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Abstract
For any p ∈ [0, 2], we give a 1-pass poly(ε−1 logn)-space
algorithm which, given a data stream of length m with
insertions and deletions of an n-dimensional vector a,
with updates in the range {−M,−M +1, · · · ,M −1,M},
outputs a sample of [n] = {1, 2, · · · , n} for which for

all i the probability that i is returned is (1 ± ε) |ai|p
Fp(a)

±
n−C , where ai denotes the (possibly negative) value of
coordinate i, Fp(a) =

∑n
i=1 |ai|p = ||a||pp denotes the

p-th frequency moment (i.e., the p-th power of the Lp

norm), and C > 0 is an arbitrarily large constant. Here
we assume that n,m, and M are polynomially related.

Our generic sampling framework improves and uni-

fies algorithms for several communication and streaming

problems, including cascaded norms, heavy hitters, and

moment estimation. It also gives the first relative-error

forward sampling algorithm in a data stream with dele-

tions, answering an open question of Cormode et al.

1 Introduction

The streaming model has emerged as an important
paradigm for understanding the efficiency of algo-
rithms. In this model the algorithm is typically given
only a few passes (usually one) over a massive dataset,
and must maintain a small randomized sketch of what
it has seen so far. This allows it to later approx-
imately answer global questions about the dataset.
This model dates back to the work of Flajolet and
Martin [16], as well as Munro and Paterson [31], and
has become increasingly popular in the theory com-
munity due in a large part to the work of Alon, Ma-
tias, and Szegedy [1]. For a survey, see the book by
Muthukrishnan [32], or course notes by Indyk [23].

Most streaming problems can be modeled by
the evolution of an underlying n-dimensional vector
a whose coordinates are initialized to 0. In the
turnstile model of streaming we see a stream S of
m = poly(n,M) updates of the form (i, x), where
i ∈ [n] and x ∈ {−M,−M + 1, . . . ,M − 1,M},
indicating that the i-th coordinate ai of a should be
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incremented by x. Given the algorithm’s sketch of
a, the goal is then to output an approximation to
f(a), where f is some function. Often f is taken to
be the p-norm ||a||p = (

∑n
i=1 |ai|p)

1/p of a, for some
p ≥ 0 (||a||0 is the number of non-zero coordinates
of a), or the k-th frequency moment Fk(a) = ||a||kk.
Algorithms and lower bounds on the sketch size for
these particular f have been extensively studied;
see [32] and the references therein. Such statistics
provide a measure of similarity, which is useful for
massive datasets. Moments are also quite useful
for estimating quantities in other contexts, such as
cascaded norms [26], earthmover distance [2], entropy
[20], geometry [15], independence of distributions
[8, 24], and linear algebra [10, 33], to name a few.

In this paper we propose a new twist to the above
setting. Instead of trying to approximate the value
f(a), we think of there being a non-negative function
g : Z→ R≥0 defining a distribution

π(a) =
(
g(a1)
G

,
g(a2)
G

, . . . ,
g(an)
G

)
,

where G =
∑n
i=1 g(ai), and the goal is for the

algorithm to output a sample from this distribution
in low space. That is, the probability, over the
algorithm’s randomness, that coordinate i is output is
g(ai)
G . We have not seen such a notion proposed before

in its generality, though algorithms for sampling a
random non-zero item (g(x) = 0 if x = 0, otherwise
g(x) = 1) [12, 13, 27], and a random item based on its
frequency in the insertion-only model (so all updates
are positive and g(x) = x) [1] have been used and
studied.

We may also relax this problem to allow an α-
relative-error sampler, which is an algorithm that for
all i, outputs i with probability in the interval[

(1− α)
g(ai)
G

, (1 + α)
g(ai)
G

]
,

or an α-additive-error sampler, which is an algorithm
that for all i, outputs i with probability in the interval[

g(ai)
G
− α, g(ai)

G
+ α

]
.



Notice that an α-relative-error sampler is automati-
cally an α-additive-error sampler. For the case of an
α-relative-error sampler, we also allow a small addi-
tive error, provided it is at most n−C for an arbitrar-
ily large constant C. This error will not be detected
if the sampling subroutine is invoked a polynomial
number of times.

We can also choose the algorithm to report the
probability g(ai)

G , a probability in the interval[
(1− α)

g(ai)
G

, (1 + α)
g(ai)
G

]
,

or a probability in the interval[
g(ai)
G
− α, g(ai)

G
+ α

]
,

depending on which case we are in. If the sampler
has this latter property, we say it is an augmented
sampler.

In this paper we consider the case g(ai) = |ai|p
for p ∈ R≥0, in which case we call the corresponding
sampler an Lp-sampler.

The following is our main theorem.

Theorem 1.1. For any p ∈ [0, 2], there is a 1-pass
α-relative-error augmented Lp-sampler that runs in
poly(α−1 log n) bits of space. Ignoring an initial data
structure initialization stage (which doesn’t require
looking at the stream), the update time of the Lp-
sampler is poly(α−1 log n). There is also an n−C

probability of failure of the algorithm, in which case
it can output anything. Here C > 0 is an arbitrarily
large constant.

We extend this result in a few ways if we are
allowed more than one pass over the stream. Namely,
using Theorem 1.1, we can show that for any p ∈
[0, 2], there is a 2-pass exact (i.e., 0-relative-error)
augmented Lp-sampler that uses polylog n bits of
space. The algorithm may also output the special
symbol FAIL, which it does with probability less than
n−C for any constant C > 0.

The idea is to use a form of rejection sampling.
That is, we begin by running the 1-pass α-relative-
error augmented sampler of Theorem 1.1, with α set
to a fixed constant, obtaining a coordinate i as well
as a value p̃i = (1± α) |ai|p

Fp(a) .
In parallel we obtain a number V so that

2Fp(a) ≤ V ≤ 4Fp(a) using the algorithm of [28]. In
the second pass we compute |ai| exactly. With prob-
ability |ai|p/(V p̃i) we output i, otherwise we output
FAIL. Notice that this probability is less than 1 since

p̃i ≥ |ai|p/V for α < 1/2. The probability that coor-
dinate i is sampled is thus p̃i · |ai|p

V p̃i
= |ai|p

V . Hence, the
probability that some item is sampled is Fp/V ≥ 1/4.
If no item is sampled, we output FAIL. By repeating
this process in parallel O(log n) times, we ensure the
probability of outputting FAIL is less than n−C for an
arbitrarily large constant C. We thus have,

Theorem 1.2. For any p ∈ [0, 2], there is a 2-pass
exact augmented Lp-sampler that uses polylog n bits
of space. The probability of outputting FAIL is less
than n−C for any constant C > 0.

We also give an O(log n)-pass exact augmented Lp-
sampler in Section 4.1 using O(log5 n) bits of space.
While the number of passes has increased, we have
attempted to minimize the number of log factors
in the space. This has applications to reducing
poly(ε−1) factors in the communication complexity
of two-party Lk-estimation for k > 2, see Section 2.4.

Theorem 1.3. For any p ∈ [0, 2], there is an
O(log n)-pass exact augmented Lp-sampler that uses
O(log5 n) bits of space. The probability of outputting
FAIL is less than n−C for any constant C > 0.

2 Applications

Theorem 1.1 leads to many improvements and a
unification of well-studied streaming problems:

2.1 Weighted Sampling with Deletions: Cor-
mode, Muthukrishnan, and Rozenbaum [14] state
that “A fundamental question that arises is to de-
sign algorithms to maintain a uniform sample of the
forward distribution under both insertions and dele-
tions or show that it is impossible.” Here, by forward
distribution, the authors mean to return a sample i
with probability |ai|/||a||1, even if coordinate i un-
dergoes deletions in the stream. Setting p = 1 in
Theorem 1.1 therefore resolves the main open ques-
tion of [14] (up to a small relative error). As sam-
pling in the presence of deletions is a useful primi-
tive, we expect this to have many more applications.
For instance, Frahling, Indyk, and Sohler [17] study
geometric problems such as maintaining approximate
range spaces and costs of Euclidean spanning trees.
They need a routine which, given a pointset P under-
going multiple insertions and deletions, maintains a
random element from P . Applying Theorem 1.1 with
p = 0 also solves this problem. Another application
is that if the support of the underlying vector a is
at most k, by running the algorithm of Theorem 1.1
with p = 0 at most O(k log k) times, with constant
probability all k non-zero items will be found.



2.2 Cascaded Norms: In [26], Jayram and the
second author give 1-pass algorithms for estimating
cascaded moments of an n × d matrix A. Namely,
they show that for k ≥ 1 and p ≥ 2, the 1-pass space
complexity of outputting a (1± ε)-approximation to
Fk(Fp)(A) is

n1−2/(kp)d1−2/ppoly(ε−1 log(nd)).

They leave open the question of estimating Fk(Fp)(A)
for k ≥ 1 and p < 2, though they prove an Ω(n1−1/k)
space lower bound for this problem. The only other
work in this regime is due to Cormode and Muthukr-
ishnan [13] who prove an n1/2poly(ε−1 log(nd)) up-
per bound for estimating F2(F0)(A) assuming that
all stream updates are positive.

Theorem 1.1 implies a near-optimal
n1−1/kpoly(ε−1 log(nd))-space 1-pass upper bound
for any k ≥ 1 and p ∈ [0, 2], which, together with
the results of [26], closes the problem for k ≥ 1 and
any p ≥ 0, up to small factors. Note that for p < 1,
Lp is not a norm, but the expression for Lp is still
well-defined. As our algorithm works in the general
turnstile model, this also improves the algorithm of
[13] for estimating F2(F0).

