
Efficient and Private Distance Approximation in the

Communication and Streaming Models

by

David P. Woodruff

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

© Massachusetts Institute of Technology 2007. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 31, 2007

Certified by. .
Piotr Indyk

MIT Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Efficient and Private Distance Approximation in the Communication and

Streaming Models

by

David P. Woodruff

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2007, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis studies distance approximation in two closely related models - the streaming
model and the two-party communication model.

In the streaming model, a massive data stream is presented in an arbitrary order to a
randomized algorithm that tries to approximate certain statistics of the data with only a
few (usually one) passes over the data. For instance, the data may be a flow of packets
on the internet or a set of records in a large database. The size of the data necessitates
the use of extremely efficient randomized approximation algorithms. Problems of interest
include approximating the number of distinct elements, approximating the surprise index
of a stream, or more generally, approximating the norm of a dynamically-changing vector
in which coordinates are updated multiple times in an arbitrary order.

In the two-party communication model, there are two parties who wish to efficiently
compute a relation of their inputs. We consider the problem of approximating Lp distances
for any p ≥ 0. It turns out that lower bounds on the communication complexity of these re-
lations yield lower bounds on the memory required of streaming algorithms for the problems
listed above. Moreover, upper bounds in the streaming model translate to constant-round
protocols in the communication model with communication proportional to the memory
required of the streaming algorithm. The communication model also has its own applica-
tions, such as secure datamining, where in addition to low communication, the goal is not
to allow either party to learn more about the other’s input other than what follows from
the output and his/her private input.

We develop new algorithms and lower bounds that resolve key open questions in both
of these models. The highlights of the results are as follows.

1. We give a 1-pass Õ(m1−2/p)poly(1/ε)-space streaming algorithm for (1±ε)-approximating
the Lp norm of an m-dimensional vector presented as a data stream for any p ≥ 2.
This improves the previous Õ(m1−1/(p−1))poly(1/ε) bound, and is optimal up to poly-
logarithmic factors. As a special case our algorithm can be used to approximate the
frequency moments Fp of a data stream with the same optimal amount of space. This
resolves the main open question of the 1996 paper by Alon, Matias, and Szegedy.

2. We give an Ω(1/ε2) lower bound for approximating the number of distinct elements of
a data stream in one pass to within a (1± ε) factor with constant probability, as well
as the p-th frequency moment Fp for any p ≥ 0. This is tight up to very small factors,
and greatly improves upon the earlier Ω(1/ε) lower bound for these problems. It also

2

gives the same quadratic improvement for the communication complexity of 1-round
protocols for approximating the Lp distance for any p ≥ 0.

3. In the two-party communication model, we give a protocol for privately approximating
the Euclidean distance (L2) between two m-dimensional vectors, held by different
parties, with only polylog m communication and O(1) rounds. This tremendously
improves upon the earlier protocol of Feigenbaum, Ishai, Malkin, Nissim, Strauss,
and Wright, which achieved O(

√
m) communication for privately approximating the

Hamming distance only.

This thesis also contains several previously unpublished results concerning the second item
above, including new lower bounds for the communication complexity of approximating the
Lp distances when the vectors are uniformly distributed and the protocol is only correct for
most inputs, as well as tight lower bounds for the multiround complexity for a restricted
class of protocols that we call linear.

Thesis Supervisor: Piotr Indyk
Title: MIT Professor

3

Acknowledgments

First, I would like to thank my advisor Piotr Indyk for making all of this possible. Piotr

has always helped me find important and interesting problems and has had very insightful

comments about all of my work. His constant presence in the lab was extremely useful

whenever I had a question. He was always willing to listen to my ideas, even if they were

not related to his main research interests.

Next, I would like to thank my Master’s thesis advisor Ron Rivest and my coauthor

Marten van Dijk. Marten and Ron introduced me to cryptographic research and shaped

me in my early days. This influence has helped me ever since, and kept my passion for

cryptography alive.

I am also very grateful for a few fantastic internships. I thank Jessica Staddon at PARC

for introducing inference control to me and putting up with my endless emails on privacy-

preserving data mining. I also thank the tag team Craig Gentry and Zulfikar Ramzan at

DoCoMo Labs. With their talent and contagious enthusiasm, we made a lot of progress on

broadcast encryption that summer.

