Massive data sets

Examples
- Internet traffic logs
- Financial data
- etc.

Algorithms
- Want nearly linear time or less
- Usually at the cost of a randomized approximation
Regression analysis

Regression

- Statistical method to study dependencies between variables in the presence of noise.
Regression analysis

Linear Regression

- Statistical method to study **linear** dependencies between variables in the presence of noise.
Regression analysis

Linear Regression

- Statistical method to study linear dependencies between variables in the presence of noise.

Example

- Ohm's law $V = R \cdot I$
Regression analysis

Linear Regression
- Statistical method to study linear dependencies between variables in the presence of noise.

Example
- Ohm's law $V = R \cdot I$
- Find linear function that best fits the data

![Example Regression](image-url)
Regression analysis

Linear Regression
- Statistical method to study linear dependencies between variables in the presence of noise.

Standard Setting
- One measured variable b
- A set of predictor variables a_1, \ldots, a_d
- Assumption:
 $$ b = x_0 + a_1 x_1 + \ldots + a_d x_d + \varepsilon $$
- ε is assumed to be noise and the x_i are model parameters we want to learn
- Can assume $x_0 = 0$
- Now consider n observations of b
Regression analysis

Matrix form

Input: \(n \times d \)-matrix \(A \) and a vector \(b=(b_1, \ldots, b_n) \)
\(n \) is the number of observations; \(d \) is the number of predictor variables

Output: \(x^* \) so that \(Ax^* \) and \(b \) are close

- Consider the over-constrained case, when \(n \gg d \)
- Can assume that \(A \) has full column rank
Regression analysis

Least Squares Method

- Find x^* that minimizes $|Ax-b|^2 = \sum (b_i - \langle A_{i*}, x \rangle)^2$
- A_{i*} is the i-th row of A
- Certain desirable statistical properties
Regression analysis

Geometry of regression

- We want to find an x that minimizes $|Ax-b|_2$
- The product Ax can be written as

$$A*x_1 + A*x_2 + \ldots + A*x_d$$

where $A*_i$ is the i-th column of A

- This is a linear d-dimensional subspace
- The problem is equivalent to computing the point of the column space of A nearest to b in l_2-norm
Regression analysis

Solving least squares regression via the normal equations

- How to find the solution x to $\min_x |Ax-b|_2$?

- Equivalent problem: $\min_x |Ax-b|_2^2$
 - Write $b = Ax' + b'$, where b' orthogonal to columns of A
 - Cost is $|A(x-x')|_2^2 + |b'|_2^2$ by Pythagorean theorem
 - Optimal solution x if and only if $A^T(Ax-b) = A^T(Ax-Ax') = 0$
 - Normal Equation: $A^TAx = A^Tb$ for any optimal x
 - $x = (A^TA)^{-1} A^T b$

- If the columns of A are not linearly independent, the Moore-Penrose pseudoinverse gives a minimum norm solution x
Moore-Penrose Pseudoinverse

Singular Value Decomposition (SVD)
Any matrix \(A = U \cdot \Sigma \cdot V^T \)
- \(U \) has orthonormal columns
- \(\Sigma \) is diagonal with non-increasing non-negative entries down the diagonal
- \(V^T \) has orthonormal rows

- Pseudoinverse \(A^- = V \Sigma^{-1} U^T \)
 - Where \(\Sigma^{-1} \) is a diagonal matrix with i-th diagonal entry equal to \(1/\Sigma_{ii} \) if \(\Sigma_{ii} > 0 \) and is 0 otherwise

- \(\min_x \| Ax - b \|_2^2 \) not unique when columns of \(A \) are linearly independent, but \(x = A^- b \) has minimum norm
Moore-Penrose Pseudoinverse

• Any optimal solution x has the form $A^{-}b + (I - V'V'^{T})z$, where V' corresponds to the rows i of V^{T} for which $\Sigma_{i,i} > 0$

• **Why?**

• Because $A(I - V'V'^{T})z = 0$, so $A^{-}b + (I - V'V'^{T})z$ is a solution. This is a d-rank(A) dimensional affine space so it spans all optimal solutions.

• Since $A^{-}b$ is in column span of V', by Pythagorean theorem, $|A^{-}b + (I - V'V'^{T})z|_{2}^{2} = |A^{-}b|_{2}^{2} + |(I - V'V'^{T})z|_{2}^{2} \geq |A^{-}b|_{2}^{2}$
Time Complexity

Solving least squares regression via the normal equations

- Need to compute $x = A\cdot b$

- Naively this takes nd^2 time

- Can do $nd^{1.376}$ using fast matrix multiplication

- But we want much better running time!
Sketching to solve least squares regression

- How to find an approximate solution x to $\min_x |Ax-b|_2$?

- **Goal:** output x' for which $|Ax'-b|_2 \leq (1+\epsilon) \min_x |Ax-b|_2$ with high probability

- Draw S from a $k \times n$ random family of matrices, for a value $k << n$

- Compute S^*A and S^*b

- Output the solution x' to $\min_{x'} |(SA)x-(Sb)|_2$
 - $x' = (SA)^{-1}Sb$
How to choose the right sketching matrix S?

- Recall: output the solution x' to $\min_{x'} |(SA)x-(Sb)|_2$
- Lots of matrices work
- S is $d/\varepsilon^2 \times n$ matrix of i.i.d. Normal random variables
- To see why this works, we introduce the notion of a subspace embedding
Subspace Embeddings

• Let $k = O(d/\varepsilon^2)$
• Let S be a $k \times n$ matrix of i.i.d. normal $N(0,1/k)$ random variables
• For any fixed d-dimensional subspace, i.e., the column space of an $n \times d$ matrix A
 – W.h.p., for all x in \mathbb{R}^d, $|SAx|_2 = (1\pm\varepsilon)|Ax|_2$
• Entire column space of A is preserved

Why is this true?
Subspace Embeddings – A Proof

• Want to show $|SAx|^2 = (1 \pm \varepsilon)|Ax|^2$ for all x

• Can assume columns of A are orthonormal (since we prove this for all x)

• Claim: SA is a $k \times d$ matrix of i.i.d. $N(0,1/k)$ random variables

 – First property: for two independent random variables X and Y, with X drawn from $N(0,a^2)$ and Y drawn from $N(0,b^2)$, we have $X+Y$ is drawn from $N(0, a^2 + b^2)$
X+Y is drawn from \(\text{N}(0, a^2 + b^2) \)

- Probability density function \(f_z \) of \(Z = X+Y \) is convolution of probability density functions \(f_x \) and \(f_y \)

\[
f_z(z) = \int f_y(z - x)f_x(x) \, dx
\]

- \(f_x(x) = \frac{1}{a(2\pi)^{\frac{5}{2}}} e^{-x^2/2a^2} \), \(f_y(y) = \frac{1}{b(2\pi)^{\frac{5}{2}}} e^{-y^2/2b^2} \)

- \(f_z(z) = \int \frac{1}{a(2\pi)^{\frac{5}{2}}} e^{-(z-x)^2/2a^2} \frac{1}{b(2\pi)^{\frac{5}{2}}} e^{-x^2/2b^2} \, dx
\]

\[
= \frac{1}{(2\pi)^{\frac{5}{2}}(a^2+b^2)^{\frac{5}{2}}} e^{-z^2/2(a^2+b^2)} \int \frac{(a^2+b^2)^{\frac{5}{2}}}{(2\pi)^{\frac{5}{2}}ab} e^{-2\left(\frac{(ab)^2}{a^2+b^2}\right)} \, dx
\]
X+Y is drawn from \(N(0, a^2 + b^2) \)

Calculation:
\[
\int e^{-\frac{(z-x)^2}{2a^2}} \frac{x^2}{2b^2} = e
\]

Density of Gaussian distribution:
\[
\int \frac{(a^2+b^2)^5}{(2\pi)^5 ab} e^{-\frac{(x-\frac{b^2 z}{a^2+b^2})^2}{2\left(\frac{(ab)^2}{a^2+b^2}\right)}} dx = 1
\]
Rotational Invariance

• Second property: if \(u, v \) are vectors with \(\langle u, v \rangle = 0 \), then \(\langle g, u \rangle \) and \(\langle g, v \rangle \) are independent, where \(g \) is a vector of i.i.d. \(N(0,1/k) \) random variables

• Why?

• If \(g \) is an \(n \)-dimensional vector of i.i.d. \(N(0,1) \) random variables, and \(R \) is a fixed matrix, then the probability density function of \(Rg \) is

\[
f(x) = \frac{1}{\det(RR^T)(2\pi)^{d/2}} e^{-\frac{x^T(RR^T)^{-1}x}{2}}
\]

- \(RR^T \) is the covariance matrix
- For a rotation matrix \(R \), the distribution of \(Rg \) and of \(g \) are the same
Orthogonal Implies Independent

• Want to show: if u, v are vectors with $\langle u, v \rangle = 0$, then $\langle g, u \rangle$ and $\langle g, v \rangle$ are independent, where g is a vector of i.i.d. $N(0, 1/k)$ random variables.

• Choose a rotation R which sends u to αe_1, and sends v to βe_2.

$$\langle g, u \rangle = \langle gR, R^Tu \rangle = \langle h, \alpha e_1 \rangle = \alpha h_1$$

$$\langle g, v \rangle = \langle gR, R^Tv \rangle = \langle h, \beta e_2 \rangle = \beta h_2$$

where h is a vector of i.i.d. $N(0, 1/k)$ random variables.

• Then h_1 and h_2 are independent by definition.
Where were we?

- **Claim:** SA is a k x d matrix of i.i.d. N(0,1/k) random variables

- **Proof:** The rows of SA are independent
 - Each row is: \(< g, A_1 >, < g, A_2 >, ..., < g, A_d >\)
 - First property implies the entries in each row are N(0,1/k) since the columns A_i have unit norm
 - Since the columns A_i are orthonormal, the entries in a row are independent by our second property
Back to Subspace Embeddings

- Want to show $|SAx|_2 = (1 \pm \epsilon)|Ax|_2$ for all x
- Can assume columns of A are orthonormal
- Can also assume x is a unit vector
- SA is a $k \times d$ matrix of i.i.d. $N(0, 1/k)$ random variables

- Consider any fixed unit vector $x \in R^d$
- $|SAx|_2^2 = \sum_{i \in [k]} < g_i, x >^2$, where g_i is i-th row of SA
- Each $< g_i, x >^2$ is distributed as $N\left(0, \frac{1}{k}\right)^2$
- $E[< g_i, x >^2] = 1/k$, and so $E[|SAx|_2^2] = 1$

How concentrated is $|SAx|_2^2$ about its expectation?
Johnson-Lindenstrauss Theorem

• Suppose h_1, \ldots, h_k are i.i.d. $N(0,1)$ random variables
• Then $G = \sum_i h_i^2$ is a χ^2-random variable
• Apply known tail bounds to G:
 – (Upper) $\Pr[G \geq k + 2(kx)^5 + 2x] \leq e^{-x}$
 – (Lower) $\Pr[G \leq k - 2(kx)^5] \leq e^{-x}$
• If $x = \frac{\epsilon^2 k}{16}$, then $\Pr[G \in k(1 \pm \epsilon)] \geq 1 - 2e^{-\epsilon^2 k/16}$
• If $k = \Theta(\epsilon^{-2} \log(\frac{1}{\delta}))$, this probability is $1-\delta$