Fk(Fp)-Estimation(A, ε):

1. Initialize T = n1−1/kpoly(ε−1 log(nd)).

2. For ` ∈ [log2 n], let A(`) be a random subset
of 2` rows of A.

3. Run Lp-Sampler algorithm T times in parallel
on each A(`).

4. Feed the row IDs of the samples from the A(`)
into the 1-pass Fk-algorithm of [26].

The 1-pass Fk-estimation algorithm given in [26]
is similar to the n1−1/kpoly(ε−1 log(nd))-space al-
gorithm for estimating Fk of [1], but given
a vector (b1, . . . , bn), it requires only sampling
n1−1/kpoly(ε−1 log(nd)) coordinate IDs i, rather
than approximations to their frequencies (the bi),
where i is sampled with probability |bi|∑n

i=1 |bi| . The
algorithm also requires such samples from random
subsets of 2` coordinates of the vector, for each
` ∈ [log2 n]. In our case, we run the sampler on the
matrices A(`), obtaining an entry in a given row i
with probability

(1± ε)
∑d
j=1 |A(`)i,j |p∑n

i=1

∑d
j=1 |A(`)i,j |p

.

Thus, bi in the Fk subroutine is equal to

(1± ε)
d∑
j=1

|A(`)i,j |p.

Theorem 2.1. For any p ∈ [0, 2], k ≥ 1, there is
a 1-pass streaming algorithm which, with probability
≥ 1− 1/poly(nd), outputs a (1± ε)-approximation to
Fk(Fp)(A) using space n1−1/kpoly(ε−1 log(nd)).

2.3 Heavy Hitters and Block Heavy Hitters:
The classical heavy hitters problem is to report all co-
ordinates i for which |ai| ≥ φ||a||p, where φ is an in-
put parameter. For p = 1 this is solved by the Count-
Min data structure of Cormode and Muthukrishnan
[13], and for p = 2 by the CountSketch data structure
by Charikar, Chen, and Farach-Colton [9]. Notice
that Theorem 1.1 immediately implies an algorithm
for every p ∈ [0, 2]. Indeed, run the augmented sam-
pler of Theorem 1.1 O(φ−1 log φ−1) times in parallel.
Then with constant probability, the list of samples
contains all heavy hitters, and using the probabilities
returned, one can ensure that if |ai|p ≤ (φ− ε)||a||pp,
then i is not reported. Notice that our algorithm
works in the turnstile model.

Another immediate application is that of com-
puting block heavy hitters, which is the problem of
reporting all rows ai of an n× d matrix A for which
||ai||1 is at least a φ fraction of the L1-norm ||A||1 of
A (i.e., ||A||1 =

∑n
j=1 ||aj ||1). These rows are called

the block heavy hitters, and are a crucial building
block in a streaming algorithm of Andoni, Indyk, and
Kraughtgamer [4] that constructs a small-size sketch
for the Ulam metric under the edit distance. In [3],
Andoni, DoBa, and Indyk devise a 1-pass algorithm
for this problem using poly(φ−1 log n) bits of space.

Notice that if ai is a block heavy hitter, then if
we sample a random entry of A proportional to its
absolute value, the probability it comes from row i is
at least φ. Moreover, based on the number of times
an item from row j is sampled, one can detect if

||aj ||1 ≤ (φ− ε)||A||1.

Hence, Theorem 1.1 immediately implies the
main result of [3]. It should be noted that the proof
of Theorem 1.1 does not rely on Nisan’s pseudoran-
dom generator or go through p-stable distributions,
which could potentially make our block heavy hitters
algorithm more practical than that of [3]. Moreover,
Theorem 1.1 immediately gives the analogous result
for every Lp with p ∈ [0, 2].
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2.4 Moment Estimation: In [11], Coppersmith
and Kumar reduce the problem of estimating Fk of
a vector to the problem of sampling according to F2.
In particular Proposition 4.1 of that paper states “If
there is a black-box such that

1. it uses Õ(1) space,

2. it makes Õ(1) passes over the input,

3. each invocation outputs a random variable Y
such that Pr[Y = i] ∝ a2

i ,

then there is a data stream algorithm for approximat-
ing F3 that uses Õ(n1/3) space and makes Õ(1) passes
over the input.” As the sampler of Theorem 1.1 sat-
isfies these conditions, we immediately obtain an al-
ternative F3-estimation algorithm in optimal space
(up to small factors). This generalizes to arbitrary
Fk, k > 2, and can be implemented in a single pass,
giving an alternative algorithm to that of Indyk and
the second author [25]. Our algorithm is the first
that does not use Nisan’s pseudorandom generator
as a subroutine, potentially making it more practical.
Moreover, if we consider the two-party communica-
tion complexity of Lk-estimation, k > 2, we can use
an O(log n)-pass version of our sampler in Theorem
1.3 to improve the dependence on ε of known algo-
rithms [7, 25]. Both of these algorithms are described
in Section 4.2.

3 1-Pass Lp-Sampler

3.1 Proof Overview. Here we give an overview
for the case p ∈ (0, 2]. The case p = 0 is simpler
and is handled in Section 3.2.2. As done in the work
of Indyk and the second author [25], we conceptually
divide the coordinates into classes

St = {i | |ai| ∈ [ηt−1, ηt)},

where η = 1 + Θ(ε). As in [25], we say that a class
St contributes if

|St|ηpt ≥ γFp(a),

where γ = poly(ε log−1 n) is a sufficiently small
parameter.

Let h : [n] → [n] be a hash function with
some amount of limited independence. We form
r = O(log n) substreams S0,S1, . . . ,Sr, where S0 de-
notes the input stream and Sj denotes the stream up-
dates which pertain only to coordinates i for which
h(i) ≤ n2−j . We say that such an i is a survivor
(with respect to a given Sj). As observed in [25], if
St contributes, then there will be a substream Sj for

which the survivors i in St are heavy hitters with re-
spect to the p-norm, that is, |ai|p ≥ γ′||a(j)||pp, where
a(j) denotes the vector a restricted to the survivors
in Sj , and γ′ = poly(ε log−1 n). The heavy hitters
in each substream can be found with poly(ε−1 log n)
space using known heavy hitter algorithms [9, 19],
which work for any p ∈ (0, 2], and even have a fast
poly(ε−1 log n) update and reporting time [19] in the
turnstile model. Here we critically rely on the fact
that p ∈ (0, 2], as otherwise, the space to find such
heavy hitters is known to be polynomial in n [5]. We
call the algorithm of [19] HeavyHitters. By zooming
in on the appropriate substream and counting the
number of survivors that are heavy hitters, we can
estimate |St| to within (1±Θ(ε)) for all St that con-
tribute. Notice that here we need the HeavyHitters
algorithm to also provide (1±Θ(ε))-approximations
to the values |ai| for each heavy hitter i, which can be
achieved by increasing the space by a poly(ε−1 log n)
factor. We also need the values |ai| to not be close
to the values ηt, as otherwise we might misclassify i
as belonging to St+1 when in fact it belongs to St.
While in previous work [25, 26] a rerandomization
technique was necessary to achieve this, in our work
we show that this is not an issue.

For St that do not contribute, we only obtain an
estimate E for which 0 ≤ E ≤ (1 + Θ(ε))|St|. This
sub-sampling approach is the basis of the algorithm
of Indyk and the second author [25] for estimating
frequency moments.

As observed by Jayram and the second author
[26] (see also [2]) this approach yields a 1-pass Θ(ε)-
additive-error augmented sampler in the following
way. We simply ignore the St that do not contribute,
and let the s̃t be our approximations to the set sizes
|St| for contributing St. We sample a contributing St
with probability

s̃tη
pt∑

contributing St
s̃tηpt

.

Given that we chose St, we output a heavy hitter in
St found in the substream Sj used to estimate St. In
the work of [26], these heavy hitters were essentially
random elements of St since h was generated using
Nisan’s pseudorandom generator (see, e.g., [22]), so
its output distribution was very close to that of a
truly random function. By instead appealing to
a theorem of Indyk [21], which shows that if h is
sufficiently independent then it is also ε-min-wise
independent, we could instead take the heavy hitter
found in St which minimizes h. This can be shown to
be a random element of St, up to a relative (1 ± ε)-



error. It is now straightforward to show that we
output i with probability

(1±Θ(ε)) · |ai|
p

Fp(a)
.

The problem with the above approach is that it leads
to an additive error rather than a relative error.
Indeed, items in non-contributing classes will never
be sampled. This is problematic if the sampling
algorithm is to be used in a subroutine that performs
more than poly(ε−1 log n) samples, as some items
that should be reported by an exact sampler will not
be detected.

Our main novelty is the following idea. Suppose
we force every class to contribute. If we could do
this, then we could try to apply the above sampling
procedure to obtain a Θ(ε)-relative-error augmented
sampler. To force each class to contribute, the idea
is to inject new coordinates into the stream. That is,
let T = O(ε−1 log n) be the number of classes. For
class St, we inject Θ(ε)Fp(a)/(Tηpt)) coordinates i
for which |ai| ∈ [ηt−1, ηt). It follows that Fp changes
by at most a (1 + Θ(ε)) factor. Moreover, now
|St|ηpt = Ω(εFp(a)/T ) for all t, and so provided γ =
O(ε/T ) = O(ε2/ log n), every class now contributes.
Actually, for technical reasons, we cannot force a class
St to contribute if ηpt is too close to Fp, but it turns
out that these classes can be dealt with separately.