I was also extremely fortunate to visit Andy Yao for a year at Tsinghua University

in Beijing. The hospitality and support of Andy was perfect for my development. The

students there - Hongxu Cai, Lan Liu, Daniel Preda, Xiaoming Sun, Hoeteck Wee, Jing

Zhang, and many others - made for an amazing learning experience. On a personal note,

I would like to thank Andris, Hoeteck, Lan, and especially Zhang Yi for inspiring me and

helping me stay alive in Beijing.

I would like to thank all of my coauthors for their hard work - Arnab Bhattacharyya,

Marten van Dijk, Craig Gentry, Robert Granger, Elena Grigorescu, Piotr Indyk, Kyomin

Jung, Dan Page, Zully Ramzan, Sofya Raskhodnikova, Karl Rubin, Alice Silverberg, Jessica

Staddon, Martijn Stam, Xiaoming Sun, Sergey Yekhanin, and Hanson Zhou.

I also thank many others for enlightening discussions - Alex Andoni, Victor Chen, Khanh

DoBa, Nick Harvey, Mohammad Taghi Hajiaghayi, Yuval Ishai, Jon Kelner, Swastik Kop-

party, Silvio Micali, Vahab Mirrokni, Payman Mohassel, Jelani Nelson, Mihai Patrascu,

Chris Peikert, Seth Pettie, Benny Pinkas, Ronitt Rubinfeld, Tasos Sidiropoulos, Adam

Smith, Madhu Sudan, Vinod Vaikuntanathan, Grant Wang, and those whose names I can-

not remember at the moment.

4

Finally, I’d like to thank my parents, David and Marsha, for unflagging encouragement

and support.

Financially, I would like to thank Akamai and the Department of Defence for fellow-

ships (Presidential and NDSEG, respectively) that gave me the freedom to pursue my own

interests as a graduate student.

5

Contents

1 Introduction 8

2 Streaming Algorithms 16

3 Upper Bounds for Lp Distances 19

3.1 Preliminaries . 20

3.2 The Idealized Algorithm . 23

3.3 Analysis . 25

3.4 A 2-pass Algorithm . 32

3.4.1 CountSketch . 32

3.4.2 The new algorithm . 37

3.4.3 Conditioning on a few natural events 38

3.4.4 Walking through the previous proofs 39

3.5 The 1-pass Algorithm . 44

3.6 Reducing the Randomness . 47

4 Lower Bounds for Lp Distance and Frequency Moments 49

4.1 Communication Complexity . 49

4.2 The Gap Hamming Problem . 54

4.3 The Randomized 1-way Lower Bound . 58

4.4 A Lower Bound for the Uniform Distribution 61

4.5 A Multiround Lower Bound for Linear Protocols 67

4.5.1 Linear-algebraic Lemmas . 70

4.5.2 The Lower Bound for Linear Protocols 71

6

5 Private Protocol for the Euclidean Distance 78

5.1 Cryptographic Tools . 79

5.2 Privacy . 80

5.3 Private Euclidean Distance . 82

6 Private Protocols for Efficient Matching 89

6.1 Exact Problems . 90

6.1.1 Private Near Neighbor Problem . 90

6.1.2 Private Near Neighbor for `2 and Hamming Distance 91

6.1.3 Private Near Neighbor for Generic Distance Functions 92

6.1.4 Private Near Neighbor for n = 1 . 92

6.1.5 Private All-Near Neighbors . 93

6.2 Approximate Near Neighbor Problems . 96

6.2.1 Private c-approximate Near Neighbor Problem 96

6.2.2 Reducing the Dependence on d for Private c-approximate NN . . . 97

6.2.3 c-approximate NN Protocol . 98

6.2.4 Private c-approximate NN Based on Locality Sensitive Hashing . . . 101

6.2.5 c-approximate NN Protocol Leaking k Bits 105

7

Chapter 1

Introduction

Consider the following scenario: there are two players, Alice and Bob, holding inputs x and y

respectively, who wish to compute a function f(x, y). To do this, they need to communicate

with each other. They’d like to do this by transmitting as few bits as possible. This is the

classical two-party communication model introduced by Yao [69, 53].

