Sketching and Streaming Matrix Norms

David Woodruff
IBM Almaden

Based on joint works with Yi Li and Huy Nguyen
Turnstile Streaming Model

• Underlying n-dimensional vector x initialized to 0^n

• Long stream of updates $x_i \leftarrow x_i + \Delta_i$ for Δ_i in $\{-1,1\}$

• At end of the stream, x is promised to be in the set $\{-M, -M+1, \ldots, M-1, M\}^n$ for some bound $M \leq \text{poly}(n)$

• Output an approximation to $f(x)$ whp

• **Goal**: use as little space (in bits) as possible
Example Problem: Norms

• Suppose you want $|x|^p = \sum_{i=1}^{n} |x_i|^p$

• Want Z for which $(1-\varepsilon) |x|^p \leq Z \leq (1+\varepsilon) |x|^p$

• $p = 1$ is Manhattan norm
 • Distances between distributions, network monitoring

• $p = 2$ is (squared) Euclidean norm
 • Geometry, linear algebra

• $p = \infty$ is max norm: $|x|^p = \max_i |x_i|
 • denial of service attacks, etc.
Space Complexity of Norms

• For $1 \leq p \leq 2$ and constant approximation, can get $\log n$ space

• For $p > 2$, the space is $\widetilde{\Theta}(n^{1-\frac{2}{p}})$

• Lower bound: k-party disjointness

 • k vectors $x_1, \ldots, x_k \in \{0,1\}^n$ which have disjoint supports or uniquely intersect

 • $x = \sum_i x_i$ presented in the stream in the following order: x_1, \ldots, x_k

 • $x = (0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0)$, or

 • $x = (0, 1, 0, 1, 0, k, 0, 0, 1, 1, 0, 1, 0, 0)$

 • Set $k = 2n^{1/p}$. Disjointness $\Omega(\frac{n}{k})$ communication bound gives $\Omega(\frac{n}{k^2})$ stream memory bound
Matrix Norms

• We understand vector norms very well

• Recent interest in estimating *matrix* norms

• Stream of updates to an $n \times n$ matrix A

 • A initialized to $0^{n \times n}$, see updates $A_{i,j} \leftarrow A_{i,j} + \Delta_{i,j}$ for $\Delta_{i,j}$ in $\{-1,1\}$
 • Entries of A bounded in absolute value by poly(n)

• Every matrix $A = U \Sigma V^T$ in its singular value decomposition, where U, V have orthonormal columns and Σ is a non-negative diagonal matrix

• Schatten p-norm $|A|_p^p = \sum_i \sigma_i^p$ where $\sigma_i = \Sigma_{i,i}$
Matrix Norms

• Schatten p-norm $|A|^p_p = \sum_i \sigma_i^p$ where $\sigma_i = \Sigma_{i,i}$
 • $p = 0$ is the rank
 • $p = 1$ is the trace norm $\Sigma_i \sigma_i$
 • $p = 2$ is the Frobenius norm $\sum_{i,j} A_{i,j}^2$
 • $p = \infty$ is the operator norm $\sup_x \frac{|Ax|_2}{|x|_2}$

• What is the complexity of approximating $|A|^p_p = \sum_i \sigma_i^p$ up to a constant factor?

• For one value of p, this is easy...
 • $p = 2$ norm can be estimated in log n bits of space

• What about other values of p?
Matrix Norm Results

• Thoughts? Conjectures?

• An important special case: suppose A is sparse, i.e., has $O(1)$ non-zero entries per row and per column

• There is an $\tilde{O}(n)$ upper bound for every $0 \leq p \leq \infty$

• Anything better for $p \neq 2$?
Bit lower bound for Schatten norms

<table>
<thead>
<tr>
<th>p</th>
<th>Previous lower bounds</th>
<th>Lower bounds in [LW16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \in (2, \infty) \cap 2\mathbb{Z}$</td>
<td>$n^{1-2/p}$</td>
<td>??</td>
</tr>
<tr>
<td>$p \in (2, \infty) \setminus 2\mathbb{Z}$</td>
<td>$n^{1-2/p}$</td>
<td>$n^{1-g(\epsilon)}$</td>
</tr>
<tr>
<td>$p \in [1, 2)$</td>
<td>$n^{1/p-1/2} / \log n$ [AKP15]</td>
<td>$n^{1-g(\epsilon)}$</td>
</tr>
<tr>
<td>$p \in (0, 1)$</td>
<td>$\log n$ [KNP10]</td>
<td>$n^{1-g(\epsilon)}$</td>
</tr>
<tr>
<td>$p = 0$</td>
<td>$n^{1-g(\epsilon)}$ [BS15]</td>
<td>$n^{1-g(\epsilon)}$</td>
</tr>
</tbody>
</table>