Notice that we do not know Fp(a) in advance,
but it suffices to guess a (1 + Θ(ε))-approximation to
it, and then verify our guess at the end of the stream
by running an efficient Fp-approximation algorithm
in parallel, taking only poly(ε−1 log n) bits of space,
e.g., the space optimal algorithm of Kane et al [28],
or the earlier algorithms of Indyk [22] and Li [29].
The number of guesses we need is only O(ε−1 log n).

We now run the sampling algorithm above. If we
obtain an injected coordinate, then we output FAIL,
otherwise we output the coordinate and its approxi-
mate value returned by HeavyHitters. Notice that the
injected items contribute at most an O(ε) mass to the
Fp-value, so we output FAIL with probability at most
O(ε). By repeating this procedure in parallel a loga-
rithmic number of times, at least one of our samples
will not be an injected coordinate with probability at
least 1−n−C for an arbitrarily large constant C > 0.

The actual proof of Theorem 1.1 is substantially
more involved. The reason is that we want additive
error probability n−C , while the above “black-box”
approach of injecting coordinates and using earlier
algorithms of [25] and [26] can be shown to give an ad-
ditive error of at least poly(ε log−1 n). Here we can-
not just repeat the algorithm a logarithmic number

of times, since in each repetition a sample is returned
with a poly(ε log−1 n) bias. We devise a new pro-
cedure Sample-Extraction to shrink the additive error
of certain parts of the algorithm, thereby overcoming
this. Some of our new components for achieving this,
e.g., our primitive Set-Estimation for estimating the
level set sizes |St| up to a relative error ε, are simpler
than alternatives given in [25].

3.2 The Complete Proof. We first describe a so-
lution for p ∈ (0, 2]. In Section 3.2.2 we describe how
to sample when p = 0, which is simpler. Throughout
we use an algorithm that we call HeavyHitters, which
is given by the following theorem. The algorithm has
its roots in the CountSketch algorithm of Charikar et
al [9], but that algorithm did not have fast reporting
time for streams in the turnstile model. This prop-
erty was later achieved by Ganguly et al [19], building
upon work of Cormode and Muthukrishnan [12].

Theorem 3.1. ([9, 12, 19]) Let 0 < δ < 1. Let
a be a vector of length n initialized to zero. Let S
be a stream of m updates (i, x) to a, where i ∈ [n]
and x ∈ {−M, · · · ,+M}. There is an algorithm
HeavyHitters(S, B, δ, ε) that, with probability at least
1 − δ, returns all coordinates i for which |ai|2 ≥ F2

B ,
together with an approximation ãi such that |ai| ≤
|ãi| ≤ (1 + ε)|ai| and sign(ãi) = sign(ai). Here
B is an input parameter. The space complexity of
HeavyHitters is B ·poly(ε−1 log n) log 1/δ. The update
time is poly(ε−1 log n), and the reporting time is
poly(Bε−1 log n).

Corollary 3.1. For any p ∈ (0, 2], with probability
at least 1−δ, the output of HeavyHitters also contains
all items i for which |ai|p ≥ Fp

Bp/2 .

Proof. For p ∈ (0, 2], if |ai|p ≥ Fp

Bp/2 , then |ai|2 ≥
F 2/p

p

B , and, by monotonicity of norms (see, e.g., [18]),
F

2/p
p ≥ F2. Hence, |ai|2 ≥ F2

B , as needed in order to
be found by HeavyHitters. For p < 1, F 1/p

p is not a
norm, but it is still a well-defined expression. ♣

We start with the following definition of level sets,
similar to that given in [25, 26]. Fix an η = 1 + Θ(ε).
Let C ′ > 0 be a sufficiently large constant. We shall
make the simplifying assumption that all values |ai|,
if non-zero, are integers of absolute value at least
τ = C ′ε−1. This is w.l.o.g., since for each update
(i, x) in the input stream S, we can replace it with
the update (i, τx). This will also change Fp by a
factor of τp, but will not affect the distribution we
are trying to sample from.

5



Definition 3.1. Let B ≥ 1 be a parameter. For
logη τ + 1 = logη(C ′ε−1) + 1 ≤ t ≤ Cη log n, for
some constant Cη that depends on η, define

St = {i ∈ [n] : |ai| ∈ [ηt−1, ηt)}.

Call a level t (1/B)-contributing if

|St| · ηpt ≥
Fp
B
.

For a (1/B)-contributing level t, coordinates in St
will also be called (1/B)-contributing coordinates.

In the description of our algorithms, we assume that
we have a value F ′p with Fp ≤ F ′p ≤ (1+Θ(ε))Fp. This
is w.l.o.g., since the algorithm can guess each value
in a set of O(ε−1 log n) possible values, and use this
as the estimate F ′p. In parallel, the algorithm runs
the O(ε−2 log n) space algorithm of [28] to obtain a
(1 + Θ(ε))-approximation to Fp, and after processing
the stream knows which of its guesses is correct. This
only changes the space by a poly(ε−1 log n) factor.

Put T = Cη log n. We will perform the following
transformation to the stream S, creating a new input
stream S ′. Say a t ∈ [T ] is growing if

ηpt ≤
ε4F ′p

5T 3 log2 n
.

StreamTransformation(S, p)

• S ′ ← S

• For each t ∈ [T ] for which t is growing:

1. Allocate
⌈
εF ′p

5Tηpt

⌉
new coordinates.

2. For each new coordinate j, prepend the
pair (j, bηt−1/2c) to the stream S ′.

• Output the stream S ′.

Let a′ denote the underlying vector of S ′, which is
of length poly(n). For each new coordinate added
by StreamTransformation, we refer to it as an injected
coordinate (that is, a coordinate that appears in a′

but not in a is an injected coordinate). We first show
that the injected coordinates with value bηt−1/2c are
indeed in the level set St, and are away from the
upper boundary of that level set (the value ηt).

Lemma 3.1. For all t ≥ logη(C ′ε−1) + 1,

ηt−1 ≤ bηt−1/2c ≤ ηt

1 + Θ(ε)
.

Proof.

bηt−1/2c
ηt−1

≥ ηt−1/2 − 1
ηt−1

= η1/2 − 1
ηt−1

≥ η1/2 − ε

C ′
= 1 + Θ(ε)− ε

C ′
,

and the latter is at least 1 for sufficiently large C ′.
For the other direction, bηt−1/2c ≤ ηt

η1/2 ≤ ηt

1+Θ(ε) . ♣

Lemma 3.2. For growing t, the number of injected
coordinates added is at least ε−3T 2 log2 n.

Proof. For growing t, the number of coordinates
added is

⌈
εF ′p

5Tηpt

⌉
≥ εF ′p

5Tε4F ′p/(5T
3 log2 n)

= ε−3T 2 log2 n.

♣

Lemma 3.3. Fp(a) ≤ Fp(a′) ≤ (1 + ε/2)Fp(a), for ε
less than a sufficiently small constant.

Proof. The left inequality is obvious. For the
right inequality, fix a growing t. Then the
added contribution of this level set to Fp is
at most dεF ′p/(5Tηpt)e · ηp(t−1/2). By Lemma
3.2, dεF ′p/(5Tηpt)e ≥ ε−3T 2 log2 n, which in
particular implies εF ′p/(5Tη

pt) ≥ 1. Hence,
dεF ′p/(5Tηpt)e · ηp(t−1/2) ≤ 2εηpt−p/2F ′p/(5Tη

pt) ≤
2εF ′p/(5T ). Hence, the added contribution is at most
2εF ′p/(5T ) ≤ εFp(a)/(2T ), for ε small enough so that
F ′p is close enough to Fp(a). The lemma follows by
summing over all t. ♣

Lemma 3.4. With respect to a′, each growing t is
ε/(40T )-contributing.

Proof. Each growing t contributes at least

bηt−1/2cp ·
εF ′p

5Tηpt
≥ ηpt−p/2

2p
·
εF ′p

5Tηpt

to Fp(a′), which is at least

η−p/2εF ′p
5T2p

≥ η−p/2εFp(a)
5T2p

≥ η−p/2εFp(a′)
5T2p(1 + ε

2 )
≥ εFp(a′)

40T
,

where the second to last inequality follows from
Lemma 3.3, and the last for small enough ε. ♣

We start with the following assumption: for all i, if
i ∈ St, then |a′i| ≤ ηt/(1 + βε) for a small constant
β > 0. Intuitively, this is to ensure that the |a′i|
are away from their upper boundaries, so that when
HeavyHitters returns (1+Θ(ε))-approximations to the
|a′i|, which are guaranteed to be at least |a′i|, the i



can be classified correctly into the corresponding St.
We note that for an injected coordinate j with value
bηt−1/2c for some t, this assumption already holds
by Lemma 3.1. In Section 3.2.1, we show that this
assumption is unnecessary. We just use it now for
ease of presentation.

We can consider operating on stream S ′ as op-
posed to S, since StreamTransformation can be im-
plemented in poly(ε−1 log n) space in a preprocessing
phase, i.e., without looking at the pairs in S. The
following is our main sampling algorithm.

Lp-Sampler(S ′, p)

1. L ← HeavyHitters(S ′, A, n−C , ε/C), where
A = (5ηpT 3ε−4 log2 n)2/p. Let the ˜(a′)i be
estimates of the a′i for all i ∈ L.

2. B = (6400 · 1600ε−3ηpT 3 log3 |a′|)2/p.

3. Independently, for z = 1, 2, . . . , C log n,

(a) Put {Lzj | all j} = ListHH(S ′, B).

(b) Put {s̃zt | growing t} =
Set-Estimation({Lzj | all j}).