Depending on the function f and the resources available, this task may require a lot of

communication or very little. Examples of such resources include space and time complexity,

as well as the ability to flip random coins. One class of functions of considerable interest

is the class of distance functions. In this case, x and y are finite strings of length m, with

characters drawn from an alphabet Σ, and f(x, y) measures how similar the strings are.

For example, if Σ = {0, 1}, then f(x, y) could be the Hamming distance between x and

y, that is, the number of positions which differ. If Σ is the set of real numbers R, a natural

distance function f is the Lp distance. Here, Lp(x, y) is defined to be (
∑m

i=1 |xi − yi|p)
1/p.

If p = 2, this is the Euclidean distance. When p = 0, it is natural to define L0(x, y) as the

Hamming distance between x and y.

Most of this thesis is concerned with some form of study of the communication com-

plexity of approximating Lp distances. In this case, it is not a function f(x, y) that

we are after, but rather a relation S ⊆ X × Y × Z, where (x, y, z) ∈ S if and only if

(1− ε)Lp(x, y) ≤ z ≤ (1 + ε)Lp(x, y), where ε ≥ 0 is an approximation parameter.

A major reason for studying distance approximation in the communication model is the

strong connection with the data-stream model [2, 58].

8

The Data-Stream Model: Imagine an internet router with only limited storage and

processing power. Everyday, gigabytes of information travel through the router in the form

of packets. Despite its limited abilities, the router would like to make sense of this informa-

tion, but it will settle for a few basic statistics. For example, it might want to know what

fraction of network IP addresses have daily traffic, which IP addresses are the most popular,

or which, if any, IP addresses have received a sudden spike in traffic. In the data-stream

model a huge stream of elements is presented to an algorithm in an arbitrary, possibly

adversarial order, and the algorithm is only given a constant number of passes (usually

one) over the stream. In most cases the limited resources of the algorithm imply that only

probabilistic estimates are possible.

More formally, suppose A is an algorithm which, in an online fashion, receives items

labeled by integers i ∈ [m]. For example, i could be the destination IP address of a packet

passing through a router running A. Note that A may receive as input the same item i

many times. Let fi be the number of occurrences of item i, and for p ≥ 0, define the p-th

frequency moment Fp =
∑

i∈[m] f
p
i . This statistic was defined by Alon, Matias, and Szegedy

[2], and is just the p-th power of the Lp norm of the vector represented by the stream. When

p = 0, we let 00 = 0. Thus, F0 is the number of distinct elements in the stream.

There are several practical motivations for designing space-efficient algorithms for ap-

proximating the frequency moments. In the networking example above, F0 can be used to

determine the fraction of network IP addresses that have daily traffic. There are also al-

gorithms (see, e.g., [21]) for finding the most popular IP addresses with error that depends

on the F2-value of the packet stream, so estimating this quantity is useful for bounding

the error of such algorithms. Fp for higher p gives an indication of the skewness of the

data stream. As p → ∞, Fp approaches maxi∈[m] fi. For an application of Fp-estimation

algorithms to detecting Denial of Service attacks, see [1].

The frequency moments are also very valuable to the database community. With com-

mercial databases approaching the size of 100 terabytes, it is infeasible to make multiple

passes over the data. Query optimizers can use F0 to find the number of unique values in

a database without having to perform an expensive sort. F2 is a quantity known as the

surprise index or Gini’s index of homogeneity. Efficient algorithms for F2 are useful for

determining the output size of self-joins (see, e.g., [38]). Finally, Fp for p > 2 can be used

to measure the size of a self-join on more than two tables of a database or to approximate

9

the maximum frequency of an entry.

The Connection Between Communication and Data-Stream Models: Suppose,

for example, that there is a streaming algorithm A that outputs F̃0 such that

Pr
[
(1− ε)F0 ≤ F̃0 ≤ (1 + ε)F0

]
≥ 1− δ,

where the probability is taken only over A’s coin tosses. A natural bound of interest is how

much memory A needs. This is where communication complexity comes into play.

