saha. On finding dense subgraphs.
In Automata, Languages and Programming, pages
597–608. Springer, 2009.

[16] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal. A
survey of algorithms for dense subgraph discovery. In
Managing and Mining Graph Data, pages 303–336.
Springer, 2010.

[17] A. McGregor, D. Tench, S. Vorotnikova, and H. T. Vu.
Densest subgraph in dynamic graph streams. In
Mathematical Foundations of Computer Science 2015,
pages 472–482. Springer, 2015.

[18] M. Mitzenmacher, J. Pachocki, R. Peng,
C. Tsourakakis, and S. C. Xu. Scalable large
near-clique detection in large-scale networks via
sampling. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 815–824. ACM, 2015.

[19] M. E. Newman. Modularity and community structure
in networks. Proceedings of the National Academy of
Sciences, 103(23):8577–8582, 2006.

[20] B. Saha, A. Hoch, S. Khuller, L. Raschid, and X.-N.
Zhang. Dense subgraphs with restrictions and
applications to gene annotation graphs. In Research in
Computational Molecular Biology, pages 456–472.
Springer, 2010.

	Introduction
	Our Results

	References