- $g(\epsilon) \to 0$ as $\epsilon \to 0$
- The near-linear lower bound is tight for sparse matrices (each row and column contains $O(1)$ non-zero entries)
What about even integers p? [LW16]

- Show an $\tilde{O}(n^{1-\frac{2}{p}})$ upper bound for every even integer p

- Matches the lower bound for vectors

- The even integer p-norms are the only norms with non-trivial space!
Upper Bound Intuition for $p = 4$

- $|A|_4^4 = |AA^T|_F^2 = \sum_{i,j} < A_i, A_j >^2$, where A_i are the rows of A

- $< A_i, A_j >^2 \leq |A_i|^2 \cdot |A_j|^2 \leq \max_{i,j} < A_i, A_i >^2$

- If $|A_i|^2 = 1$ for all i, then
 1. $< A_i, A_j >^2 \leq 1$ for all i and j
 2. If $\sum_{i \neq j} < A_i, A_j >^2 \geq \epsilon \sum_i < A_i, A_i >^2 \geq \epsilon n$

- Implies uniformly sampling $\tilde{O}(n)$ terms $< A_i, A_j >^2$ for $i \neq j$ suffices for estimating $\sum_{i \neq j} < A_i, A_j >^2$
(1) \(< A_i, A_j >^2 \leq 1 \) for all \(i,j\)

(2) \(\sum_{i \neq j} < A_i, A_j >^2 \geq \epsilon n\)

These conditions imply uniformly sampling \(\tilde{O}(n)\) entries works

- To sample \(\tilde{O}(n)\) entries, we sample \(\tilde{O}(\sqrt{n})\) rows in their entirety (can approximately do this in a stream)
 - Can store all sampled rows using \(\tilde{O}(\sqrt{n})\) space given \(O(1)\) non-zero entries per row
 - Estimate (2) using all pairwise inner products in the sampled rows (some slight dependence issues)
- When \(|A_i|_2 \neq 1\) for all \(i\), instead sample rows proportional to \(|A_i|_2^2\)
Beyond $p = 4$

• For even integers p, let $q = p/2$. Then,

$$|A|^p_p = \sum_{1 \leq i_1, i_2, \ldots, i_q \leq n} \prod_{j=1, \ldots, q} <A_{i_j}, A_{i_{j+1}}>, \text{ where } i_{q+1} = i_1$$

• Sample $\tilde{O}(n^{1-\frac{2}{p}})$ rows in their entirety proportional to their squared norm

• Approximate above sum by summing over all q-tuples from your sample

• For non-even integers p and $p = 0$, no such expression for $|A|^p_p$ exists!
Lower bound for $p = 0$ [BS15]

- Hidden Boolean Hypermatching Problem ([VY11], [BS15])
 - Alice has a boolean vector $x \in \{0, 1\}^n$ such that $w(x) = n/2$
 - Bob has a perfect t-hypermatching M of n/t edges, each edge has t nodes
 - Determine whether $Mx := (\bigoplus_{i=1}^t x_{M_{1,i}}, \ldots, \bigoplus_{i=1}^t x_{M_{n/t,i}})$ is 1 or 0
- $\Omega(n^{1-1/t})$ bits for one-way communication
• 2n nodes
• Create a t-clique for each hyperedge in Bob’s input
• Add ‘tentacles’ according to Alice’s input x
• Determine whether all cliques have an even or odd number of tentacles
• Maximum matching size different by a constant factor in the cases
• If clique size is t, then with r tentacles, block matching size is \(r + \left\lfloor \frac{t-r}{2} \right\rfloor \)
• Matching size is \(\frac{3n}{4} \) if r are all even, Matching size is \(\frac{3n}{4} - \frac{n}{2t} \) if r are all odd
Connection with Matrices

- Consider the Tutte matrix \(A \) of the graph
 - \(A_{i,j} = 0 \) if \(\{i,j\} \) is not an edge
 - \(A_{i,j} = y_{i,j} \) if \(\{i,j\} \) is an edge and \(i < j \)
 - \(A_{i,j} = -y_{i,j} \) if \(\{i,j\} \) is an edge and \(j < i \)

- \(\text{rank}(A) \), under random assignment to the \(y_{i,j} \), is twice the maximum matching size, with high probability

- \(\Omega(n^{1-\frac{1}{t}}) \) lower bound for \((1 + \Theta \left(\frac{1}{t} \right)) \)-approximation
Distributional BHH Problem