• $\Pr[|S\mathbf{x}|^2_2 \in (1 \pm \epsilon)] \geq 1 - 2^{-\Theta(d)}$

This only holds for a fixed x, how to argue for all x?
Net for Sphere

• Consider the sphere S^{d-1}

• Subset N is a γ-net if for all $x \in S^{d-1}$, there is a $y \in N$, such that $|x - y|_2 \leq \gamma$

• Greedy construction of N
 – While there is a point $x \in S^{d-1}$ of distance larger than γ from every point in N, include x in N

• The sphere of radius $\gamma/2$ around every point in N is contained in the sphere of radius $1+\gamma/2$ around 0^d

• Further, all such spheres are disjoint

• Ratio of volume of d-dimensional sphere of radius $1+\gamma/2$ to dimensional sphere of radius γ is $(1 + \gamma/2)^d/(\gamma/2)^d$, so $|N| \leq (1 + \gamma/2)^d/(\gamma/2)^d$
Net for Subspace

- Let \(M = \{Ax \mid x \text{ in } N\} \), so \(|M| \leq (1 + \gamma/2)^d/\gamma^d \)

- Claim: For every \(x \) in \(S^{d-1} \), there is a \(y \) in \(M \) for which \(|Ax - y|_2 \leq \gamma \)

- Proof: Let \(x' \) in \(S^{d-1} \) be such that \(|x - x'|_2 \leq \gamma \). Then \(|Ax - Ax'|_2 = |x - x'|_2 \leq \gamma \), using that the columns of \(A \) are orthonormal. Set \(y = Ax' \)
Net Argument

• For a fixed unit x, $\Pr[|SAx|^2_2 \in (1 \pm \epsilon)] \geq 1 - 2^{-\Theta(d)}$
• For a fixed pair of unit x, x', $|SAx|^2_2$, $|SAx'|^2_2$, $|SA(x - x')|^2_2$ are all $1 \pm \epsilon$ with probability $1 - 2^{-\Theta(d)}$
• $|SA(x - x')|^2_2 = |SAx|^2_2 + |SAx'|^2_2 - 2 < SAx, SAx' >$
• $|A(x - x')|^2_2 = |Ax|^2_2 + |Ax'|^2_2 - 2 < Ax, Ax' >$
 - So $\Pr[< Ax, Ax' > = < SAx, SAx' > \pm 0(\epsilon)] = 1 - 2^{-\Theta(d)}$
• Choose a $\frac{1}{2}$-net $M = \{Ax | x \in N\}$ of size 5^d
• By a union bound, for all pairs y, y' in M,
 $< y, y' > = < Sy, Sy' > \pm 0(\epsilon)$
• Condition on this event
• By linearity, if this holds for y, y' in M, for αy, $\beta y'$ we have
 $< \alpha y, \beta y' > = \alpha \beta < Sy, Sy' > \pm 0(\epsilon \alpha \beta)$
Finishing the Net Argument

- Let $y = Ax$ for an arbitrary $x \in S^{d-1}$
- Let $y_1 \in M$ be such that $|y - y_1|_2 \leq \gamma$
- Let α be such that $|\alpha(y - y_1)|_2 = 1$
 - $\alpha \geq 1/\gamma$ (could be infinite)
- Let $y'_2 \in M$ be such that $|\alpha(y - y_1) - y'_2|_2 \leq \gamma$
- Then $\left| y - y_1 - \frac{y'_2}{\alpha} \right|_2 \leq \frac{\gamma}{\alpha} \leq \gamma^2$
- Set $y_2 = \frac{y'_2}{\alpha}$. Repeat, obtaining $y_1, y_2, y_3, ...$ such that for all integers i,
 $$|y - y_1 - y_2 - ... - y_i|_2 \leq \gamma^i$$
- Implies $|y_i|_2 \leq \gamma^{i-1} + \gamma^i \leq 2\gamma^{i-1}$
Finishing the Net Argument

- Have y_1, y_2, y_3, \ldots such that $y = \sum_i y_i$ and $|y_i|_2 \leq 2\gamma^{i-1}$

- $|Sy|_2^2 = |S \sum_i y_i|_2^2$
 $= \sum_i |Sy_i|_2^2 + 2 \sum_{i,j} < Sy_i, Sy_j >$
 $= \sum_i |y_i|_2^2 + 2 \sum_{i,j} < y_i, y_j > \pm O(\varepsilon) \sum_{i,j} |y_i|_2 |y_j|_2$
 $= |\sum_i y_i|_2^2 \pm O(\varepsilon)$
 $= |y|_2^2 \pm O(\varepsilon)$
 $= 1 \pm O(\varepsilon)$

- Since this held for an arbitrary $y = Ax$ for unit x, by linearity it follows that for all x, $|SAx|_2 = (1\pm\varepsilon)|Ax|_2$
Back to Regression

• We showed that S is a subspace embedding, that is, simultaneously for all \(x \),
 \[|SAx|_2 = (1 \pm \varepsilon)|Ax|_2 \]

What does this have to do with regression?
Subspace Embeddings for Regression

- Want x so that $|Ax-b|_2 \leq (1+\varepsilon) \min_y |Ay-b|_2$
- Consider subspace L spanned by columns of A together with b
- Then for all y in L, $|Sy|_2 = (1 \pm \varepsilon) |y|_2$
- Hence, $|S(Ax-b)|_2 = (1 \pm \varepsilon) |Ax-b|_2$ for all x
- Solve $\arg\min_y |(SA)y - (Sb)|_2$
- Given SA, Sb, can solve in poly(d/ε) time

Only problem is computing SA takes $O(nd^2)$ time
How to choose the right sketching matrix S? $[S]$

- S is a Subsampled Randomized Hadamard Transform
 - $S = P^*H^*D$

- D is a diagonal matrix with $+1$, -1 on diagonals

- H is the Hadamard transform

- P just chooses a random (small) subset of rows of H^*D

- S^*A can be computed in $O(nd \log n)$ time

Why does it work?
Why does this work?

- We can again assume columns of A are orthonormal

- It suffices to show \(|S Ax|_2^2 = |PHDAx|_2^2 = 1 \pm \epsilon \) for all \(x \)

- HD is a rotation matrix, so \(|HDAx|_2^2 = |Ax|_2^2 = 1 \) for any \(x \)
 - Notation: let \(y = Ax \)

- Flattening Lemma: For any fixed \(y \),
 \[
 \Pr \left[|HDy|_\infty \geq C \frac{\log^5 nd/\delta}{n^5} \right] \leq \frac{\delta}{2d}
 \]
Proving the Flattening Lemma

- **Flattening Lemma**: \(\Pr \left[|HDy|_\infty \geq C \frac{\log^5 nd}{n^5} \right] \leq \frac{\delta}{2d} \)

- Let \(C > 0 \) be a constant. We will show for a fixed \(i \) in \([n]\),

\[
\Pr \left[|(HDy)_i| \geq C \frac{\log^5 nd}{n^5} \right] \leq \frac{\delta}{2nd}
\]

- If we show this, we can apply a union bound over all \(i \)

\[
|(HDy)_i| = \sum_j H_{i,j} D_{j,i} y_j
\]

- (Azuma-Hoeffding) \(\Pr[|\sum_j Z_j| > t] \leq 2e^{-\frac{t^2}{2 \sum_j \beta_j^2}} \), where \(|Z_j| \leq \beta_j \) with probability 1
 - \(Z_j = H_{i,j} D_{j,i} y_j \) has 0 mean
 - \(|Z_j| \leq \frac{|y_j|}{n^5} = \beta_j \) with probability 1
 - \(\sum_j \beta_j^2 = \frac{1}{n} \)

\[
\Pr \left[|\sum Z_j| > C \frac{\log^5 (nd)}{n^5} \right] \leq 2e^{-\frac{c^2 \log(nd)}{2}} \leq \frac{\delta}{2nd}
\]
Consequence of the Flattening Lemma

- Recall columns of A are orthonormal
- HDA has orthonormal columns
- Flattening Lemma implies $|HDAe_i|_\infty \leq C \frac{\log^5 nd/\delta}{n^5}$ with probability $1 - \frac{\delta}{2d}$ for a fixed $i \in [d]$
- With probability $1 - \frac{\delta}{2}$, $|e_jHDAe_i| \leq C \frac{\log^5 nd/\delta}{n^5}$ for all i,j
- Given this, $|e_jHDA|_2 \leq C \frac{d^5 \log^5 nd/\delta}{n^5}$ for all j

(Can be optimized further)
Matrix Chernoff Bound

- Let X_1, \ldots, X_s be independent copies of a symmetric random matrix $X \in \mathbb{R}^{d \times d}$ with $E[X] = 0$, $|X|_2 \leq \gamma$, and $|E[X^TX]|_2 \leq \sigma^2$. Let $W = \frac{1}{s} \sum_{i \in [s]} X_i$. For any $\epsilon > 0$,

$$\Pr[|W|_2 > \epsilon] \leq 2d \cdot e^{-s\epsilon^2/(\sigma^2 + \gamma^2/3)}$$

(here $|W|_2 = \sup |Wx|_2/|x|_2$)

- Let $V = \text{HDA}$, and recall V has orthonormal columns

- Suppose P in the $S = \text{PHD}$ definition samples uniformly with replacement. If row i is sampled in the j-th sample, then $P_{j,i} = n$, and is 0 otherwise

- Let Y_i be the i-th sampled row of $V = \text{HDA}$

- Let $X_i = I_d - n \cdot Y_i^TY_i$
 - $E[X_i] = I_d - n \cdot \sum_j \left(\frac{1}{n}\right) V_j^TV_j = I_d - V^TV = 0^d$
 - $|X_i|_2 \leq |I_d|_2 + n \cdot \max |e_j\text{HDA}|^2 = 1 + n \cdot C^2 \log \left(\frac{nd}{\delta}\right) \cdot \frac{d}{n} = \Theta(d \log \left(\frac{nd}{\delta}\right))$
Matrix Chernoff Bound

- Recall: let Y_i be the i-th sampled row of $V = HDA$
- Let $X_i = I_d - n \cdot Y_i^T Y_i$
- $E[X^T X + I_d] = I_d + I_d - 2n E[Y_i^T Y_i] + n^2 E[Y_i^T Y_i Y_i^T Y_i]$
 \[= 2I_d - 2I_d + n^2 \sum_i \left(\frac{1}{n} \right) \cdot v_i^T v_i v_i^T v_i = n \sum_i v_i^T v_i \cdot |v_i|^2 \]
- Define $Z = n \sum_i v_i^T v_i \cdot C^2 \log \left(\frac{nd}{\delta} \right) \cdot \frac{d}{n} = C^2 d \log \left(\frac{nd}{\delta} \right) I_d$
- Note that $E[X^T X + I_d]$ and Z are real symmetric, with non-negative eigenvalues
- Claim: for all vectors y, we have: $y^T E[X^T X + I_d] y \leq y^T Z y$
- Proof: $y^T E[X^T X + I_d] y = n \sum_i y^T v_i^T v_i y |v_i|^2 = n \sum_i < v_i, y >^2 |v_i|^2$ and
 \[y^T Z y = n \sum_i y^T v_i^T v_i y \cdot C^2 \log \left(\frac{nd}{\delta} \right) \cdot \frac{d}{n} = d \sum_i < v_i, y >^2 C^2 \log \left(\frac{nd}{\delta} \right)\]
- Hence, $|E[X^T X]|_2 \leq |E[X^T X] + I_d|_2 + |I_d|_2 = |E[X^T X + I_d]|_2 + 1$
 \[\leq |Z|_2 + 1 \leq C^2 d \log \left(\frac{nd}{\delta} \right) + 1\]
- Hence, $|E[X^T X]|_2 = O \left(d \log \left(\frac{nd}{\delta} \right) \right)$
Matrix Chernoff Bound