4. For growing t, put s̃t = medianz s̃zt .

5. {(xt, ˜(a′)xt
) | growing t} =

Sample-Extraction(S ′, B).

6. G =
∑
i∈L, not in growing t | ˜(a′)i|p +∑

growing t s̃t · | ˜(a′)xt
|p.

7. Choose a sample u from the distribution:

Pr[u = i] = | ˜(a′)i|
p

G if i ∈ L, not in growing t;

Pr[u = xt] =
s̃t·| ˜(a′)xt

|p

G .

8. Repeat steps (1-7) independently C log n
times. If in all repetitions the sample u re-
turned is an injected coordinate, then report
FAIL; else return (u, ˜(a′)i) if i ∈ L, or the
value (u, ˜(a′)xt

). Do this from the first repe-
tition for which the sample u obtained is not
an injected coordinate.

One of the subroutines that algorithm Lp-Sampler in-
vokes is ListHH, which we describe next. This is an al-
gorithm which takes in the stream S ′ and a parameter
B, sub-samples the stream at a logarithmic number
of different rates, using independent hash functions
hj : [|a′|] → [|a′|], and then invokes HeavyHitters on
the substream with B as an input parameter. Note
that here |a′| refers to the dimension of a′, which

is known (up to a constant factor) to the streaming
algorithm (assuming n or an upper bound on n is
known). Let C be a sufficiently large constant.

ListHH(S ′, B)

1. For j ∈ [log |a′|], independently sample func-
tions hj : [|a′|] → [|a′|] from a set of pairwise
independent hash functions.

2. Let Sj be the restriction of S ′ to those pairs
(i, x) for which hj(i) ≤ |a′|2−j .

3. Return, for each j ∈ [log |a′|],

Lj = HeavyHitters(Sj , B, 1/(C log |a′|), ε/C).

The ListHH algorithm is invoked C log n times in step
3 of Lp-Sampler, once for each value of z. Moreover,
the following Set-Estimation algorithm is also invoked
for each value of z.

Set-Estimation({Lj | all j})

1. For growing t,

(a) Choose the largest j for which Lj con-
tains at least 1600ε−2T 2 log2 |a′| ele-
ments of St. If there is such a j,

• S′t = St ∩ Lj and j(t) = j.
• s̃t = 2j(t) · |S′t|.

2. Return s̃t for each t for which a j was found,
and return 0 for the other growing t.

Let us fix a value of z in step 3, and analyze the
output of ListHH and Set-Estimation. For this value
of z, let Vj denote the set of coordinates i in a′ for
which hj(i) ≤ |a′|2−j in ListHH.

The Random Events. Define the events:

• E : for all growing t and all j ∈ [log |a′|],
|St ∩ Vj | ≤ 40|St|2−jT log |a′|.

• F : for all growing t and all j ∈ [log |a′|],
if E[|St ∩ Vj |] ≥ 40ε−2T log |a′|, then
|St ∩ Vj | ∈ [(1− ε)|St|2−j , (1 + ε)|St|2−j ].

• G: for all j ∈ [log |a′|],
Fp(a′(j)) ≤ 40 log |a′| · 2−jFp(a′), where a′(j) is
the restriction of a′ to the coordinates in Vj .

• H: all invocations of HeavyHitters by ListHH
succeed.
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Lemma 3.5.

Pr[E ∧ F ∧ G ∧H] ≥ 9/10.

Proof. First for the event E , observe that E[|St ∩
Vj |] = |St|2−j , and so by a Markov and a union bound
over all t and all j, we obtain

Pr[E ] ≥ 39/40.

To bound Pr[F ], fix a growing t and a j satisfying

E[|St ∩ Vj |] ≥ 40ε−2T log |a′|.

Let It,jx be an indicator for the event that an x ∈ St
is also in Vj . Put It,j =

∑
x∈St

It,jx . Then

E[It,j ] = |St|2−j ≥ 40ε−2T log |a′|.

Since hj is drawn from a pairwise-independent family,
Var[It,j ] ≤ E[It,j ]. By Chebyshev’s inequality,

Pr[|It,j −E[It,j ]| ≥ εE[It,j ]] ≤ 1
ε2E[It,j ]

≤ 1
ε2 · 40ε−2T log |a′|

≤ 1
40T log |a′|

.

By a union bound over growing t and the j satisfying
E[|St ∩ Vj |] ≥ 40ε−2T log |a′|,

Pr[F ] ≥ 39/40.

For the event G, for a fixed j, we have E[Fp(a′(j))] =
2−jFp(a′). By a Markov bound,

Pr[Fp(a′) ≥ 40 log |a′| · 2−jFp(a′)] ≤
1

40 log |a′|
.

By a union bound,

Pr[G] ≥ 39/40.

Finally for the event H, as HeavyHitters is invoked
log |a′| times with error probability 1/(C log |a′|), for
a sufficiently large constant C, we get that

Pr[H] ≥ 39/40.

By a union bound, Pr[E ∧ F ∧ G ∧H] ≥ 9/10. ♣

Lemma 3.6. Fix a z ∈ [C log n]. Then with probabil-
ity at least 9/10, for all growing t, there is a j = j(t)
assigned to t by Set-Estimation, and also

s̃zt ∈ [(1− ε)|St|, (1 + ε)|St|].

Proof. We condition on E ,F ,G, and H jointly occur-
ing. Fix a growing t. We first show there is a j = j(t)
assigned to t by Set-Estimation. By Lemma 3.2,

|St| ≥ ε−3T 2 log2 n.

It follows that, for small enough ε, there is a unique
j∗ ≥ 0 for which
(3.1)
3200ε−2T 2 log2 |a′| ≤ 2−j

∗
|St| < 6400ε−2T 2 log2 |a′|.

(recall that log |a′| = O(log n)). Since St is growing,
by Lemma 3.4, |St| · ηpt ≥ εFp(a′)

40T . Hence,

2−j
∗
|St|ηpt ≥

ε2−j
∗
Fp(a′)

40T
.

Since event G occurs,

Fp(a′(j∗)) ≤ 40 log |a′| · 2−j
∗
Fp(a′),

and so

(3.2) 2−j
∗
|St|ηpt ≥

εFp(a′(j∗))
1600T log |a′|

.

Since 2−j
∗ |St| < 6400ε−2T 2 log2 |a′| by (3.1), we have

ηp(t−1) ≥ ε3Fp(a′(j∗))
6400 · 1600ηpT 3 log3 |a′|

.

Now we use the fact that event H occurs, and
so HeavyHitters(Sj∗ , B, 1/(C log |a′|), ε/C) succeeds
in reporting a list Lzj∗ containing all i for which

|a′i|p ≥
Fp(a′(j∗))

Bp/2 , where

B = (6400 · 1600ε−3ηpT 3 log3 |a′|)2/p.

In particular, Lzj∗ contains Vj∗ ∩ St, and these coor-
dinates i will be correctly classifed into St given our
assumption that the |a′i| are away from their upper
boundaries. Finally, notice that

E[|St ∩ Vj∗ |] = 2−j
∗
|St|,

which is at least 3200ε−2T 2 log2 |a′| by (3.1). Hence,
since event F occurs,

|Vj∗∩St| ≥ 3200(1−ε)ε−2T 2 log2 |a′| ≥ 1600ε−2T 2 log2 |a′|.

It follows that t is assigned a value j(t) in Set-
Estimation.

Now we show that s̃zt ∈ [(1 − ε)|St|, (1 + ε)|St|].
We must show that

2j(t)|S′t| ∈ [(1− ε)|St|, (1 + ε)|St|],



for the j(t) assigned to t by Set-Estimation (which
need not equal j∗), and where S′t = St ∩ Lzj(t). Now
j(t) is such that |Lzj(t) ∩ St| ≥ 1600ε−2T 2 log2 |a′|.
Since event E occurs,

|St ∩ Vj(t)| ≤ 40|St|2−j(t)T log |a′|.

Using that |St ∩ Vj(t)| ≥ |St ∩ Lzj(t)|,

|St|2−j(t) = E[|St ∩ Vj(t)|] ≥ 40ε−2T log |a′|.

But then since event F occurs, it follows that

|St ∩ Vj(t)| ∈ [(1− ε)|St|2−j(t), (1 + ε)|St|2−j(t)].

The same analysis for j∗ in (3.2) shows that for j(t),

2−j(t)|St|ηpt ≥
εFp(a′(j(t)))
1600T log |a′|

.

Since we have shown that Lzj∗ contains at least
1600ε−2T 2 log2 |a′| elements of St, we must necessar-
ily have j(t) ≥ j∗ since the Set-Estimation algorithm
chooses the largest value of j for which Lzj contains
at least 1600ε−2T 2 log2 |a′| elements of St. But then

2−j(t)|St| ≤ 2−j
∗
|St| < 6400ε−2T 2 log2 |a′|,

and so

ηp(t−1) ≥ ε3Fp(a′(j(t)))
6400 · 1600ηpT 3 log3 |a′|

.

Since we are conditioning on event H occurring,
HeavyHitters(Sj(t), B, 1/(C log |a′|), ε/C) succeeds in
reporting a list Lzj(t) containing Vj(t) ∩ St, and these
coordinates i will be correctly classified into St given
that the |a′i| are away from their upper boundaries.
It follows that |S′t| = |Vj(t) ∩ St| lies in

[(1− ε)|St|2−j(t), (1 + ε)|St|2−j(t)].