Suppose Alice has x ∈ {0, 1}m, Bob has y ∈ {0, 1}m, and they would like to estimate

the Hamming distance ∆(x, y). Alice creates a stream Sx as follows. For each i such that

xi = 1, Alice appends i to Sx. Similarly, Bob creates Sy. Alice then runs A on Sx. When she

is finished, she transmits the memory contents of A to Bob, who continues the computation

on Sy. At the end, A will have been run on S = Sx ◦ Sy, the concatenation of the two

streams.

For s ∈ {0, 1}m, let wt(s) be the number of ones in the string s. Alice also transmits

wt(x) to Bob, using O(logm) bits. A simple calculation shows that

F0(S) =
wt(x) + wt(y)

2
+

∆(x, y)
2

.

If A were to compute F0(S), Bob could compute ∆(x, y). Thus, the memory required of A

must be at least the communication required for computing the Hamming distance, minus

the O(logm) bits needed for transmitting wt(x). Similarly, approximating F0 translates

into approximating ∆(x, y), and so lower bounds on the memory required can be obtained

even for randomized approximation algorithms. Similarly, lower bounds on the communi-

cation of approximating Lp distances translate into lower bounds on approximating Fp in

the streaming model. Thus, important statistics in the data-stream model translate into

distance computations in the communication setting.

Not only do lower bounds in the communication model yield lower bounds in the stream-

ing model, but oftentimes upper bounds in the communication model yield upper bounds

in the streaming model. Here the connection is informal, and on a case-by-case basis.

A large part of this thesis will be devoted to the streaming complexity of the frequency

moments of a data stream. We will give nearly optimal upper bounds for Fp when p > 2,

10

and improve the known lower bounds for all p ≥ 0.

Secure Datamining: Another fairly recent application of communication complexity is

secure datamining (see, e.g., [55]). Imagine there are two hospitals, which for medical re-

search purposes, would like to mine their joint data. Due to patient confidentiality, the

hospitals would not like to share more of their data than necessary. As private distance ap-

proximation is a subroutine in private classification and private clustering algorithms, it is

important to understand its complexity in order to understand that of the larger algorithms.

In this thesis we will give very efficient protocols for privately approximating the Ham-

ming and Euclidean distance, so that no party learns more about each other’s input other

than what is necessary. We will also discuss extensions of private distance approximation

to private near neighbor problems. To do this, we will introduce a new notion of privacy

suitable for search problems.

Previous Results: The previous results in the non-private communication setting are

summarized by the following table. The notation Õ, Ω̃, and Θ̃ will suppress factors that

are logarithmic in m, and when talking about the streaming model, that are logarithmic in

mn, where n is the length of the stream. All quantities refer to the total communication

between the two parties, which are assumed to run in polynomial time.

Upper Bounds Lower Bounds

Hamming Distance Õ(1/ε2) [31, 9] Ω(1/ε) [5]

L2 Õ(1/ε2) [49] Ω(1/ε) [5]

Lp, p > 2 Õ(m1−1/(p−1))poly(1/ε) [25, 33] Ω(m1−2/p)poly(1/ε) [7, 6, 65, 20]

Note that the bounds for the Hamming and Euclidean distance depend only polylogarith-

mically on m, whereas for Lp, p > 2, the dependence is polynomial. Thus, for the Hamming

and Euclidean distance, the main parameter of interest is the dependence on 1/ε. Indeed,

a Õ(1/ε2) upper bound versus a Õ(1/ε) upper bound can make the difference in practice

between setting ε = .01, say, and setting ε = .0001.

For the Lp distance when p > 2, there is a polynomial gap in the upper and lower

bounds. For instance, if p = 3 the upper bound is Õ(m1/2)poly(1/ε) while the lower bound

is Ω(m1/3)poly(1/ε). Since m is very large in practice (e.g., in the streaming applications

11

mentioned above), the main parameter of interest here is the dependence on m.

The bounds for the corresponding streaming problems are very similar. For F0 and F2,

the upper bounds are Õ(1/ε2) bits of space [31, 2, 9], while the lower bounds are Ω(1/ε) [5].