- Hence, $|E[X^TX]|_2 = O\left(d \log \left(\frac{nd}{\delta}\right)\right)$

- Recall: (Matrix Chernoff) Let X_1, \ldots, X_s be independent copies of a symmetric random matrix $X \in \mathbb{R}^{d \times d}$ with $E[X] = 0$, $|X|_2 \leq \gamma$, and $|E[X^TX]|_2 \leq \sigma^2$. Let $W = \frac{1}{s} \sum_{i \in [s]} X_i$. For any $\epsilon > 0$, $\Pr[|W|_2 > \epsilon] \leq 2d \cdot e^{-s\epsilon^2/((\sigma^2 + \frac{\gamma^2}{3})}$

$$\Pr\left[|I_d - (PHDA)^T(\text{PHDA})|_2 > \epsilon\right] \leq 2d \cdot e^{-s\epsilon^2/(\Theta(d \log \left(\frac{nd}{\delta}\right))}$$

- Set $s = d \log \left(\frac{nd}{\delta}\right) \log \left(\frac{d}{\delta}\right)$, to make this probability less than $\frac{\delta}{2}$
SRHT Wrapup

- Have shown \(|I_d - (PHDA)^T(PHDA)|_2 < \epsilon\) using Matrix Chernoff Bound and with \(s = d \log\left(\frac{nd}{\delta}\right) \frac{\log(d)}{\epsilon^2}\) samples.

- Implies for every unit vector \(x\),
 \[|1 - |PHDAx|^2_2| = |x^T x - x^T (PHDA)^T (PHDA)x| < \epsilon\],
 so \(|PHDAx|^2_2 \in 1 \pm \epsilon\) for all unit vectors \(x\).

- Considering the column span of \(A\) adjoined with \(b\), we can again solve the regression problem.

- The time for regression is now only \(O(nd \log n) + \text{poly}\left(\frac{d \log(n)}{\epsilon}\right)\). Nearly optimal in matrix dimensions \((n >> d)\).
Faster Subspace Embeddings S [CW,MM,NN]

- CountSketch matrix

- Define $k \times n$ matrix S, for $k = O(d^2/\varepsilon^2)$

- S is really sparse: single randomly chosen non-zero entry per column

\[
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

- $\text{nnz}(A)$ is number of non-zero entries of A

Can compute $S \cdot A$ in $\text{nnz}(A)$ time!
Simple Proof [Nguyen]

- Can assume columns of A are orthonormal

- Suffices to show $|SAx|_2 = 1 \pm \epsilon$ for all unit x
 - For regression, apply S to $[A, b]$

- SA is a $2d^2/\epsilon^2 \times d$ matrix

- Suffices to show $|A^T S^T SA - I|_2 \leq |A^T S^T SA - I|_F \leq \epsilon$

- Matrix product result shown below:
 $$\Pr[|CS^TSD - CD|_F^2 \leq \frac{6}{(\delta(\# \text{ rows of } S))} \cdot |C|_F^2 |D|_F^2] \geq 1 - \delta$$

- Set $C = A^T$ and $D = A$.

- Then $|A|_F^2 = d$ and $(\# \text{ rows of } S) = 6d^2/(\delta \epsilon^2)$
Matrix Product Result [Kane, Nelson]

- Show: \(\Pr[|CS^TSD - CD|_F^2 \leq [6/(\delta(\# \text{ rows of } S))] \cdot |C|_F^2 |D|_F^2] \geq 1 - \delta \)

- (JL Property) A distribution on matrices \(S \in \mathbb{R}^{k \times n} \) has the \((\epsilon, \delta, \ell)\)-JL moment property if for all \(x \in \mathbb{R}^n \) with \(|x|_2 = 1\),
 \[E_S||Sx|_2^2 - 1|^{\ell} \leq \epsilon^{\ell} \cdot \delta \]

- (From vectors to matrices) For \(\epsilon, \delta \in \left(0, \frac{1}{2}\right)\), let \(D \) be a distribution on matrices \(S \) with \(k \) rows and \(n \) columns that satisfies the \((\epsilon, \delta, \ell)\)-JL moment property for some \(\ell \geq 2 \). Then for \(A, B \) matrices with \(n \) rows,
 \[\Pr_S \left[|A^T S^T S B - A^T B|_F \geq 3 \epsilon |A|_F |B|_F \right] \leq \delta \]
(From vectors to matrices) For $\epsilon, \delta \in \left(0, \frac{1}{2}\right)$, let D be a distribution on matrices S with k rows and n columns that satisfies the (ϵ, δ, ℓ)-JL moment property for some $\ell \geq 2$. Then for A, B matrices with n rows,

$$\Pr_S \left[|A^T S^T S B - A^T B|_F \geq 3 \epsilon |A|_F |B|_F \right] \leq \delta$$

Proof: For a random scalar X, let $|X|_p = (E|X|^p)^{1/p}$

- Sometimes consider $X = |T|_F$ for a random matrix T
- $| |T|_F |_p = (E[|T|_F^p])^{1/p}$

Can show $|. |_p$ is a norm if $p \geq 1$

- Minkowski’s Inequality: $|X + Y|_p \leq |X|_p + |Y|_p$

For unit vectors x, y, we will bound $|\langle Sx, Sy \rangle - \langle x, y \rangle|_\ell$
Minkowski’s Inequality

- Minkowski’s Inequality: $|X + Y|_p \leq |X|_p + |Y|_p$
- Proof:
 - If $|X|_p$, $|Y|_p$ are finite, then so is $|X + Y|_p$. Why?
 - $f(x) = x^p$ is convex for $p \geq 1$, so for any fixed x, y:

 $|.5x + .5y|^p \leq |.5|x| + .5|y||^p \leq .5|x|^p + .5|y|^p$, so

 $|x + y|^p \leq 2^{p-1}(|x|^p + |y|^p)$
 - So, $E[|X + Y|_p^p] \leq E[2^{p-1}(|X|_p^p + |Y|_p^p)]$

- $|X + Y|_p^p = \int |x + y|^p d\mu$

 $= \int |x + y| \cdot |x + y|^{p-1} d\mu$

 $\leq \int (|x| + |y|)|x + y|^{p-1} d\mu$

 $= \int |x||x + y|^{p-1} d\mu + \int |y||x + y|^{p-1} d\mu$

 $\leq \left(\left(\int |x|^p d\mu\right)^{\frac{1}{p}} + \left(\int |y|^p d\mu\right)^{\frac{1}{p}}\right) \left(\int |x + y|^{(p-1)\left(\frac{p}{p-1}\right)} d\mu\right)^{\frac{p-1}{p}}$

 $= (|X|_p + |Y|_p)|X + Y|_p^{p-1}$
From Vectors to Matrices

- For unit vectors \(x, y \), \(\| \langle Sx, Sy \rangle - \langle x, y \rangle \|_\ell \)

\[
= \frac{1}{2} \left((|Sx|_2^2 - 1) + (|Sy|_2^2 - 1) - (|S(x - y)|_2^2 - |x - y|_2^2) \right) \|_\ell \\
\leq \frac{1}{2} \left((|Sx|_2^2 - 1) + (|Sy|_2^2 - 1) + (|S(x - y)|_2^2 - |x - y|_2^2) \right) \|_\ell \\
\leq \frac{1}{2} \left(\epsilon \cdot \delta + \epsilon \cdot \delta + |x - y|_2^2 \epsilon \cdot \delta \right) \\
\leq 3 \epsilon \cdot \delta \|_\ell
\]

- By linearity, for arbitrary \(x, y \), \(\frac{\| \langle Sx, Sy \rangle - \langle x, y \rangle \|_\ell}{|x|_2|y|_2} \leq 3 \epsilon \cdot \delta \|_\ell \)

- Suppose \(A \) has \(d \) columns and \(B \) has \(e \) columns. Let the columns of \(A \) be \(A_1, ..., A_d \) and the columns of \(B \) be \(B_1, ..., B_e \)

- Define \(X_{i,j} = \frac{1}{|A_i|_2|B_j|_2} \cdot (\langle SA_i, SB_j \rangle - \langle A_i, B_j \rangle) \)

- \(\| A^T S^T S B - A^T B \|_F^2 = \sum_i \sum_j |A_i|_2^2 \cdot |B_j|_2^2 X_{i,j}^2 \)
From Vectors to Matrices

- Have shown: for arbitrary \(x, y \), \(\frac{|\langle Sx, Sy \rangle - \langle x, y \rangle|_\ell}{|x|_2 |y|_2} \leq 3 \epsilon \cdot \delta_\ell \)

- For \(X_{i,j} = \frac{1}{|A_i|_2 |B_j|_2} \cdot (\langle SA_i, SB_j \rangle - \langle A_i, B_j \rangle) \): \(|A^T S^T S B - A^T B|_F^2 = \Sigma_i \Sigma_j |A_i|_2^2 \cdot |B_j|_2^2 X_{i,j}^2 \)

- \(|A^T S^T S B - A^T B|_F^2 |\ell/2 = |\Sigma_i \Sigma_j |A_i|_2^2 \cdot |B_j|_2^2 X_{i,j}^2|_\ell/2 \)
 \[\leq \Sigma_i \Sigma_j |A_i|_2^2 \cdot |B_j|_2^2 |X_{i,j}|_\ell \]
 \[= \Sigma_i \Sigma_j |A_i|_2^2 \cdot |B_j|_2^2 |X_{i,j}|^2_\ell \]
 \[\leq (3\epsilon \delta_\ell^2)^2 \Sigma_i \Sigma_j |A_i|_2^2 |B_j|_2^2 \]
 \[= (3\epsilon \delta_\ell^2)^2 |A|_F^2 |B|_F^2 \]

- Since \(E \left[|A^T S^T S B - A^T B|_F^\ell \right] = \left[|A^T S^T S B - A^T B|_F^2 \right]^{\ell/2} \), by Markov’s inequality,

- \(\text{Pr} \left[|A^T S^T S B - A^T B|_F > 3\epsilon |A|_F |B|_F \right] \leq \left(\frac{1}{3\epsilon |A|_F |B|_F} \right)^\ell \text{E}[|A^T S^T S B - A^T B|_F^\ell] \leq \delta \)
Result for Vectors

- **Show:** \(\Pr[|CSTSD – CD|_F^2 \leq \frac{[6/(\delta(\text{# rows of S}))]}{6}|C|_F^2 |D|_F^2] \geq 1 - \delta \)

- *(JL Property)* A distribution on matrices \(S \in \mathbb{R}^{k \times n} \) has the \((\epsilon, \delta, \ell)\)-JL moment property if for all \(x \in \mathbb{R}^n \) with \(|x|_2 = 1 \),
 \[
 \mathbb{E}_S \left(|Sx|_2^\ell - 1 \right)^\ell \leq \epsilon^\ell \cdot \delta
 \]