Hence, s̃zt ∈ [(1− ε)|St|, (1 + ε)|St|], as desired. ♣

Corollary 3.2. With probability ≥ 1−n−Θ(C), for
an absolute constant hidden in the Θ(·),

s̃t = medianz s̃zt ∈ [(1− ε)|St|, (1 + ε)|St|].

We now turn to steps 5 and beyond, which are
based on the following Sample-Extraction algorithm.
Recall that the underlying vector is a′ (the output of
StreamTransformation) with length |a′| = poly(n). As
above, let C > 0 be a sufficiently large constant.

The algorithm, like the ListHH algorithm, per-
forms sub-sampling at a logarithmic number of differ-
ent rates. The first difference is that the functions gj

used to do the sub-sampling are now C log(ε−1|a′|)-
wise independent, and map [Cε−1|a′|] to [Cε−1|a′|].
This will allow us to apply a theorem of Indyk
[21] which relates hash function families with lim-
ited independence to ε-min-wise independent fami-
lies, which we shall define in the analysis. The sec-
ond difference is that the surviving coordinates, for a
given level of sub-sampling, are further hashed into
D buckets using a D-wise independent hash function.
This second bucketing operation is repeated indepen-
dently E = C log n times. The goal of this bucketiza-
tion is to guarantee that in a sub-sampling level j for
which items from St are extracted, all surviving items
from St are reported with very high probability. This
requires showing that the heavy items, i.e., those from
∪t′≥tSt′ in the substreams, as well as the items from
non-growing level sets, are perfectly hashed into the
D buckets for some repetition e ∈ E, with high proba-
bility. Given all surviving items from St, which is the
set of coordinates i satisfying gj(i) ≤ Cε−1|a′|2−j , we
can find the i ∈ St which minimizes gj . Given that
gj is from an ε-min-wise independent family, this i is
a random element of St, up to a small relative error.

Sample-Extraction(S ′, B)

1. D ← C(ε−4T 4 log2 n)2, and
E ← C log n.

2. For j ∈ [log(Cε−1|a′|)], independently sample
gj : [Cε−1|a′|] → [Cε−1|a′|] from a
(C log(ε−1|a′|))-wise independent family of
hash functions.
For e ∈ [E], independently sample fj,e :
[Cε−1|a′|] → [D] from a D-wise independent
family.

3. For j ∈ [log(Cε−1|a′|)], d ∈ [D], and e ∈ [E],
let Sj,d,e be the restriction of S ′ to those pairs
(i, x) for which gj(i) ≤ (Cε−1|a′|)2−j and
fj,e(i) = d. For B′ = O(T 4ε−3 log2 n)2/p,
Mj,d,e = HeavyHitters(Sj,d,e, B′, n−C , ε/C).

4. For growing t, choose the largest j = j(t) for
which ∪d,eMj,d,e contains ≥ 1600ε−2T 2 log2 n
elements of St. If there is such a j:

• S′′t = St ∩
(
∪d,eMj(t),d,e

)
.

• Let wt be the element of S′′t that mini-
mizes gj(t).

5. Return (wt, ˜(a′)w(t)) for those t for which a
j(t) was found.
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Lemma 3.7. With probability 1 − n−Ω(C), for each
growing t a pair (wt, a′w(t)) is returned by Sample-
Extraction. Moreover, conditioned on returning a pair
for St, for all α ∈ St we have

Pr[wt = α] = (1±Θ(ε)) · 1
|St|
± n−Ω(C).

Proof. We let Uj be the set of coordinates for which
gj(i) ≤ (Cε−1|a′|)2−j , and a′′(j) be the vector a
restricted to coordinates in Uj . Define the random
events:

• E ′: for all growing t and j ∈ [log(Cε−1|a′|)],

|St ∩ Uj | ≤ 2|St|2−j +O(log n).

• F ′: for all growing t and j ∈ [log(Cε−1|a′|)], if

E[|St ∩ Uj |] ≥ C2ε−2 log n,

then

|St ∩ Uj | ∈ [(1− ε)|St|2−j , (1 + ε)|St|2−j ].

• H′: all invocations of HeavyHitters by Sample-
Extraction succeed.

We need the following proposition.

Proposition 3.1. Pr[E ′∧F ′∧H′] ≥ 1−n−Θ(C), for
an absolute constant in the Θ(·).

Proof. Since gj is C log(ε−1|a′|)-wise independent
for sufficiently large C, one can use the following
theorem:

Theorem 3.2. (Lemma 2.3 of [6]) Let Xi ∈ [0, 1],
1 ≤ i ≤ n, be t-wise independent for t ≥ 4 an
even integer, X =

∑n
i=1Xi, and A > 0. Then

Pr[|X −E[X]| ≥ A] ≤ 8
(
tE[X]+t2

A2

)t/2
.

We can assume log(ε−1|a′|) = Θ(log n), as otherwise
ε is so small that we can just store the entire
vector a′ in poly(ε−1 log n) bits of space. Hence, the
independence of gj is O(C log n), where the constant
in the big-Oh is absolute. Suppose we set

A = |St|2−j + C2 log n.

Using the fact that E[|St ∩ Uj |] = |St|2−j and
Theorem 3.2,

Pr
[
|St ∩ Uj | > 2|St|2−j + C2 log n)

]
≤ 8

(
tE[|St ∩ Uj |] + t2

A2

)t/2
≤ 8

(
O(C log n)|St|2−j +O(C2 log2 n)

|St|22−2j + C4 log2 n

)C·Ω(logn)

.

Now, there are two cases: (1) |St|2−j ≤ C2 log n, and
(2) |St|2−j > C2 log n. In both cases the RHS is at
most 8(1/2)C·Ω(logn), and so it can be bounded by
n−Θ(C), which upper bounds Pr[¬ E ′].

To upper bound Pr[¬ F ′], we set

A = εE[|St ∩ Uj |] = ε|St|2−j .

Then by Theorem 3.2,

Pr
[
||St ∩ Uj | − |St|2−j | ≥ ε|St|2−j

]
≤ 8

(
O(C log n)|St|2−j +O(C2 log2 n)

ε2|St|22−2j

)C·Ω(logn)

.

Using the premise of event F ′, namely, that |St|2−j ≥
C2ε−2 log n, the RHS can be bounded by n−Θ(C),
which upper bounds Pr[¬ F ′].

Since HeavyHitters is invoked poly(ε−1 log n)
times by Sample-Extraction with error parameter
n−C , by a union bound,

Pr[E ′ ∧ F ′ ∧H′] ≥ 1− n−Θ(C),

for an absolute constant in the Θ(·). ♣

We condition on these three events in the remainder
of the proof of Lemma 3.7.

Fix a t that is growing. Below we will show
that a j(t) is assigned to t in step 4 of Sample-
Extraction. Next, we show that Sample-Extraction
ensures that with probability ≥ 1 − n−Θ(C), all
coordinates in Uj(t) ∩ St are in S′′t . This is stronger
than the guarantee of Lemma 3.6, which could only
guarantee this with constant probability (or by minor
modifications, 1 − poly(ε log−1 n) probability). One
obstacle is that there may be no concentration in
the random variables Fp(a′′(j)), and if they are
too large, then we cannot collect the heavy hitters
in the corresponding substream. In the proof of
Lemma 3.6 it sufficed to bound the Fp(a′′(j)) using
Markov’s inequality. Here, we further partition the
streams Sj into D pieces Sj,1, . . . ,Sj,D. We do this
independently E times, so that for all j,

∀e ∈ [E], Sj = ∪d∈[D]Sj,d,e.

Let a′′(j, d, e) denote the restriction of the vector
a′′(j) to coordinates that go to the d-th bucket in
the e-th independent repetition.

Proposition 3.2. With probability ≥ 1− n−Θ(C), a
j(t) is assigned to t in step 4 of Sample-Extraction
and all coordinates in Uj(t) ∩ St are in S′′t , i.e.,

Pr[S′′t = Uj(t) ∩ St] ≥ 1− n−Θ(C).



Proof. Fix a j ∈ [log(Cε−1|a′|)]. We now bound
the number of elements in a level set St that is not
growing. By definition,

ηpt >
ε4F ′p

5T 3 log2 n
,

and so

ηp(t−1) ≥
ε4F ′p

ηp5T 3 log2 n
.(3.3)

But by Lemma 3.3,

F ′p ≥ Fp(a) ≥ Fp(a′)
1 + ε/2

.

Hence, by (3.3), the number of elements in St can be
at most

(1 + ε/2)ηp5T 3 log2 n

ε4
= O

(
T 3 log2 n

ε4

)
.

Summing over all non-growing sets, the number of
such items is

O

(
T 4 log2 n

ε4

)
.

Next, for a t′ ≥ t that is growing, since event E ′
occurs,

|St′ ∩ Uj | ≤ 2|St′ |2−j +O(log n).(3.4)

Moreover, St′ cannot be much larger than St, as
otherwise St could not be ε/(40T )-contributing, as
per Lemma 3.4. That is,

|St|ηpt ≥ εFp(a′)/(40T ),

and since t′ ≥ t all coordinates in St′ have absolute
value at least ηt−1. Then necessarily,

|St′ | ≤ 40Tηpε−1|St|.

Combining this inequality with that of (3.4),

|St′ ∩ Uj | = O(Tε−1|St|2−j + log n),

and so

| ∪t′≥t St′ ∩ Uj | = O(T 2ε−1|St|2−j + T log n).

By Lemma 3.2,

|St| ≥ ε−3T 2 log2 n.

Hence, for small enough ε, there is a unique j∗ ≥ 0
for which

3200ε−2T 2 log2 n ≤ |St|2−j
∗
< 6400ε−2T 2 log2 n.