For Fp, p > 2, the upper bound is Õ(m1−1/(p−1))poly(1/ε) [25, 33]1 while the lower bound is

Ω(m1−2/p)poly(1/ε) [7, 6, 65, 20]. The upper bounds are all realized by algorithms that get

only one pass over the input, while the lower bounds allow any constant number of passes.

In the private setting, the previous state of affairs is much worse. It is summarized by

the following table.

Upper Bounds Lower Bounds

Hamming Distance Õ(
√
m/ε) [29] Ω(1/ε) [5]

L2 Õ(m) [36, 70] Ω(1/ε) [5]

Lp, p > 2 Õ(m) [36, 70] Ω(m1−2/p)poly(1/ε) [7, 6, 65, 20]

Even for the Hamming and Euclidean distance, the upper bound with privacy depends

polynomially on m. For the Lp distance for p ≥ 2, the dependence is even linear. In all

cases, the lower bounds just follow from the communication lower bounds in the setting

without privacy.

Our results: Both in the non-private and private settings, we provide resolutions to many

of the existing bounds. In the setting without privacy, our results are summarized as follows.

Upper Bounds Lower Bounds

Hamming Distance Õ(1/ε2) Ω(1/ε2) for 1-round protocols [46, 68]

L2 Õ(1/ε2) Ω(1/ε2) for 1-round protocols [68]

Lp, p > 2 Õ(m1−2/p)poly(1/ε) [47] Ω(m1−2/p)poly(1/ε)

Our contribution for the Lp distance for p > 2 is a new upper bound of Õ(m1−2/p)poly(1/ε).

Perhaps surprisingly, our new protocol achieving this bound only uses one round of com-

munication. Moreover, it can be implemented in the streaming model by an algorithm

that makes only one pass over the data stream and uses only Õ(m1−2/p)poly(1/ε) bits of

space. This gives a streaming algorithm with the same complexity for approximating the

frequency moments, and resolves the main question left open in the paper of Alon, Matias,

and Szegedy [2].

1Independently of our work, Ganguly [33] achieved Õ(m1−2/(p+1))poly(1/ε) space.

12

While our main contribution for the Lp distance for p > 2 is a new upper bound, our

main contribution for the Hamming and Euclidean distances is a new lower bound. For

the Hamming and Euclidean distances, we show a matching Ω(1/ε2) lower bound, but our

bound holds only for 1-round protocols. For streaming algorithms, this gives an Ω(1/ε2)

lower bound for algorithms approximating the number of distinct elements, as well as for

algorithms approximating Fp for any p, using only one pass over the input. This is not

much of a restriction, since the most common setting in the data stream model is when the

algorithm only has one pass. We also show that for a certain natural class of protocols,

which we call linear, the Ω(1/ε2) bound holds for multi-round protocols.

Note that for constant p, approximating Lp(x, y) has the same complexity as approx-

imating Lpp(x, y). Moreover, when x, y ∈ {0, 1}m, Lpp(x, y) = ∆(x, y). Thus, for any

x, y ∈ {0, 1, . . . , z}m, for any integer z, we obtain the Ω(1/ε2) bound for approximating

Lp(x, y) based on our lower bound for approximating ∆(x, y). We also extend our result to

show an Ω(1/ε2) lower bound even when x and y are uniformly distributed and the protocol

need only be correct for most pairs of inputs.

In the case with privacy, we provide an exponential improvement to the communica-

tion complexity of privately approximating both the Hamming and the Euclidean distance.

Moreover, our protocol can be implemented with a constant number of rounds. This shows,

rather unexpectedly, that privately approximating the Hamming or the Euclidean distance

is not that much harder than approximating it without privacy. For the Lp distance, p > 2,

we leave it as an open question to resolve the polynomial gap in known bounds. This is

summarized by the following table. We also give new protocols for exact near neighbor and

develop new models and non-trivial upper bounds for approximate near neighbor queries.

Upper Bounds Lower Bounds

Hamming Distance Õ(1/ε2) [48] Ω(1/ε)

L2 Õ(1/ε2) [48] Ω(1/ε)

Lp, p > 2 Õ(m) Ω(m1−2/p)poly(1/ε)

Our Techniques: This thesis unifies techniques in three different worlds - algorithm design

(Section 3), communication complexity (Section 4), and cryptography (sections 5 and 6).