- *(From vectors to matrices)* For \(\epsilon, \delta \in \left(0, \frac{1}{2}\right) \), let \(D \) be a distribution on matrices \(S \) with \(k \) rows and \(n \) columns that satisfies the \((\epsilon, \delta, \ell)\)-JL moment property for some \(\ell \geq 2 \). Then for \(A, B \) matrices with \(n \) rows,
 \[
 \Pr_{S} \left[|A^TSTSB – A^TB|_F \geq 3 \epsilon |A|_F |B|_F \right] \leq \delta
 \]

- Just need to show that the CountSketch matrix \(S \) satisfies JL property and bound the number \(k \) of rows
CountSketch Satisfies the JL Property

- **(JL Property)** A distribution on matrices $S \in \mathbb{R}^{k \times n}$ has the (ϵ, δ, ℓ)-JL moment property if for all $x \in \mathbb{R}^n$ with $|x|_2 = 1$,
 $$E_S \left| |Sx|_2^2 - 1 \right|^\ell \leq \epsilon^\ell \cdot \delta$$

- We show this property holds with $\ell = 2$. First, let us consider $\ell = 1$

- For CountSketch matrix S, let
 - $h: [n] \rightarrow [k]$ be a 2-wise independent hash function
 - $\sigma: [n] \rightarrow \{-1,1\}$ be a 4-wise independent hash function

- Let $\delta(E) = 1$ if event E holds, and $\delta(E) = 0$ otherwise

- $E[|Sx|_2^2] = \sum_{j \in [k]} E\left[\left(\sum_{i \in [n]} \delta(h(i) = j) \sigma_i x_i \right)^2 \right]$
 $$= \sum_{j \in [k]} \sum_{i_1, i_2 \in [n]} E[\delta(h(i1) = j) \delta(h(i2) = j) \sigma_{i1} \sigma_{i2} x_{i1} x_{i2}]$$
 $$= \sum_{j \in [k]} \sum_{i \in [n]} E[\delta(h(i) = j)^2] x_i^2$$
 $$= \left(\frac{1}{k} \right) \sum_{j \in [k]} \sum_{i \in [n]} x_i^2 = |x|_2^2$$
CountSketch Satisfies the JL Property

- $E[|Sx|^4] = E[\sum_{j\in[k]} \sum_{j'\in[k]} \left(\sum_{i\in[n]} \delta(h(i) = j)\sigma_i x_i \right)^2 \left(\sum_{i'\in[n]} \delta(h(i') = j')\sigma_{i'} x_{i'} \right)^2] = $

 $\sum_{j_1,j_2,i_1,i_2,i_3,i_4} E[\sigma_{i_1} \sigma_{i_2} \sigma_{i_3} \sigma_{i_4} \delta(h(i_1) = j_1) \delta(h(i_2) = j_1) \delta(h(i_3) = j_2) \delta(h(i_4 = j_2))] x_{i_1} x_{i_2} x_{i_3} x_{i_4}$

- We must be able to partition $\{i_1, i_2, i_3, i_4\}$ into equal pairs.

- Suppose $i_1 = i_2 = i_3 = i_4$. Then necessarily $j_1 = j_2$. Obtain $\sum_{j \in[k]} \sum_i x_i^4 = |x|^4$

- Suppose $i_1 = i_2$ and $i_3 = i_4$ but $i_1 \neq i_3$. Then get $\sum_{j_1,j_2,i_1,i_3} \sum_{k=1}^k \frac{1}{k^2} x_{i_1}^2 x_{i_3}^2 = \frac{1}{k} |x|^4 - |x|^4$

- Suppose $i_1 = i_3$ and $i_2 = i_4$ but $i_1 \neq i_2$. Then necessarily $j_1 = j_2$. Obtain $\sum_{j \in[k]} \sum_{i_1,i_2} x_{i_1}^2 x_{i_2}^2 \leq \frac{1}{k} |x|^4$. Obtain same bound if $i_1 = i_4$ and $i_2 = i_3$.

- Hence, $E[|Sx|^4] \in [|x|^4, |x|^4(1 + \frac{2}{k})] = [1, 1 + \frac{2}{k}]$

- So, $E_S||Sx|_2^2 - 1|^2 \leq \left(1 + \frac{2}{k}\right) - 2 + 1 = \frac{2}{k}$. Setting $k = \frac{2}{\epsilon^2 \delta}$ finishes the proof.
(JL Property) A distribution on matrices $S \in \mathbb{R}^{k \times n}$ has the (ϵ, δ, ℓ)-JL moment property if for all $x \in \mathbb{R}^n$ with $|x|_2 = 1$,

$$E_S \left| |Sx|_2^\ell - 1 \right|^\ell \leq \epsilon^\ell \cdot \delta$$

(From vectors to matrices) For $\epsilon, \delta \in \left(0, \frac{1}{2}\right)$, let D be a distribution on matrices S with k rows and n columns that satisfies the (ϵ, δ, ℓ)-JL moment property for some $\ell \geq 2$. Then for A, B matrices with n rows,

$$\Pr \left[\left| A^T S^T S B - A^T B \right|_F^2 \geq 3 \epsilon^2 |A|_F^2 |B|_F^2 \right] \leq \delta$$

We showed CountSketch has the JL property with $\ell = 2$, and $k = \frac{2}{\epsilon^2 \delta}$

Matrix product result we wanted was:

$$\Pr[|CS^T S D - C D|_F^2 \leq (6/(\delta k)) \cdot |C|_F^2 |D|_F^2] \geq 1 - \delta$$

We are now done with the proof CountSketch is a subspace embedding
Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- **Affine embeddings**
 - Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator regression
Affine Embeddings

- Want to solve $\min_X |AX - B|^2_F$, A is tall and thin with d columns, but B has a large number of columns

- Can't directly apply subspace embeddings

- Let's try to show $|SAX - SB|^2_F = (1 \pm \epsilon)|AX - B|^2_F$ for all X and see what properties we need of S

- Can assume A has orthonormal columns

- Let $B^* = AX^* - B$, where X^* is the optimum

$	S(AX - B)	^2_F -	SB^*	^2_F =	SA(X - X^*) + S(AX^* - B)	^2_F -	SB^*	^2_F$		
$=	SA(X - X^*)	^2_F + 2\text{tr}[(X - X^*)^T A^T S^T S B^*]$ (use $	C + D	^2_F =	C	^2_F +	D	^2_F + 2\text{tr}(C^T D)$)		
$\in	SA(X - X^*)	^2_F \pm 2	X - X^*	^2_F	A^T S^T S B^*	^2_F$ (use $\text{tr}(CD) \leq	C		D	$)
$\in	SA(X - X^*)	^2_F \pm 2\epsilon	X - X^*	^2_F	B^*	^2_F$ (if we have approx. matrix product)				
$\in	A(X - X^*)	^2_F \pm \epsilon(A(X - X^*)	^2_F + 2	X - X^*	^2_F	B^*)$ (subspace embedding for A)		
Affine Embeddings

- We have
 \[|S(AX - B)|_F^2 - |SB^*|^2_F \in |A(X - X^*)|^2_F \pm \epsilon(|A(X - X^*)|^2_F + 2|X - X^*|_F|B^*|) \]

- Normal equations imply that
 \[|AX - B|^2_F = |A(X - X^*)|^2_F + |B^*|^2_F \]

- \[|S(AX - B)|_F^2 - |SB^*|^2_F - (|AX - B|^2_F - |B^*|^2_F) \in \epsilon(|A(X - X^*)|^2_F + 2|X - X^*|_F|B^*|_F) \]
 \[\in \pm \epsilon(|A(X - X^*)|_F + |B^*|_F)^2 \]
 \[\in \pm 2\epsilon(|A(X - X^*)|_F^2 + |B^*|_F^2) \]
 \[= \pm 2\epsilon|AX - B|^2_F \]

- \[|SB^*|^2_F = (1 \pm \epsilon)|B^*|^2_F \] (this holds with constant probability)
Affine Embeddings

- Know: $|S(AX - B)|^2_F - |SB^*|^2_F - (|AX - B|^2_F - |B^*|^2_F) \in \pm 2\epsilon|AX - B|^2_F$
- Know: $|SB^*|^2_F = (1 \pm \epsilon)|B^*|^2_F$

- $|S(AX - B)|^2_F = (1 \pm 2\epsilon)|AX - B|^2_F + \epsilon|B^*|^2_F$

 $= (1 \pm 3\epsilon)|AX - B|^2_F$

- Completes proof of affine embedding!
Affine Embeddings: Missing Proofs

- **Claim:** $|A + B|^2_F = |A|^2_F + |B|^2_F + 2\text{Tr}(A^TB)$

- **Proof:**

 $$|A + B|^2_F = \sum_i |A_i + B_i|^2$$

 $$= \sum_i |A_i|^2 + \sum_i |B_i|^2 + 2\langle A_i, B_i \rangle$$

 $$= |A|^2_F + |B|^2_F + 2\text{Tr}(A^TB)$$
Affine Embeddings: Missing Proofs

- Claim: \(\text{Tr}(AB) \leq |A|_F |B|_F \)

- Proof: \(\text{Tr}(AB) = \sum_i \langle A^i, B_i \rangle \) for rows \(A^i \) and columns \(B_i \)

\[
\leq \sum_i |A^i|_2 |B_i|_2 \text{ by Cauchy-Schwarz for each } i
\]

\[
\leq \left(\sum_i |A^i|_2 \right)^{\frac{1}{2}} \left(\sum_i |B_i|_2 \right)^{\frac{1}{2}} \text{ another Cauchy-Schwarz}
\]

\[
= |A|_F |B|_F
\]
Affine Embeddings: Homework Proof

- **Claim**: $|SB^*|_F^2 = (1 \pm \epsilon)|B^*|_F^2$ with constant probability if CountSketch matrix S has $k = O\left(\frac{1}{\epsilon^2}\right)$ rows

- **Proof**:
 - $|SB^*|_F^2 = \sum_i |SB_i^*|_2^2$
 - By our analysis for CountSketch and linearity of expectation,
 $E[|SB^*|_F^2] = \sum_i E[|SB_i^*|_2^2] = |B^*|_F^2$
 - $E[|SB^*|_F^4] = \sum_{i,j} E[|SB_i^*|_2^2 |SB_j^*|_2^2]$
 - By our CountSketch analysis, $E[|SB_i^*|_2^4] \leq |B_i^*|_2^4 \left(1 + \frac{2}{k}\right)$
 - For cross terms see Lemma 40 in [CW13]
Low rank approximation

- A is an n x d matrix
 - Think of n points in \mathbb{R}^d

- E.g., A is a customer-product matrix
 - $A_{i,j} =$ how many times customer i purchased item j

- A is typically well-approximated by low rank matrix
 - E.g., high rank because of noise

- **Goal:** find a low rank matrix approximating A
 - Easy to store, data more interpretable
What is a good low rank approximation?