In the remainder of the proof we restrict our attention
to those j for which j ≥ j∗. For such j,

| ∪t′≥t St′ ∩ Uj | = O(ε−3T 4 log2 n).

Now, fix an e ∈ [E].
Since the fj,e are chosen from a D-wise indepen-

dent family for D = C(ε−4T 4 log2 n)2, it follows that
for a sufficiently large constant C > 0, with proba-
bility ≥ 1/2, none of the items in ∪t′≥tSt′ ∩ Uj or
in non-growing level sets go to the same bucket (i.e.,
agree on the function fj,e).

We now show that conditioned on E ′∧F ′∧H′ and
assuming that the items in ∪t′≥tSt′ ∩Uj are perfectly
hashed, for each i ∈ Uj ∩ St, the coordinate i is
returned by HeavyHitters(Sj,d,e, B, n−C , ε/C).

For this, we need a bound on Fp(a′′(j, d, e)) for
each bucket d ∈ [D] in an iteration e ∈ [E] containing
an element of St. Fix a d ∈ [D]. Since event E ′
occurs, the number yt′ of items in a growing t′ < t
that collide in the d-th bucket is O(|St′ |2−j + log n).

Since St is ε/(40T )-contributing,

|St|ηpt ≥
εFp(a′)

40T
,

and since
|St′ |ηp(t

′−1) ≤ Fp(a′),

we obtain the bound

|St′ | ≤ 40Tε−1ηp|St|ηpt−pt
′
.

Since j ≥ j∗, we have

2−j |St| ≤ 2−j
∗
|St| = O(ε−2T 2 log2 n),

and so we obtain yt′ = O(T 3ε−3ηpt−pt
′
log2 n). It

follows that the contribution to Fp(a′′(j, d, e)) is at
most

ηpt
′
yt′ = O(T 3ε−3ηpt log2 n).

Hence, the total contribution from all t′ < t to
Fp(a′′(j, d, e)) is at most

O(T 4ε−3ηpt log2 n).

But the contribution of the single item in St
in this bucket to Fp(a′′(j, d, e)) is at least ηpt−p.
Since HeavyHitters is invoked with parameter B′ =
O(T 4ε−3 log2 n)2/p, the single item in St in this
bucket will be returned, using the fact that event H′
occurs, and thus HeavyHitters succeeds.

Since E = C log n, it follows that with probabil-
ity ≥ 1 − n−Θ(C), there is a value of e for which the
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items in ∪t′≥tSt′∩Uj are perfectly hashed, and hence
with this probability

∪d,eMj,d,e = St ∩ Uj ,

for any j ≥ j∗. Now, notice that

E[|St ∩ Uj∗ |] = |St|2−j
∗
≥ 3200ε−2T 2 log2 n.

Hence, since event F ′ occurs,

|St ∩ Uj∗ | ≥ (1− ε)E[|St ∩ Uj∗ |] ≥ 1600ε−2T 2 log2 n.

This implies that in step 4 of Sample-Extraction
the value j∗ satisfies the criterion that ∪d,eMj∗,d,e

contains at least 1600ε−2T 2 log2 n elements of St.
Since Sample-Extraction sets j(t) to be the largest
such j, the value t will be assigned a value j(t) ≥ j∗.

The above implies that

Pr[S′′t = Uj(t) ∩ St] ≥ 1− n−Θ(C).

This concludes the proof of the proposition. ♣

Now if S′′t = Uj(t) ∩ St, then all coordinates i in St
for which gj(t)(i) ≤ (Cε−1|a′|)2−j(t) are in S′′t , and
there are at least 1600ε−2T 2 log2 n ≥ 1 of them. In
particular, we can find the coordinate i for which

gj(t)(i) = min
i′∈St

gj(t)(i′).

We need the following definition.

Definition 3.2. A family of functions H ⊆ [N ] →
[N ] is called (ε, s)-min-wise independent if for any
X ⊆ N with |X| ≤ s, and any x ∈ [N ] \X, we have

Pr
h∈H

[h(x) < minh(X)] = (1± ε) · 1
|X|+ 1

.

We need the following theorem of Indyk.

Theorem 3.3. ([21]) There exist constants c, c′ >
1 such that for any ε > 0 and s ≤ εN/c, any
(c′ log 1/ε)-wise independent family of functions is
(ε, s)-min-wise independent.

Here we apply the theorem with N = Cε−1|a′|
and s = |a′|. Our family of hash functions is also
(C log ε−1|a′|)-wise independent. Hence, for C > 0 a
sufficiently large constant, we have for all i ∈ St,

Pr[gj(i) = min
i′∈St

gj(i′)] = (1±Θ(ε)) · 1
|St|

.

This finishes the proof of Lemma 3.7. ♣

Theorem 3.4. For any p ∈ [0, 2], the probability that
Lp-Sampler(S ′, p) returns (i, (1±Θ(ε))ai) is

(1± ε) |ai|
p

Fp(a)
± n−C

for an arbitrarily large constant C > 0. The space
complexity is poly(ε−1 log n) bits. Ignoring the time
of StreamTransformation, which can be performed
without looking at the data stream, the update time
is poly(ε−1 log n).

Proof. For p ∈ (0, 2], by Corollary 3.2 and Lemma
3.7, with probability at least 1− n−Θ(C),

s̃t ∈ [(1− ε)|St|, (1 + ε)|St|]

and for each growing t a sample wt is returned with
probability (1±Θ(ε))|St|−1 ± n−Θ(C).

We also condition on the event that HeavyHitters
succeeds in returning all coordinates not in growing
St in step 1; this only adds an additional n−C to the
error probability. Notice that for such coordinates i,
if i occurs in St, then we have

|a′i|p ≥ η(t−1)p ≥
ε4F ′p

ηp5T 3 log2 n
,

where the latter inequality follows by definition.
Since F ′p ≥ Fp, it follows that i is (ε4/(ηp5T 3 log2 n))-
contributing, and so the HeavyHitters algorithm with
paramater A = (5ηpT 3ε−4 log2 n)2/p will report i.

It now follows that in Step 7,

Pr[u = i] = (1±Θ(ε))
|ai|p

Fp
± n−Θ(C).

By Lemma 3.3, the total contribution of injected
coordinates to Fp(a′) is O(ε)Fp(a′). Hence, in step 8,
the probability that in C log n repetitions all samples
are injected coordinates is at most n−Θ(C). The
statement of the theorem now follows by adjusting C
and ε by constant factors. It is also easy to see that
the space of the overall algorithm is poly(ε−1 log n)
bits. The update time is dominated by that of the
HeavyHitters subroutines, and is poly(ε−1 log n). We
show how to remove the assumption that the |a′i| are
away from their boundaries in Section 3.2.1. Finally,
we show how to build an augmented L0-sampler in
Section 3.2.2. ♣

3.2.1 Removing the assumption The above al-
gorithm holds under the assumption that for all i, if
i ∈ St, then |a′i| ≤ ηt/(1 + βε), for a small constant
β > 0, allowing HeavyHitters to accurately classify the



coordinates that it finds. This assumption is easy to
remove given an additional pass, since one can com-
pute the |ai| exactly and then perform classification.
To achieve a 1-pass algorithm, we make the following
observation.

We note that the guarantees of our algorithm do
not change by more than a factor of ηp = 1 + Θ(ε)
provided the classification of coordinates i into the
level sets St is consistent. That is, if coordinate i is
returned by multiple HeavyHitters invocations, then
each invocation must classify it into the same level
set St. Notice that consistency is easily enforced
since the total number of items returned, across
all HeavyHitters invocations, is poly(ε−1 log n), and
hence the algorithm can simply remember a table
indicating how previous coordinates returned were
classified.

This effectively takes the underlying vector a′,
and multiplies some coordinates by a value of at most
η (those that are misclassified into their neighboring
level set). Sampling from the resulting vector is
equivalent to sampling from a′, up to a factor of ηp.
We need consistency for estimating the set sizes |St|,
since we do not want to count one coordinate towards
multiple St. Notice that unlike the algorithm of Indyk
and the second author [25], we do not have to worry
about some level sets no longer contributing because
of misclassification. This is because, as argued earlier,
all injected coordinates are not near their boundaries,
by definition, so they will be correctly classified,
and so all growing sets will still be poly(ε log−1 n)-
contributing (items from the non-growing sets do not
undergo classification).

3.2.2 An Augmented L0-Sampler In this sec-
tion we can work directly on the vector a, without
introducing injected coordinates as needed for Lp-
sampling, p > 0.

Theorem 3.5. There exists a 1-pass algorithm L0-
Sampler which, given a stream S of an underlying
vector a, outputs a random non-zero coordinate i
together with the value ai, such that for all non-zero
ai, the probability that L0-Sampler outputs (i, ai) is

(1± ε) · 1
||a||0

± n−C

for an arbitrarily large constant C > 0. The space
complexity is poly(ε−1 log n) bits, and the update time
is poly(ε−1 log n).