- **Distributional BHH [VY11]:** Alice gets a uniformly random x in $\{0,1\}^n$, and Bob an independent, uniformly random perfect t-hyper-matching M on the n coordinates and a binary string w in $\{0,1\}^{n/t}$. Promise: $Mx \oplus w = 1^{n/t}$ or $Mx \oplus w = 0^{n/t}$

- **Let t be even. Distributional BHH problem [BS15]:**
 - Replace x with new input $x \leftarrow (x, \overline{x})$
 - For i-th set $S = \{x_{i_1}, \ldots, x_{i_t}\} \in M$,
 - if $w_i = 0$, include $\{x_{i_1}, \ldots, x_{i_t}\}$ and $\{\overline{x_{i_1}}, \ldots, \overline{x_{i_t}}\}$ in new input M
 - if $w_i = 1$, include $\{\overline{x_{i_1}}, x_{i_2}, \ldots, x_{i_t}\}$ and $\{x_{i_1}, \overline{x_{i_2}}, \overline{x_{i_3}}, \ldots, \overline{x_{i_t}}\}$ in the new input M
 - Correctness is preserved, and $Mx = 1^{n/t}$ or $Mx = 0^{n/t}$
 - In graph, can partition t-cliques into pairs: in each pair number of tentacles is q and $t-q$, for a binomially distributed odd (even) integer q if $Mx = 1^{n/t}$ (if $Mx = 0^{n/t}$)
Distributional BHH Problem

- Consider Tutte matrix A with diagonal 0 and indeterminates equal to 1
- After permuting rows and columns, A is block-diagonal
- Each block is $(2t) \times (2t)$ and corresponds to a clique with tentacles
- $t = 4$ and the three possible blocks for an even number of tentacles:

\[
\begin{array}{cccccccccc}
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Distribution of Singular Values

• \(|A|_p^p = \sum_{\text{blocks B in A}} |B|_p^p \)

• Suppose \(E_q \sim E(t) \left[|B_q|_p^p \right] \neq E_q \sim O(t) \left[|B_q|_p^p \right] \)
 • \(E(t) \) is distribution on even integers \(q \) with \(\text{Pr}[q = i] = \binom{t}{i}/2^{t-1} \)
 • \(O(t) \) is distribution on odd integers \(q \) with \(\text{Pr}[q = i] = \binom{t}{i}/2^{t-1} \)

• Since blocks \(B \) are of constant size, and pairs of blocks are independent, by Hoeffding bounds \(|A|_p^p \) differs by a constant factor if \(Mx = 1^{n/t} \) or if \(Mx = 0^{n/t} \)

• Suffices to show \(E_q \sim E(t) \left[|B_q|_p^p \right] \neq E_q \sim O(t) \left[|B_q|_p^p \right] \)
$\Omega(\sqrt{n})$ lower bound for $p \neq 2$

- $\Omega(n^{1-1/t}) = \Omega(\sqrt{n}) \Rightarrow t = 2$

$$M_0 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1, 1 & 0 & 0 \end{pmatrix}, \quad M_1 = \begin{pmatrix} 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

- $\mathbb{E}\|M_k\|_p$ in even and odd cases:

$$\frac{1}{2} \left\{ 2 \cdot 1^p + 2 \left(\left(\frac{\sqrt{5} + 1}{2} \right)^p + \left(\frac{\sqrt{5} - 1}{2} \right)^p \right) \right\} \neq 2\sqrt{2}^p$$

- $\Omega(\sqrt{n})$ lower bound follows.
$n^{1-g(\epsilon)}$ Lower Bound for p not an Even Integer

- Just need to show $E_{q \sim \mathcal{E}(t)} \left[|B_q|^p \right] = E_{q \sim o(t)} \left[|B_q|^p \right]$
- Change the definition of blocks B_q to make analysis tractable
- Singular values are either 1 or roots of a quadratic equation depending on q
- Analysis uses power series expansion of the roots and hypergeometric polynomials
Conclusions and Future Directions

• Nearly tight bounds for sparse matrices for matrix norms for every p

• For dense matrices, for p = 0 there is an $n^{2-g(\epsilon)}$ lower bound [AKL17]

• Nothing better known for other values of p for dense matrices

• When the streaming algorithm is a linear sketch:
 • Not clear if these lower bounds imply lower bounds for streams (though would be surprising if not)
 • $n^{2−4/p}$ bound for every $p \geq 2$, tight for even integers [LNW14,LW16]
 • For p not an even integer, conjecture an $n^{2−g(\epsilon)}$ lower bound