Singular Value Decomposition (SVD)

Any matrix $A = U \cdot \Sigma \cdot V$

- U has orthonormal columns
- Σ is diagonal with non-increasing positive entries down the diagonal
- V has orthonormal rows

- Rank-k approximation: $A_k = U_k \cdot \Sigma_k \cdot V_k$
 - rows of V_k are the top k principal components

\[
\begin{pmatrix}
A \\
\end{pmatrix} =
\begin{pmatrix}
U_k \\
\end{pmatrix}
\begin{pmatrix}
\Sigma_k \\
\end{pmatrix}
\begin{pmatrix}
V_k \\
\end{pmatrix} +
\begin{pmatrix}
E \\
\end{pmatrix}
\]
What is a good low rank approximation?

\[A_k = \arg\min_{\text{rank } k \text{ matrices } B} |A-B|_F \]

\(|C|_F = (\Sigma_{i,j} C_{i,j}^2)^{1/2} \)

Computing \(A_k \) exactly is expensive

\[
\begin{pmatrix}
A
\end{pmatrix} = \begin{pmatrix}
U_k
\end{pmatrix} \begin{pmatrix}
\Sigma_k
\end{pmatrix} \begin{pmatrix}
V_k
\end{pmatrix} + \begin{pmatrix}
E
\end{pmatrix}
\]
Low rank approximation

- **Goal:** output a rank k matrix A', so that
 \[|A - A'|_F \leq (1 + \varepsilon) |A - A_k|_F \]

- Can do this in $\text{nnz}(A) + (n + d)\text{poly}(k/\varepsilon)$ time [S,CW]
 - $\text{nnz}(A)$ is number of non-zero entries of A
Solution to low-rank approximation [S]

- Given $n \times d$ input matrix A
- Compute $S \cdot A$ using a random matrix S with $k/\varepsilon \ll n$ rows. $S \cdot A$ takes random linear combinations of rows of A

- Project rows of A onto $S \cdot A$, then find best rank-k approximation to points inside of $S \cdot A$.
What is the matrix S?

- S can be a $k/\varepsilon \times n$ matrix of i.i.d. normal random variables

- $[S]$ S can be a $k/\varepsilon \times n$ Fast Johnson Lindenstrauss Matrix
 - Uses Fast Fourier Transform

- $[CW]$ S can be a $\text{poly}(k/\varepsilon) \times n$ CountSketch matrix

\[
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

$S \cdot A$ can be computed in $\text{nnz}(A)$ time
Why do these Matrices Work?

- Consider the regression problem $\min_{X} |A_kX - A|_F$

- Let S be an affine embedding

- Then $|SA_kX - SA|_F = (1 \pm \epsilon)|A_kX - A|_F$ for all X

- By normal equations, $\arg\min_{X} |SA_kX - SA|_F = (SA_k)^{-1}SA$

- So, $|A_k(_SA_k)^{-1}SA - A|_F \leq (1 + \epsilon)|A_k - A|_F$

- But $A_k(_SA_k)^{-1}SA$ is a rank-k matrix in the row span of SA!

- Let’s formalize why the algorithm works now…
Why do these Matrices Work?

- \[\min_{\text{rank-k } X} |XSA - A|_F^2 \leq |A_k (SA_k)^{-1} SA - A|_F^2 \leq (1 + \epsilon)|A - A_k|_F^2 \]

- By the normal equations,
 \[|XSA - A|_F^2 = |XSA - A(SA)^{-1} SA|_F^2 + |A(SA)^{-1} SA - A|_F^2 \]

- Hence,
 \[\min_{\text{rank-k } X} |XSA - A|_F^2 = |A(SA)^{-1} SA - A|_F^2 + \min_{\text{rank-k } X} |XSA - A(SA)^{-1} SA|_F^2 \]

- Can write \(SA = U \Sigma V^T \) in its SVD

- Then, \[\min_{\text{rank-k } X} |XSA - A(SA)^{-1} SA|_F^2 = \min_{\text{rank-k } X} |XU \Sigma - A(SA)^{-1} U \Sigma|_F^2 \]
 \[= \min_{\text{rank-k } Y} |Y - A(SA)^{-1} U \Sigma|_F^2 \]

- Hence, we can just compute the SVD of \(A(SA)^{-1} U \Sigma \)

- But how do we compute \(A(SA)^{-1} U \Sigma \) quickly?
Caveat: projecting the points onto SA is slow

- **Current algorithm:**
 1. Compute S^*A
 2. Project each of the rows onto S^*A
 3. Find best rank-k approximation of projected points inside of rowspace of S^*A

- **Bottleneck is step 2**

- **[CW] Approximate the projection**
 - Fast algorithm for approximate regression
 $\min_{\text{rank}-k X} \|X(SA)-RAR\|_F^2$
 Can solve with affine embeddings

- Want $\text{nnz}(A) + (n+d)\text{poly}(k/\epsilon)$ time
Using Affine Embeddings

- We know we can just output \(\arg\min_{\text{rank} - k} \| \text{XSA} - A \|_F^2 \)

- Choose an affine embedding \(R \):
 \[
 \| \text{XSAR} - AR \|_F^2 = (1 \pm \epsilon) \| \text{XSA} - A \|_F^2 \text{ for all } X
 \]

- Note: we can compute \(AR \) and \(SAR \) in \(\text{nnz}(A) \) time

- Can just solve \(\min_{\text{rank} - k} \| \text{XSAR} - AR \|_F^2 \)

- \(\min_{\text{rank} - k} \| \text{XSAR} - AR \|_F^2 = \| \text{AR} \text{(SAR)}^{-1} (\text{SAR}) - AR \|_F^2 + \min_{\text{rank} - k} \| \text{XSAR} - \text{AR(SAR)}^{-1} (\text{SAR}) \|_F^2 \)

- Compute \(\min_{\text{rank} - k} \| Y - \text{AR(SAR)}^{-1} (\text{SAR}) \|_F^2 \) using SVD which is \((n + d) \text{poly} \left(\frac{k}{\epsilon} \right) \) time

- Necessarily, \(Y = XSAR \) for some \(X \). Output \(Y \text{(SAR)}^{-1} \text{SA} \) in factored form. We’re done!
Low Rank Approximation Summary

1. Compute SA

2. Compute SAR and AR

3. Compute \(\min_{\text{rank} - k} |Y - AR(SAR)^{-}(SAR)|_F^2 \) using SVD

4. Output \(Y(SAR)^{-}SA \) in factored form

Overall time: \(\text{nnz}(A) + (n+d)\text{poly}(k/\epsilon) \)
Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator regression
High Precision Regression

- **Goal**: output x' for which $|Ax'-b|_2 \leq (1+\varepsilon) \min_x |Ax-b|_2$ with high probability

- Our algorithms all have running time $\text{poly}(d/\varepsilon)$

- **Goal**: Sometimes we want running time $\text{poly}(d) \cdot \log(1/\varepsilon)$

- Want to make A well-conditioned
 - $\kappa(A) = \sup_{|x|_2=1} |Ax|_2 / \inf_{|x|_2=1} |Ax|_2$

- Lots of algorithms’ time complexity depends on $\kappa(A)$

- Use sketching to reduce $\kappa(A)$ to $O(1)$!
Small QR Decomposition

- Let S be a $(1 + \epsilon_0)$- subspace embedding for A
- Compute SA
- Compute QR-factorization, $SA = QR^{-1}$
- Claim: $\kappa(AR) = \frac{(1+\epsilon_0)}{1-\epsilon_0}$
- For all unit x, $(1 - \epsilon_0)|ARx|_2 \leq |SARx|_2 = 1$
- For all unit x, $(1 + \epsilon_0)|ARx|_2 \geq |SARx|_2 = 1$
- So $\kappa(AR) = \sup_{|x|_2=1} |ARx|_2 / \inf_{|x|_2=1} |ARx|_2 \leq \frac{1+\epsilon_0}{1-\epsilon_0}$
Finding a Constant Factor Solution

- Let S be a $1 + \epsilon_0$ - subspace embedding for AR
- Solve $x_0 = \arg\min_x |SARx - Sb|_2$
- Time to compute R and x_0 is $\text{nnz}(A) + \text{poly}(d)$ for constant ϵ_0
- $x_{m+1} \leftarrow x_m + R^T A^T (b - AR x_m)$
- $AR(x_{m+1} - x^*) = AR(x_m + R^T A^T (b - AR x_m) - x^*)$
 $\quad = (AR - AR R^T A^T AR)(x_m - x^*)$
 $\quad = U(\Sigma - \Sigma^3)V^T(x_m - x^*)$,
 where $AR = U \Sigma V^T$ is the SVD of AR
- $|AR(x_{m+1} - x^*)|_2 = |(\Sigma - \Sigma^3)V^T(x_m - x^*)|_2 = O(\epsilon_0)|AR(x_m - x^*)|_2$
- $|ARx_m - b|_2^2 = |AR(x_m - x^*)|_2^2 + |ARx^* - b|_2^2$
Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- M-Estimator regression
This is another subspace embedding, but it is based on sampling!
- If A has sparse rows, then SA has sparse rows!

Let $A = U \Sigma V^T$ be an $n \times d$ matrix with rank d, written in its SVD

Define the i-th leverage score $\ell(i)$ of A to be $|U_{i,*}|^2$

What is $\sum_i \ell(i)$?
- Let (q_1, \ldots, q_n) be a distribution with $q_i \geq \frac{\beta \ell(i)}{d}$, where β is a parameter

Define sampling matrix $S = D \cdot \Omega^T$, where D is $k \times k$ and Ω is $n \times k$
- Ω is a sampling matrix, and D is a rescaling matrix
- For each column j of Ω, D, independently, and with replacement, pick a row index i in $[n]$ with probability q_i, and set $\Omega_{i,j} = 1$ and $D_{i,j} = \frac{1}{(q_i k)^5}$
Leverage Score Sampling

- Note: leverage scores do not depend on choice of orthonormal basis U for columns of A

- Indeed, let U and U' be two such orthonormal bases

- Claim: $|e_i U|^2 = |e_i U'|^2$ for all i

- Proof: Since both U and U' have column space equal to that of A, we have $U = U'Z$ for change of basis matrix Z

- Since U and U' each have orthonormal columns, Z is a rotation matrix (orthonormal rows and columns)

- Then $|e_i U|^2 = |e_i U'Z|^2 = |e_i U'|^2$
Leverage Score Sampling gives a Subspace Embedding

- Want to show for $S = D \cdot \Omega^T$, that $|SAx|_2^2 = (1 \pm \epsilon)|Ax|_2^2$ for all x

- Writing $A = U \Sigma V^T$ in its SVD, this is equivalent to showing $|SUy|_2^2 = (1 \pm \epsilon)|Uy|_2^2 = (1 \pm \epsilon)|y|_2^2$ for all y

- As usual, we can just show with high probability, $|U^T S^T S U - I|_2 \leq \epsilon$

- How can we analyze $U^T S^T S U$?