Proof. Let C > 0 be a sufficiently large constant.
We first assume that ||a||0 ≥ C. W.l.o.g., Cε−1n is

a power of 2. We choose C log(ε−1n) independent
hash functions hj : [Cε−1n]→ [Cε−1n] from a family
of C log(ε−1n)-wise independent hash functions. For
j = 0, . . . , log(Cε−1n), we say that a coordinate i of
a survives with respect to hj if hj(i) ≤ 2−j(Cε−1n).
Let Sj be the restriction of updates in S to coordi-
nates that survive with respect to hj . Let a(j) de-
note the restriction of the underlying vector a to co-
ordinates that survive with respect to hj . On each
Sj , we run a poly(log n)-space L0-estimation algo-
rithm to estimate a(j) up to a factor of (1 ± 1/3)
in the general turnstile model with error probabil-
ity n−Θ(C), e.g., the algorithm of [28]. Denote the
resulting estimate Ej . Further, for each Sj choose
C log n independent C3-wise independent hash func-
tions ψj,r : [Cε−1n] → [C3], for r ∈ [C log n]. We
maintain the counters:

cj,r,d =
∑

` s.t. hj(`)≤2−jCε−1n and ψj,r(`)=d

a`.

We repeat the entire procedure in the previous para-
graph C log n times in parallel. We find some repeti-
tion for which there is a j for which Ej ∈ [C/16, C]. If
there is no such j, then we output the symbol FAIL.
Otherwise, we choose the first repetition for which
such a j was found.

From the counters cj,r,d, one can recover the list
Lj of all non-zero coordinates i in a(j), together with
their values ai. This follows since for each fixed
value of r, the at most 3

2 · Ej = 3C
2 survivors with

respect to hj are perfectly hashed with probability
≥ 2/3 (for large enough C). Hence, with probability
≥ 1− n−Θ(C), for all survivors i we have,

ai = medianr cj,r,ψj,r(i).

If the list Lj does not contain at least (3/2)C/16
coordinates, then we output FAIL. Else, we find the
coordinate i in Lj which minimizes hj , and output
(i, ai).

We can assume that all invocations of the L0-
estimation algorithm succeed. Now, assuming that
||a||0 ≥ C, for each independent repetition, we claim
that there exists a value of j for which

Ej ∈
[
C

16
, C

]
with constant probability. To show this, by the
definition of Ej , it suffices to show that there exists
a value of j for which with constant probability,

||a(j)||0 ∈
[

3
2
· C

16
,

3
4
· C
]

=
[

3C
32
,

3C
4

]
13



To see the latter, consider the unique value of j for
which

C

6
≤ 2−j ||a||0 <

C

3
.

For each non-zero coordinate i, let Xi be an indicator
variable which is one iff i survives with respect to
hj . Let X =

∑
iXi. Then E[X] = 2−j ||a||0,

and by pairwise-independence, Var[X] ≤ E[X]. By
Chebyshev’s inequality,

Pr
[
|X −E[X]| ≥ E[X]

3

]
≤ 9Var[X]

E2[X]
≤ 54
C
<

1
3
,

where the last inequality follows for large enough C.
This implies

||a(j)||0 ∈
[

3C
32
,

3C
4

]
.

Hence, with probability 1−n−Ω(C), in some repetition
we will find a j for which Ej ∈ [C/16, C].

Finally, we appeal to Theorem 3.3. We apply the
theorem with N = Cε−1n and s = n. Our family of
hash functions is also C log ε−1n-wise independent.
Hence, for C > 0 a sufficiently large constant, we
have for all i such that ai 6= 0,

Pr
[
hj(i) = min

i′ s.t. hj(i′)6=0
hj(i′)

]
= (1± ε) · 1

||a||0
.

It remains to handle the case ||a||0 < C. We will
in fact show how to solve the case ||a||0 ≤ 2C. The
idea is just to use the perfect hashing data structure
described above. Namely, choose C log n independent
C3-wise independent hash functions ψr : [n] → [C3],
for r ∈ [C log n]. We maintain the counters:

cr,d =
∑

` s.t. ψr(`)=d

a`.

As described above, with probability ≥ 1 − n−Θ(C),
for all i we have,

ai = medianr cr,ψr(i).

Hence, we can recover the vector a in this case, after
which L0-sampling is trivial.

In parallel we run a poly(log n)-space L0-
estimation algorithm which can distinguish between
the cases (1) ||a||0 ≤ C and (2) ||a||0 ≥ 2C with
probability ≥ 1− n−Θ(C). In the former case we use
the output of the sampling algorithm based on per-
fect hashing just described. In the latter case we use
the output of the sampling algorithm described previ-
ously. If C < ||a||0 < 2C, we can use either sampling
algorithm.

It can be easily checked that our overall algorithm
is 1-pass, the space is poly(ε−1 log n) bits, and the
time is poly(ε−1 log n). ♣

4 Extensions

4.1 O(log n)-Pass Lp-Sampler: We use a binary-
search-inspired scheme. Let Fp-Estimation be the
optimal-space algorithm for estimating the Fp-value
of a vector due to Kane et al [28]. Given a stream
S, we think of it as two interleaved streams SL and
SU , where SL consists of the subsequence of updates
to the first n/2 coordinates of the vector a, and
SU the subsequence consisting of the updates to the
remaining coordinates. Denote the vector consisting
of the lower n/2 coordinates of a by aL, and the vector
consisting of the upper n/2 coordinates of a by aU .

We run Fp-Estimation(SL, aL, η, δ) and Fp-
Estimation(SU , aU , η, δ) independently and in paral-
lel with error parameter η = Θ(1/ log n) and failure
probability δ = n−C . Assuming both algorithms suc-
ceed, we obtain numbers L,U with

L ∈
[
(1− η)||aL||pp, (1 + η)||aL||pp

]
,

U ∈
[
(1− η)||aU ||pp, (1 + η)||aU ||pp

]
.

We then recurse on the lower n/2 coordinates
with probability L/(L+U), and recurse on the upper
n/2 coordinates with probability U/(L + U). After
log n recursive steps, an individual coordinate i ∈ [n]
will be sampled. Assuming Fp-Estimation never fails,
fixing any i ∈ [n], the probability that it is sampled
is a telescoping product, putting it in the interval[

(1− η)logn|ai|p

Fp
,

(1 + η)logn|ai|p

Fp

]
,

which is contained in the interval[
(1− 1/4)|ai|p

Fp
,

(1 + 1/4)|ai|p

Fp

]
for sufficiently small η. We can then use rejection
sampling to turn this into an exact sampler. We
then repeat the procedure C log n times, and only
output FAIL if in every repetition we do not find a
sample. The total space is O(log5 n) since the space
of Fp-Estimation is O(η−2 log n log 1/δ) bits, where η
is the relative error and δ the failure probability. In
our application η = Θ(1/ log n) and δ = n−C for
a constant C > 0, so this space is O(log4 n), and
we incur an extra O(log n) due to the independent
repetitions.



O(log n)-Pass-Lp-Sampler(Stream S, ε):

1. Initialize a = [n], δ = O(n−C),
η = Θ( 1

logn ), and β = 1.

2. In the first pass, compute
F̃p(a) =Fp-Estimation(S, a, 1

36 , δ)/(1− 1/36).

3. If F̃p(a) = 0, output FAIL.

4. For j = 1, 2, . . . , log2 n, in the j-th pass do:

(a) Let aL be the first |a|/2 items of a, and
let aU = a \ aL.

(b) Let SL and SU be the interleaved
streams consisting of the subsequence of
updates to aL and aU respectively.

(c) L← Fp-Estimation(SL, aL, η, δ),
U ← Fp-Estimation(SU , aU , η, δ)

(d) If L = U = 0, output FAIL.

(e) With probability L
L+U , assign a ← aL,

S ← SL, and β ← β · L
L+U , else assign

a← aU , S ← SU and β ← β · U
L+U .

5. Let i be such that a = {i}. Compute ai in an
extra pass. Let q = |ai|p/F̃p(a).

6. If |β − q| > q
3 , then output FAIL.

7. Compute, in parallel, V =Fp-
Estimation(S, a,Θ(1), δ) such that
Fp(a) ≤ V ≤ 2Fp(a).

8. With probability |ai|p
V β , let the sample be

(i, ai).

9. Repeat steps 2 through 8 independently
C log n times. If in every repetition, noth-
ing is chosen in step 8 as the sample, output
FAIL. Else, output the sample from the first
repetition for which one was chosen.

The Proof. Let SuccessfulSubroutines be the event
that all invocations of Fp-Estimation in the above al-
gorithm succeed. By our choice of δ and a union
bound, with probability at least 1 − O(n−C), Suc-
cessfulSubroutines occurs.

Let GoodNormEstimation be the event that

F̃p ≤ Fp ≤ (1 +
1
12

)F̃p.

With probability at least 1− n−C , we have that

F̃p ≥
(
1− 1

36

)
Fp(

1− 1
36

) = Fp,

as well as

F̃p ≤
(
1 + 1

36

)
Fp(

1− 1
36

) ≤
(

1 +
1
12

)
Fp.

Lemma 4.1. Suppose event SuccessfulSubroutines
occurs. Then for all i, the probability that coordinate
i is chosen in step 5 is (1± 1/4)|ai|p/Fp(a).

Proof. Fix an i ∈ [n]. Then there is a unique
sequence of assignments a0 = [n], a1, a2, . . . , alog2 n =
{i} to the loop variable a, for which a = aj after
iteration j of step 4, that cause coordinate i to be
chosen in step 5. For j ∈ {0, 1, . . . , log2 n}, let Ej
be the event that a = aj after iteration j of step 4.
Then,

Pr[i chosen in step 4] = ∩log2 n
j=0 Pr[Ej | E1, . . . , Ej−1]

= ∩log2 n
j=1 Pr[Ej | Ej−1].

For any j,

Pr[Ej | Ej−1] =
(1± η)Fp(aj)

(1± η)Fp(a
j−1
L ) + (1± η)Fp(a

j−1
U )

= (1± 3η)
Fp(aj)
Fp(aj−1)

,

where the final equality follows for η ≤ 1/2. Hence,

Pr[i chosen in step 4] = (1± 3η)log2 n

log2 n∏
j=1

Fp(aj)
Fp(aj−1)

= (1± 3η)log2 n
|ai|p

Fp(a)
.