- (Matrix Chernoff) Let $X_1, ..., X_k$ be independent copies of a symmetric random matrix $X \in \mathbb{R}^{d \times d}$ with $E[X] = 0$, $|X|_2 \leq \gamma$, and $E[|X^T X|_2] \leq \sigma^2$. Let $W = \frac{1}{k} \sum_{j \in [k]} X_j$. For any $\epsilon > 0$,

$$\Pr[|W|_2 > \epsilon] \leq 2d \cdot e^{-k\epsilon^2/(\sigma^2 + \frac{\gamma^2}{3})}$$

(here $|W|_2 = \sup_{|x|_2} \frac{|Wx|_2}{|x|_2}$. Since W is symmetric, $|W|_2 = \sup_{|x|_2=1} x^T W x$.)
Leverage Score Sampling gives a Subspace Embedding

- Let $i(j)$ denote the index of the row of U sampled in the j-th trial
- Let $X_j = I_d - \frac{U_{i(j)}^T U_{i(j)}}{q_{i(j)}}$, where $U_{i(j)}$ is the j-th sampled row of U
- The X_j are independent copies of a symmetric matrix random variable
- $E[X_j] = I_d - \sum_i q_i \left(\frac{U_i^T U_i}{q_i} \right) = I_d - I_d = 0_d$
- $|X_j|_2 \leq |I_d|_2 + \frac{|U_{i(j)}^T U_{i(j)}|_2}{q_{i(j)}} \leq 1 + \max_i \frac{|U_i|^2}{q_i} \leq 1 + \frac{d}{\beta}$
- $E[X^T X] = I_d - 2E \left[\frac{U_{i(j)}^T U_{i(j)}}{q_{i(j)}} \right] + E \left[\frac{U_{i(j)}^T U_{i(j)} U_{i(j)}^T U_{i(j)}}{q_{i(j)}^2} \right]$
 \[= \sum_i \frac{U_i^T U_i U_i^T U_i}{q(i)} - I_d \leq \left(\frac{d}{\beta} \right) \sum_i U_i^T U_i - I_d \leq \left(\frac{d}{\beta} - 1 \right) I_d, \]
 where $A \leq B$ means $x^T Ax \leq x^T Bx$ for all x
- Hence, $|E[X^T X]|_2 \leq \frac{d}{\beta} - 1$
Applying the Matrix Chernoff Bound

- (Matrix Chernoff) Let $X_1, ..., X_k$ be independent copies of a symmetric random matrix $X \in \mathbb{R}^{d \times d}$ with $E[X] = 0$, $|X|_2 \leq \gamma$, and $|E[X^T X]|_2 \leq \sigma^2$. Let $W = \frac{1}{k} \sum_{j \in [k]} X_j$. For any $\epsilon > 0$,
 \[\Pr[|W|_2 > \epsilon] \leq 2d \cdot e^{-k \epsilon^2 / (\sigma^2 + \frac{\gamma \epsilon}{3})} \]
 (here $|W|_2 = \sup_{|x|_2} \frac{|W x|_2}{|x|_2}$. Since W is symmetric, $|W|_2 = \sup_{|x|_2=1} x^T W x$.)

- $\gamma = 1 + \frac{d}{\beta}$ and $\sigma^2 = \frac{d}{\beta} - 1$

- $X_j = I_d - \frac{U_{i(j)}^T U_{i(j)}}{q_{i(j)}}$, and recall how we generated $S = D \cdot \Omega^T$: For each column j of Ω, D, independently, and with replacement, pick a row index i in $[n]$ with probability q_i, and set $\Omega_{i,j} = 1$ and $D_{i,j} = 1/(q_i k)$.\footnote{Implies $W = I_d - U^T S^T S U$}

 - $\Pr \left[|I_d - U^T S^T S U|_2 > \epsilon \right] \leq 2d \cdot e^{-k \epsilon^2 \Theta(\frac{\beta}{d})}$. Set $k = \Theta\left(\frac{d \log d}{\beta \epsilon^2}\right)$ and we’re done.
Fast Computation of Leverage Scores

- Naively, need to do an SVD to compute leverage scores
- Suppose we compute \(SA \) for a subspace embedding \(S \)
- Let \(SA = QR^{-1} \) be such that \(Q \) has orthonormal columns
- Set \(\ell_i' = |e_iAR|^2 \)
- Since \(AR \) has the same column span of \(A \), \(AR = UT^{-1} \)
 - \((1 - \epsilon)|ARx|_2 \leq |SARx|_2 = |x|_2 \)
 - \((1 + \epsilon)|ARx|_2 \geq |SARx|_2 = |x|_2 \)
 - \((1 \pm O(\epsilon))|x|_2 = |ARx|_2 = |UT^{-1}x|_2 = |T^{-1}x|_2 \),
- \(\ell_i = |e_iART|^2 = (1 \pm O(\epsilon))|e_iAR|^2 = (1 \pm O(\epsilon))\ell_i' \)
- But how do we compute \(AR \)? We want \(\text{nnz}(A) \) time
Fast Computation of Leverage Scores

- $\ell_i = (1 \pm O(\epsilon))\ell_i'$
 - Suffices to set this ϵ to be a constant

- Set $\ell_i' = |e_iAR|^2$
 - This takes too long

- Let G be a $d \times O(\log n)$ matrix of i.i.d. normal random variables
 - For any vector z, $\Pr[|zG|^2 = (1 \pm \frac{1}{2})|z|^2] \geq 1 - \frac{1}{n^2}$

- Instead set $\ell_i' = |e_iARG|^2$.
 - Can compute in $(\text{nnz}(A) + d^2)\log n$ time

- Can solve regression in $\text{nnz}(A) \log n + \text{poly}(d(\log n)/\epsilon)$ time
Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator regression
Distributed low rank approximation

- We have fast algorithms for low rank approximation, but can they be made to work in a distributed setting?

- Matrix A distributed among s servers

- For $t = 1, \ldots, s$, we get a customer-product matrix from the t-th shop stored in server t. Server t’s matrix $= A^t$

- Customer-product matrix $A = A^1 + A^2 + \ldots + A^s$
 - Model is called the arbitrary partition model

- More general than the row-partition model in which each customer shops in only one shop
The Communication Model

- Each player talks only to a Coordinator via 2-way communication.
- Can simulate arbitrary point-to-point communication up to factor of 2 (and an additive $O(\log s)$ factor per message).
Communication cost of low rank approximation

- **Input:** n x d matrix A stored on s servers
 - Server t has n x d matrix A^t
 - $A = A^1 + A^2 + \ldots + A^s$
 - Assume entries of A^t are $O(\log(nd))$-bit integers

- **Output:** Each server outputs the same k-dimensional space W
 - $C = A^1P_W + A^2P_W + \ldots + A^sP_W$, where P_W is the projection onto W
 - $|A-C|_F \leq (1+\varepsilon)|A-A_{k}\|_F$
 - Application: k-means clustering

- **Resources:** Minimize total communication and computation. Also want $O(1)$ rounds and input sparsity time
Work on Distributed Low Rank Approximation

- [FSS]: First protocol for the row-partition model.
 - $O(sdk/\varepsilon)$ real numbers of communication
 - Don’t analyze bit complexity (can be large)
 - SVD Running time, see also [BKLW]

- [KVW]: $O(skd/\varepsilon)$ communication in arbitrary partition model

- [BWZ]: $O(skd) + \text{poly}(sk/\varepsilon)$ words of communication in arbitrary partition model. Input sparsity time
 - Matching $\Omega(skd)$ words of communication lower bound

- Variants: kernel low rank approximation [BLSWX], low rank approximation of an implicit matrix [WZ], sparsity [BWZ]
Outline of Distributed Protocols

- [FSS] protocol
- [KVW] protocol
- [BWZ] protocol
Constructing a Coreset [FSS]

- Let $A = U \Sigma V^T$ be its SVD

- Let $m = k + k/\epsilon$

- Let Σ_m agree with Σ on the first m diagonal entries, and be 0 otherwise

- Claim: For all projection matrices $Y = I - X$ onto (d-k)-dimensional subspaces,

$$|\Sigma_m V^T Y|_F^2 = (1 \pm \epsilon) |AY|_F^2 + c,$$

where $c = |A - A_m|_F^2$ does not depend on Y

- We can think of S as U^T_m so that $SA = U^T_m U \Sigma V^T = \Sigma_m V^T$ is a sketch
Constructing a Coreset

Claim: For all projection matrices \(Y=I-X \) onto (n-k)-dimensional subspaces,

\[
\|\Sigma_mV^TY\|_F^2 + c = (1 \pm \epsilon)|AY|_F^2,
\]

where \(c = |A - A_m|_F^2 \) does not depend on \(Y \)

Proof: \(|AY|_F^2 = |U\Sigma_mV^TY|_F^2 + |U(\Sigma - \Sigma_m)V^TY|_F^2 \)

\[
\leq \|\Sigma_mV^TY\|_F^2 + |A - A_m|_F^2 = \|\Sigma_mV^TY\|_F^2 + c
\]

Also, \(\|\Sigma_mV^TY\|_F^2 + |A - A_m|_F^2 - |AY|_F^2 \)

\[
= \|\Sigma_mV^T\|_F^2 - \|\Sigma_mV^TX\|_F^2 + |A - A_m|_F^2 - |A|_F^2 + |AX|_F^2
\]

\[
= |AX|_F^2 - \|\Sigma_mV^TX\|_F^2
\]

\[
= \|U(\Sigma - \Sigma_m)V^TX\|_F^2
\]

\[
\leq \|U(\Sigma - \Sigma_m)V\|_F^2 \cdot |X|_F^2
\]

\[
\leq \sigma^2_{m+1} k \leq \epsilon \sigma^2_{m+1} (m - k) \leq \epsilon \sum_{i \in \{k+1, \ldots, m+1\}} \sigma^2_i \leq \epsilon |A - A_k|_F^2
\]

89
Unions of Coresets

- Suppose we have matrices A^1, \ldots, A^s and construct $\Sigma^1_m V^{T,1}, \Sigma^2_m V^{T,2}, \ldots, \Sigma^s_m V^{T,s}$ as in the previous slide, together with c_1, \ldots, c_s

- Then $\sum_i |\Sigma^i_m V^{T,i}Y|_F^2 + c_i = (1 \pm \epsilon)|AY|_F^2$, where A is the matrix formed by concatenating the rows of A^1, \ldots, A^s

- Let B be the matrix obtained by concatenating the rows of $\Sigma^1_m V^{T,1}, \Sigma^2_m V^{T,2}, \ldots, \Sigma^s_m V^{T,s}$

- Suppose we compute $B = U \Sigma V^T$ and compute $\Sigma_m V^T$ and $|B - B_m|_F^2$

- Then $|\Sigma_m V^T Y|_F^2 + c + \sum_i c_i = (1 \pm \epsilon)|BY|_F^2 + \sum_i c_i = (1 \pm O(\epsilon))|AY|_F^2$

- So $\Sigma_m V^T$ and the constant $c + \sum_i c_i$ are a coreset for A
[FSS] Row-Partition Protocol

- Server t sends the top $k/\varepsilon + k$ principal components of P^t, scaled by the top $k/\varepsilon + k$ singular values Σ^t, together with c^t.

- Coordinator returns top k principal components of $[\Sigma^1 V^1; \Sigma^2 V^2; \ldots; \Sigma^s V^s]$.

$P^1 \in \mathbb{R}^{n_1 \times d}$

$P^2 \in \mathbb{R}^{n_2 \times d}$

$P^s \in \mathbb{R}^{n_s \times d}$

Coordinator
[FSS] Row-Partition Protocol

Problems:
1. $\text{sdk/}\varepsilon$ real numbers of communication
2. bit complexity can be large
3. running time for SVDs [BLKW]
4. doesn’t work in arbitrary partition model

This is an SVD-based protocol. Maybe our random matrix techniques can improve communication just like they improved computation?