Using the well known fact that (1 + t) ≤ et for
all t ∈ R, we have

(1 + 3η)log2 n ≤ e3η log2 n = e1/8 ≤ 1 + 1/4,

where we choose η so that 3η log2 n = 1/8, and where
the last inequality follows by a Taylor expansion. For
the other direction, we appeal to Proposition B.3,
part 2, of [30], which states that for all t, n ∈ R such
that r ≥ 1 and |t| ≤ r,

et(1− t2/r) ≤ (1 + t/r)r.

Then

(1− 3η)log2 n = (1− (3η log2 n)/ log2 n)log2 n.

15



Thus, setting t = −3η log2 n = −1/8, and r = log2 n,
applying this inequality we have,

(1− 3η)log2 n ≥ e−1/8(1− (1/8)2/ log2 n)

≥ (1− 1/8)(1− (1/8)2) ≥ (1− 1/4).

Thus,

β = Pr[i chosen in step 5] = (1± 1/4)|ai|p/Fp(a).

♣

Proof. [of Theorem (1.3)] Event SuccessfulSubrou-
tines occurs with probability at least 1−O(n−C). In
this case, by Lemma 4.1, O(log n)-Pass-Lp-Sampler
never outputs FAIL in step 4d, and for each i ∈ [n],
the probability that coordinate i is chosen in step 5
is (1± 1/4)|ai|p/Fp.

Event GoodNormEstimation occurs with prob-
ability at least 1 − δ. We condition on both Suc-
cessfulSubroutines and GoodNormEstimation occur-
ring, which, by a union bound and our choice of δ =
O(n−C), happens with probability at least 1− n−C .

Since GoodNormEstimation occurs and, w.l.o.g.,
Fp(a) > 0, the algorithm does not output FAIL in
step 3.

Notice that q = |ai|p/F̃p, and we have that

|ai|p

Fp(a)
≤ q ≤ (1 +

1
12

) · |ai|
p

Fp(a)
.

Hence,

|β − q| ≤
(

1
4

+
1
12

)
|ai|p

Fp(a)
≤ q

3
.

So the algorithm does not output FAIL in step 6.
The probability that coordinate i is sampled in

Step 8 is thus β · |ai|p
V β = |ai|p

V . Hence the probability
some coordinate in Step 8 is sampled is∑

i

|ai|p

V
≥ 1

2
.

Otherwise, we output FAIL. By repeating steps 2
through 8 a total of C log n times, we amplify the
probability to 1− n−Ω(C).

For the efficiency, the number of passes is always
O(log n). The space used is dominated by that of Fp-
Estimation on a set of size at most n with parameters
η′ and δ. The space is O(log5 n) since the space of
Fp-Estimation is O(η−2 log n log 1/δ) bits, where η is
the relative error and δ the failure probability. In
our application η = Θ(1/ log n) and δ = n−C for a
constant C > 0, so Fp-Estimation consumes O(log4 n)
bits of space. Hence, across all C log n repetitions, we
use O(log5 n) bits of space. ♣

4.2 Fk-Estimation from Sampling: For k > 2,
the following is our Fk-estimation algorithm, which
succeeds with probability at least 3/4. To amplify
the success probability to ≥ 1 − n−C , repeat the
algorithm O(C log n) times and take the median of
the outputs. There are two variants of it: (1) a 1-pass
n1−2/kpoly(ε−1 log n)-space algorithm, and (2) an
O(log n)-pass algorithm with O(n1−2/kk2ε−2 log5 n)
bits of space, depending on whether we use a 1-pass
or an O(log n)-pass L2-sampler.

Fk-Estimation:

1. Initialize ε′′ = ε/(4k), and T =
O(n1−2/k)/(ε′′)2.

2. Run an ε′′-relative-error augmented L2-
Sampler algorithm 4T times in parallel, and
let the first T output frequencies (possibly
negative) be ai1 , ai2 , . . . , aiT . If more than 3T
of the outputs of L2-Sampler are FAIL, then
output FAIL.

3. In parallel, run F2-Estimation([n], ε′′, 1/8) of
[1, 28]. Denote the output by F̃2.

4. Output F̃2
T ·
∑T
j=1 |aij |k−2.

In what follows we will assume that the input
parameter ε > 16/n, as otherwise we can compute
Fk exactly in O(log(n))/ε) bits of space by keeping a
counter for each coordinate.

Theorem 4.1. For any k > 2 and ε < 1, instanti-
ating Fk-Estimation with our 1-pass L2-Sampler algo-
rithm results in a (1 ± ε)-approximation to Fk with
probability at least 3/4. The space complexity is
n1−2/k · poly(ε−1 log n) bits.

Proof. We condition on the event E that F2-
Estimation succeeds, which occurs with probability at
least 7/8. We can thus assume that Fk 6= 0, since if
Fk = 0 we will have F̃2 = 0 and we will correctly
output 0 in step 4. In the remainder of the proof,
assume that Fk ≥ 1.

We also condition on the event F that at most 3T
of the outputs of L2-Sampler are FAIL. By Theorem
1.1 and a Chernoff bound, event F occurs with
probability 1− e−Ω(T ).

For i ∈ [n], let qi be the probability that
coordinate i is returned by an invocation of L2-
Sampler, given that L2-Sampler does not output FAIL.
By Theorem 1.1, qi = (1 ± ε′′)|ai|2/F2. So for any



j ∈ [T ], we have

E[|aij |k−2] =
n∑
i=1

qi|ai|k−2(1± ε′′)k−2

=
n∑
i=1

(1± ε′′)k−1 |ai|2

F2
· |ai|k−2

= (1± ε′′)k−1 Fk
F2
.

Let Gj = |aij |k−2, and G = F̃2
T ·

∑T
j=1Gj . Then

E[Gj ] = (1± ε′′)k−1 Fk

F2
. Thus, since event E occurs,

E[G] = T (1± ε′′)k−1(1± ε′′)FkF2

TF2

= (1± ε/2)Fk,

for sufficiently small ε. By independence of the Gj
and the fact that F̃2 ≤ 2F2,

Var[G] ≤ 4F 2
2

T 2

T∑
j=1

Var[Gj ]

=
4F 2

2

T 2
· T

n∑
i=1

qi|ai|2k−4(1 + ε′′)2k−4

≤ 4F 2
2 e
ε(2k−4)/(4k)

T

n∑
i=1

(
2|ai|2

F2

)
|ai|2k−4

= O

(
F2F2k−2

T

)
.

To bound F2F2k−2, we use Hölder’s inequality in the
same way as in previous work [1, 11, 25]. Namely,

n∑
i=1

|aibi| ≤

(
n∑
i=1

|ai|p
)1/p( n∑

i=1

|bi|q
)1/q

for any reals p, q with p, q > 1 and 1/p + 1/q =
1. Taking ai in this inequality to be our a2

i , and
taking bi = 1, p = k/2, q = k/(k − 2), we have
F2 ≤ F

2/k
k n1−2/k. Moreover, F

1/(2k−2)
2k−2 ≤ F

1/k
k

using the fact that the Lk-norms of a vector are
non-increasing in k, and k ≤ 2k − 2 for k ≥ 2.
So F2k−2 ≤ F

2−2/k
k . Taking the product of the

inequalities, F2F2k−2 ≤ n1−2/kF 2
k .

Thus, by our choice of T , Var[G] = O(ε2E2[G]).
It follows by Chebyshev’s inequality that

Pr[|G−E[G]| > ε

4
E[G]] ≤ 1/16,

for an appropriate choice of constant in the big-
Oh defining T . In this case, G is at least (1 −

ε/4)(1− ε/2)Fk ≥ (1− ε)Fk. Moreover, G is at most
(1+ε/4)(1+ε/2)Fk ≤ (1+ε)Fk for sufficiently small
ε.

It follows that with probability at least

7/8− e−Ω(t) − 1/16 ≥ 3/4,

the output of the algorithm is a (1±ε)-approximation
to Fk. The space complexity is dominated by step 2
and is n1−2/k · poly(ε−1 log n). ♣

We can also instantiate Fk-Estimation with the
O(log n)-pass augmented L2-Sampler algorithm of
Theorem 1.3. Correctness remains the same since
the sampler of Theorem 1.3 is exact, whereas the
proof of Theorem 4.1 only needs a sampler with
relative error. The difference, though, is in the
complexity analysis. The space is dominated by
step 2 of the algorithm. Using Theorem 1.3, this
gives O(n1−2/kk2ε−2 log5 n) bits. We note that the
probability of error of L2-sampler is at most n−C ,
and by increasing the space of F2-Estimation in
step 3 by a logarithmic factor, that step also fails
with probability at most n−C . Hence, we obtain
an O(log n)-pass (1 ± ε)-approximation algorithm
with O(n1−2/kk2ε−2 log5 n) bits of space with
1/poly(n) probability of error. To achieve 1/poly(n)
probability of error, the previous algorithm of [7]
(improving poly(ε−1 log n) factors of [25]), needs
O(k2ε−2−2/kn1−2/k log4 n) bits. Thus, we improve
the complexity by an ε−2/k/ log2 n factor, which
is intereseting for small ε. We need to divide by
log2 n since our computed space was per each of the
O(log n) passes. This improvement is interesting
in the two-party communication setting, where
the communication improvement is the same, but
allowing more rounds is more natural.
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