[KVW] protocol will handle 2, 3, and 4

- Inspired by the sketching algorithm presented earlier

- Let S be one of the $k/\varepsilon \times n$ random matrices discussed
 - S can be generated pseudorandomly from small seed
 - Coordinator sends small seed for S to all servers

- Server t computes SA^t and sends it to Coordinator

- Coordinator sends $\sum_{t=1}^{s} SA^t = SA$ to all servers

- There is a good k-dimensional subspace inside of SA. If we knew it, t-th server could output projection of A^t onto it
[KVW] Arbitrary Partition Model Protocol

Problems:

- Can’t output projection of A^t onto SA since the rank is too large

- Could communicate this projection to the coordinator who could find a k-dimensional space, but communication depends on n
Fix:

- Instead of projecting A onto SA, recall we can solve
 \[\min_{\text{rank-}k X} \left\| A(SA)^T XSA - A \right\|_F^2 \]
- Let T_1, T_2 be affine embeddings, solve
 \[\min_{\text{rank-}k X} \left\| T_1 A(SA)^T XSAT_2 - T_1 AT_2 \right\|_F^2 \]
 (optimization problem is small and has a closed form solution)
- Everyone can then compute XSA and then output k directions
[KVW] protocol

- Phase 1:
 - Learn the row space of SA

\[
\text{cost} \leq (1+\varepsilon)|A-A_k|_F
\]
[KVW] protocol

- Phase 2:
 - Find an approximately optimal space W inside of SA

$$\text{cost} \leq (1+\epsilon)^2|A-A_k|_F$$
Main Problem: communication is $O(\text{skd}/\varepsilon) + \text{poly}(sk/\varepsilon)$

We want $O(\text{skd}) + \text{poly}(sk/\varepsilon)$ communication!

Idea: use projection-cost preserving sketches [CEMMP]

Let A be an $n \times d$ matrix

If S is a random $k/\varepsilon^2 \times n$ matrix, then there is a constant $c \geq 0$ so that for all k-dimensional projection matrices P:

$$|SA(I - P)|_F + c = (1 \pm \varepsilon)|A(I - P)|_F$$
[BWZ] Protocol

Intuitively, U looks like top k left singular vectors of SA.

- Let S be a $k/\varepsilon^2 \times n$ projection-cost preserving sketch.
- Let T be a $d \times k/\varepsilon^2$ projection-cost preserving sketch.
- Server t sends SA^tT to Coordinator.

Coordinator sends back $SAT = \sum_t SA^tT$ to servers.

- Each server computes $k/\varepsilon^2 \times k$ matrix U of top k left singular vectors of SAT.
- U^{TSA} looks like top k right singular vectors of SA.

Server t sends U^{TSA^t} to Coordinator.

Coordinator returns the space $U^{TSA} = \sum_t U^{TSA^t}$ to output.

Top k right singular vectors of SA work because S is a projection-cost preserving sketch!
[BWZ] Analysis

- Let W be the row span of $U^T S A$, and P be the projection onto W

- Want to show $|A - AP|_F \leq (1 + \epsilon)|A - A_k|_F$

- Since T is a projection-cost preserving sketch,

\[(*) \quad |SA - SAP|_F \leq |SA - UU^T S A|_F + c_1 \leq (1 + \epsilon)|SA - [SA]_k|_F\]

- Since S is a projection-cost preserving sketch, there is a scalar $c > 0$, so that for all k-dimensional projection matrices Q,

\[|SA - SAQ|_F + c = (1 \pm \epsilon)|A - AQ|_F\]

- Add c to both sides of $(*)$ to conclude $|A - AP|_F \leq (1 + \epsilon)|A - A_k|_F$
Conclusions for Distributed Low Rank Approximation

- [BWZ] Optimal $O(sdk) + \text{poly}(sk/\varepsilon)$ communication protocol for low rank approximation in arbitrary partition model
 - Handle bit complexity by adding noise
 - Input sparsity time
 - 2 rounds, which is optimal [W]
 - Optimal data stream algorithms improves [CW, L, GP]

- Communication of other optimization problems?
 - Computing the rank of an $n \times n$ matrix over the reals
 - Linear Programming
 - Graph problems: Matching
 - etc.
Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator Regression
Robust Regression

Method of least absolute deviation (l_1-regression)

- Find x^* that minimizes $|Ax - b|_1 = \sum |b_i - \langle A_{i*}, x \rangle|$

- Cost is less sensitive to outliers than least squares

- Can solve via linear programming
Solving l_1-regression via Linear Programming

- Minimize $(1,\ldots,1) \cdot (\alpha^+ + \alpha^-)$
- Subject to:

 \[A \cdot x + \alpha^+ - \alpha^- = b \]

 \[\alpha^+, \alpha^- \geq 0 \]

- Generic linear programming gives poly(nd) time

- Want much faster time using sketching!
Well-Conditioned Bases

- For an \(n \times d \) matrix \(A \), can choose an \(n \times d \) matrix \(U \) with orthonormal columns for which \(A = UW \), and \(|Ux|_2 = |x|_2 \) for all \(x \)

- Can we find a \(U \) for which \(A = UW \) and \(|Ux|_1 \approx |x|_1 \) for all \(x \)?

- Let \(A = QW \) where \(Q \) has full column rank, and define \(|z|_{Q,1} = |Qz|_1 \)
 - \(|z|_{Q,1} \) is a norm

- Let \(C = \{z \in \mathbb{R}^d : |z|_{Q,1} \leq 1\} \) be the unit ball of \(|.|_{Q,1} \)

- \(C \) is a convex set which is symmetric about the origin
 - Lowner-John Theorem: can find an ellipsoid \(E \) such that: \(E \subseteq C \subseteq \sqrt{d}E \), where \(E = \{z \in \mathbb{R}^d : z^TFz \leq 1\} \)
 - \((z^TFz)^{\frac{5}{2}} \leq |z|_{Q,1} \leq \sqrt{d}(z^TFz)^{\frac{5}{2}} \)
 - \(F = GG^T \) since \(F \) defines an ellipsoid

- Define \(U = QG^{-1} \)
Well-Conditioned Bases

- Recall $U = QG^{-1}$ where
 \[(z^T Fz)^{\frac{5}{2}} \leq |z|_{Q,1} \leq \sqrt{d}(z^T Fz)^{\frac{5}{2}} \text{ and } F = GG^T\]

- $|Ux|_1 = |QG^{-1}x|_1 = |Qz|_1 = |z|_{Q,1}$ where $z = G^{-1}x$

- $z^T Fz = (x^T(G^{-1})^T G G (G^{-1})x) = x^T x = |x|_2^2$

- So $|x|_2 \leq |Ux|_1 \leq \sqrt{d}|x|_2$

- So $\frac{|x|_1}{\sqrt{d}} \leq |x|_2 \leq |Ux|_1 \leq \sqrt{d}|x|_2 \leq \sqrt{d}|x|_1$
Net for ℓ_1 – Ball

- Consider the unit ℓ_1-ball $B = \{x \in \mathbb{R}^d : |x|_1 = 1\}$
- Subset N is a γ-net if for all $x \in B$, there is a $y \in N$, such that $|x - y|_1 \leq \gamma$
- Greedy construction of N
 - While there is a point $x \in B$ of distance larger than γ from every point in N, include x in N
- The ℓ_1-ball of radius $\gamma/2$ around every point in N is contained in the ℓ_1-ball of radius $1 + \gamma/2$ around 0^d
- Further, all such ball are disjoint
- Ratio of volume of d-dimensional similar polytopes of radius $1 + \gamma/2$ to radius $\gamma/2$ is $(1 + \gamma/2)^d/(\gamma/2)^d$, so $|N| \leq (1 + \gamma/2)^d/(\gamma/2)^d$
Net for ℓ_1 – Subspace

- Let $A = UW$ for a well-conditioned basis U
 - $|x|_1 \leq |Ux|_1 \leq d|x|_1$ for all x

- Let N be a (γ/d)–net for the unit ℓ_1-ball B

- Let $M = \{Ux \mid x \in N\}$, so $|M| \leq (1 + \gamma/(2d))^d/((\gamma/(2d))^d$

- Claim: For every x in B, there is a y in M for which $|Ax - y|_1 \leq \gamma$

- Proof: Let x' in B be such that $|x - x'|_1 \leq \gamma/d$
 Then $|Ax - Ax'|_1 \leq d|x - x'|_1 \leq \gamma$, using the well-conditioned basis property. Set $y = Ax'$

- $|M| \leq \left(\frac{d}{\gamma}\right)^{O(d)}$
Rough Algorithm Overview

1. Compute poly(d)-approximation
2. Compute well-conditioned basis
3. Sample rows from the well-conditioned basis and the residual of the poly(d)-approximation
4. Solve l_1-regression on the sample, obtaining vector x, and output x

Takes $\text{nnz}(A)$ time
Takes $\text{poly}(d/\varepsilon)$ time
Rough Algorithm Overview

\[\min_{x \in \mathbb{R}^d} |Ax-b|_1 = \min_{x \in \mathbb{R}^d} |Ux - b'|_1 \]

Sample \(\text{poly}(d/\varepsilon) \) rows of \(U \circ b' \) proportional to their \(l_1 \)-norm.

Find \(x' \) such that
\[|Ax'-b|_1 \leq \text{poly}(d) \min_{x \in \mathbb{R}^d} |Ax-b|_1 \]
Let \(b' = b - Ax' \) be the residual.

Find a basis \(A = UW \) so that for all \(x \in \mathbb{R}^d \),
\[|x|_1/\text{poly}(d) \leq |Ux|_1 \leq \text{poly}(d) |x|_1 \]
Now generic linear programming is efficient.
Will focus on showing how to quickly compute

1. A poly(d)-approximation

2. A well-conditioned basis
Sketching Theorem

Theorem

- There is a probability space over \((d \log d) \times n\) matrices \(R\) such that for any \(n \times d\) matrix \(A\), with probability at least \(99/100\) we have for all \(x\):
 \[
 |Ax|_1 \leq |RAx|_1 \leq d \log d \cdot |Ax|_1
 \]

Embedding

- is linear
- is independent of \(A\)
- preserves lengths of an infinite number of vectors
Application of Sketching Theorem

Computing a $d(\log d)$-approximation

- Compute RA and Rb
- Solve $x' = \arg\min_x |RAx - Rb|_1$
- Main theorem applied to $A \circ b$ implies x' is a $d \log d$ – approximation
- RA, Rb have $d \log d$ rows, so can solve l_1-regression efficiently
Application of Sketching Theorem

Computing a well-conditioned basis

1. Compute RA

2. Compute W so that RAW is orthonormal (in the l_2-sense)

3. Output $U = AW$

$U = AW$ is well-conditioned because

$$|AWx|_1 \leq |RAWx|_1 \leq (d \log d)^{1/2} |RAWx|_2 = (d \log d)^{1/2} |x|_2 \leq (d \log d)^{1/2} |x|_1$$

and

$$|AWx|_1 \geq |RAWx|_1/(d \log d) \geq |RAWx|_2/(d \log d) = |x|_2/(d \log d) \geq |x|_1/(d^{3/2} \log d)$$
Theorem:

There is a probability space over \((d \log d) \times n\) matrices \(R\) such that for any \(n \times d\) matrix \(A\), with probability at least 99/100 we have for all \(x\):

\[
|Ax|_1 \leq |RAx|_1 \leq d \log d \cdot |Ax|_1
\]

A dense \(R\) that works:

The entries of \(R\) are i.i.d. Cauchy random variables, scaled by \(1/(d \log d)\)
Cauchy Random Variables

- pdf(z) = 1/(π(1+z^2)) for z in (-∞, ∞)
- Undefined expectation and infinite variance
- 1-stable:
 - If z_1, z_2, ..., z_n are i.i.d. Cauchy, then for a ∈ R^n,
 \[a_1 \cdot z_1 + a_2 \cdot z_2 + \ldots + a_n \cdot z_n \sim |a|_1 \cdot z, \] where z is Cauchy
- Can generate as the ratio of two standard normal random variables
Proof of Sketching Theorem

- By 1-stability,
 - For all rows r of R,
 - \(<r, Ax> = |Ax|_1 \cdot Z / (d \log d)\),
 where Z is a Cauchy
 - \(RAx = (|Ax|_1 \cdot Z_1, ..., |Ax|_1 \cdot Z_{d \log d}) / (d \log d)\),
 where \(Z_1, ..., Z_{d \log d}\) are i.i.d. Cauchy

- \(|RAx|_1 = |Ax|_1 \sum_j |Z_j| / (d \log d)\)
 - The \(|Z_j|\) are half-Cauchy

- \(\sum_j |Z_j| = \Omega(d \log d)\) with probability \(1-\exp(-d \log d)\) by Chernoff

- But the \(|Z_j|\) are heavy-tailed…
Proof of Sketching Theorem

- $\sum_j |Z_j|$ is heavy-tailed, so $|RAx|_1 = |Ax|_1 \sum_j |Z_j| / (d \log d)$ may be large

- Each $|Z_j|$ has c.d.f. asymptotic to $1-\Theta(1/z)$ for z in $[0, \infty)$

- There exists a well-conditioned basis of A
 - Suppose w.l.o.g. the basis vectors are A_{*1}, \ldots, A_{*d}

- $|RA_{*i}|_1 = |A_{*i}|_1 \cdot \sum_j |Z_{i,j}| / (d \log d)$

- Let $E_{i,j}$ be the event that $|Z_{i,j}| \leq d^3$
 - Define $Z'_{i,j} = |Z_{i,j}|$ if $|Z_{i,j}| \leq d^3$, and $Z'_{i,j} = d^3$ otherwise
 - $E[Z_{i,j} \mid E_{i,j}] = E[Z'_{i,j} \mid E_{i,j}] = O(\log d)$

- Let E be the event that for all i,j, $E_{i,j}$ occurs
 - $\Pr[E] \geq 1 - \frac{\log d}{d}$
 - What is $E[Z'_{i,j} \mid E]$?
Proof of Sketching Theorem

- What is $E[Z'_{i,j} \mid E]$?

\[
E[Z'_{i,j} \mid E_{i,j}] = E[Z'_{i,j} \mid E_{i,j}, E] \Pr[E \mid E_{i,j}] + E[Z'_{i,j} \mid E_{i,j}, \neg E] \Pr[\neg E \mid E_{i,j}] \\
\geq E[Z'_{i,j} \mid E_{i,j}, E] \Pr[E \mid E_{i,j}] \\
= E[Z'_{i,j} \mid E] \cdot \left(\frac{\Pr[E_{i,j} \mid E] \Pr[E]}{\Pr[E_{i,j}]} \right) \\
\geq E[Z'_{i,j} \mid E] \cdot \left(1 - \frac{\log d}{d} \right)
\]

- So, $E[Z'_{i,j} \mid E] = O(\log d)$

- $|RA^*_i|_1 = |A^*_i|_1 \cdot \sum_{i,j} |Z_{i,j}| / (d \log d)$

- With constant probability, $\sum_i |RA^*_i|_1 = O(\log d) \sum_i |A^*_i|_1$
Proof of Sketching Theorem

- With constant probability, $\sum_i |RA_*i|_1 = O(\log d) \sum_i |A_*i|_1$

- Recall $A_1^*, ..., A_d^*$ is a well-conditioned basis, and we showed the existence of such a basis earlier.

- We will use the Auerbach basis which always exists:
 - For all x, $|x|_\infty \leq |Ax|_1$
 - $\sum_i |A_*i|_1 = d$

- $\sum_i |RA_*i|_1 = O(d \log d)$

- For all x, $|RAx|_1 \leq \sum_i |RA_*i x_i| \leq |x|_\infty \sum_i |RA_*i|_1$
 $= |x|_\infty O(d \log d)$
 $= O(d \log d) |Ax|_1$
Where are we?

- Suffices to show for all x with $|x|_1 = 1$, that $|Ax|_1 \leq |RAX|_1 \leq d \log d \cdot |Ax|_1$
- We know
 - (1) there is a γ-net M, with $|M| \leq \left(\frac{d}{\gamma}\right)^{O(d)}$, of the set $\{Ax \text{ such that } |x|_1 = 1\}$
 - (2) for any fixed x, $|RAX|_1 \geq |Ax|_1$ with probability $1 - \exp(-d \log d)$
 - (3) for all x, $|RAX|_1 = O(d \log d)|Ax|_1$

- Set $\gamma = 1/(d^3 \log d)$ so $|M| \leq d^{O(d)}$
 - By a union bound, for all y in M, $|Ry|_1 \geq |y|_1$

- Let x with $|x|_1 = 1$ be arbitrary. Let y in M satisfy $|Ax - y|_1 \leq \gamma = 1/(d^3 \log d)$

 - $|RAX|_1 \geq |Ry|_1 - |R(Ax - y)|_1$
 - $\geq |y|_1 - O(d \log d)|Ax - y|_1$
 - $\geq |y|_1 - O(d \log d)\gamma$
 - $\geq |y|_1 - O\left(\frac{1}{d^2}\right)$
 - $\geq |y|_1/2$ (why?)
Sketching to solve l_1-regression [CW, MM]

- Most expensive operation is computing R^*A where R is the matrix of i.i.d. Cauchy random variables.

- All other operations are in the “smaller space”.

- Can speed this up by choosing R as follows:

$$
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
C_1 \\
C_2 \\
C_3 \\
\vdots \\
C_n
\end{bmatrix}
$$
Further sketching improvements [WZ]

- Can show you need a fewer number of sampled rows in later steps if instead choose R as follows

- Instead of diagonal of Cauchy random variables, choose diagonal of reciprocals of exponential random variables

\[
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 1 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1/E_1 \\
1/E_2 \\
1/E_3 \\
\vdots \\
1/E_n
\end{bmatrix}
\]
Course Outline

- Subspace embeddings and least squares regression
 - Gaussian matrices
 - Subsampled Randomized Hadamard Transform
 - CountSketch
- Affine embeddings
 - Application to low rank approximation
- High precision regression
- Leverage score sampling
- Distributed low rank approximation
- L1 Regression
- M-Estimator Regression
Robust Regression Fitness Measures

Example: Method of least absolute deviation (l_1-regression)

• Find x^* that minimizes $|Ax-b|_1 = \Sigma |b_i - \langle A_{i*}, x \rangle|$

• Cost is less sensitive to outliers than least squares

• Can solve via linear programming

• Can solve in $\text{nnz}(A) + \text{poly}(d/\epsilon)$ time using sketching

What about the many other fitness measures used in practice?
M-Estimators

- **Measure function**
 - $M: \mathbb{R} \rightarrow \mathbb{R}^0$
 - $M(x) = M(-x), M(0) = 0$
 - M is non-decreasing in $|x|$

- $|y|_M = \sum_{i=1}^{n} M(y_i)$

- Solve $\min_x |Ax-b|_M$

- Least squares and L_1-regression are special cases
Huber Loss Function

\[M(x) = \frac{x^2}{2c} \text{ for } |x| \leq c \]

\[M(x) = |x| - c/2 \text{ for } |x| > c \]

Enjoys smoothness properties of \(l_2^2 \) and robustness properties of \(l_1 \)
Other Examples

• L_1-L_2
 \[M(x) = 2((1+x^2/2)^{1/2} - 1) \]

• Fair estimator
 \[M(x) = c^2 \left[\frac{|x|}{c} - \log(1+|x|/c) \right] \]

• Tukey estimator
 \[M(x) = \begin{cases}
 c^2/6 (1-[1-(x/c)^2]^3) & \text{if } |x| \leq c \\
 c^2/6 & \text{if } |x| > c
 \end{cases} \]
Nice M-Estimators

- An M-Estimator is nice if it has at least linear growth and at most quadratic growth.

- There is $C_M > 0$ so that for all a, a' with $|a| \geq |a'| > 0$,
 $$|a/a'|^2 \geq \frac{M(a)}{M(a')} \geq C_M |a/a'|$$

- Any convex M satisfies the linear lower bound (why?)
 $$M(a') = M\left(\left(\frac{a'}{a}\right) \cdot a + \left(1 - \frac{a'}{a}\right) \cdot 0\right) \leq \left(\frac{a'}{a}\right) M(a) + \left(1 - \frac{a'}{a}\right) M(0) = \left(\frac{a'}{a}\right) M(a)$$

- Any sketchable M satisfies the quadratic upper bound
 - sketchable \Rightarrow there is a distribution on $k \times n$ matrices S for which $|Sx|_M = \Theta(|x|_M)$ with good probability and k is slow-growing function of n
Nice M-Estimator Theorem

[Nice M-Estimators] $O(\text{nnz}(A)) + \text{poly}(d \log n)$ time algorithm to output x' so that for any constant $C > 1$, with probability 99%:

$$|Ax' - b|_M \leq C \min_x |Ax - b|_M$$

Remarks:

- For convex nice M-estimators can solve with convex programming, but slow – poly(nd) time
- Our sketch is “universal”
\[T = \begin{bmatrix}
S^0 \cdot D^0 \\
S^1 \cdot D^1 \\
S^2 \cdot D^2 \\
\vdots \\
S^{\log n} \cdot D^{\log n}
\end{bmatrix} \]

- \(S^i \) are independent CountSketch matrices with poly(d) rows
- \(D^i \) is \(n \times n \) diagonal and uniformly samples a \(1/(d \log n)^i \) fraction of the \(n \) rows
- The same M-Sketch works for all nice M-estimators!

\[x' = \arg\min_x |TAx - Tb|_{w,M} \]

- many analyses of this data structure don’t work since they reduce the problem to a non-convex problem

- Sketch used for estimating frequency moments [Indyk, W] and earthmover distance [Verbin, Zhang]
M-Sketch Intuition

• For a given $y = Ax - b$, consider $|Ty|_{w,M} = \sum_i w_i M((Ty)_i)$

• [Contraction] $|Ty|_{w,M} \geq \frac{1}{2} |y|_M$ with probability $1 - \exp(-d \log n)$

• [Dilation] $|Ty|_{w,M} \leq 2 |y|_M$ with probability 99%

• Contraction allows for a net argument (no scale-invariance!)
 – Show that $|y^*_2$ is within a factor $\text{poly}(n)$ of $\min_x |Ax - b|_2$

• Dilation implies the optimal y^* does not dilate much

• Proof: try to estimate contribution to $|y|_M$ at all scales
 – E.g., if $y = (n, 1, 1, \ldots, 1)$ with a total of $n-1$ 1s, then $|y|_1 = n + (n-1)*1$
 – When estimating a given scale, use the fact that smaller stuff cancels each other out in a bucket and gives its 2-norm