The common theme is the study of distance approximation.

Our upper bounds for approximating Lp, due to Indyk and the author [47], significantly

depart from earlier algorithms, which were obtained by constructing a single estimator,

13

which was shown to equal Lp in expectation and have small variance. We instead group

coordinates into buckets based on their values, and try to estimate the size of each bucket.

This involves looking at certain randomly chosen substreams of the original stream and

invoking a heavy-hitter algorithm on the substream. We can then sum up the contributions

of each bucket to obtain an approximation to Lp.

Our lower bounds for streaming algorithms for Lp are derived using the classical frame-

work of communication complexity. Most previous lower bounds in the streaming literature

came from studying the disjointness (see, e.g., [50, 64])and indexing functions (see, e.g.,

[51]). We, however, introduce a new problem - the gap Hamming distance problem, and

give a surprising way to lower bound its communication complexity. This problem was first

suggested by Indyk and the author [46] and studied explicitly by the author [68]. This

problem captures approximating distinct elements of a data stream, as well as Lp norms for

p > 0, as shown by the author in [68].

Our upper bound for privately approximating L2 in the communication model, due to

Indyk and the author [48], involves a new way of making a certain dimensionality reduction

technique private. We use a secure subprotocol to carefully truncate sensitive information

from the view of the parties. Our security definitions for private approximate near neighbor

problems were first formulated in [48], and were adopted by others (see, e.g., Section 4 of

[10]).

Followup Work: After our work, the polylogarithmic factors in our upper bounds for

approximating Lp distances and the frequency moments [47] were improved by Bhuvana-

giri, Ganguly, Kesh, and Saha [15]. We will present our original proof of the upper bound.

Our main idea in [47] of classifying frequencies into buckets and estimating bucket sizes

using CountSketch [21] is also used by [15]. Techniques similar to ours [47] as well as those

in [15] also appeared in work by Bhuvanagiri and Ganguly [14] on upper bounding the

complexity of entropy estimation in the streaming model.

The proofs of our lower bounds for approximating Lp distances and the frequency mo-

ments [46, 68] were simplified by Bar-Yossef et al [8], and we will present a similarly sim-

plified proof. We will also present a new proof using distributional complexity due to the

author which has a number of additional features. The lower bound techniques of Indyk

and the author [47] were also used by Andoni, Indyk, and Pǎtraşcu [4] to show optimality

14

of the dimensionality reduction method. Moreover, the gap Hamming Distance problem

and the techniques developed by Indyk and the author [46] and the author [68] appeared

in work by Chakrabarti, Cormode, and McGregor [19] for lower bounding the complexity

of entropy estimation in the streaming model. Various attempts at bypassing our Ω(1/ε2)

bounds were considered. For example, Cormode and Muthukrishnan [26] look at streams

generated according to Zipfian distributions and can then approximate F0 and F2 in o(1/ε2)

space.

Our private approximation algorithm for the Euclidean distance and related techniques

[48] were used by Strauss and Zheng [66] for privately approximating the heavy hitters. Our

upper bounds for private near neighbor problems [48] were considered by Chmielewski and

Hoepman [22], who tried to make them more practical. Finally, our new models for private

approximations of search problems [48] were used by Beimel, Hallak, and Nissim [10] in the

context of clustering algorithms.

Roadmap: In the next section, we formalize the streaming model.

In Section 3 we obtain a new streaming algorithm for approximating Lp, p > 0, to within

an arbitrarily small ε > 0. Our algorithm achieves optimal space, up to polylogarithmic

factors, and consequently gives essentially optimal communication for approximating the

Lp distance in the communication model.

In Section 4, we prove lower bounds for the one-way communication complexity of

approximating Lp distances for any p ≥ 0. This yields an Ω(1/ε2) lower bound for the

space complexity of approximating the frequency moments Fp in the streaming model for

any p ≥ 0. We extend this result in several ways.

In Section 5, we develop a new private protocol for approximating the Euclidean dis-

tance between two parties to within an arbitrarily small ε > 0 using only polylogarithmic

communication.

In Section 6, we continue the study of private approximations. We first look at the

complexity of several exact near neighbor problems. Then, in an attempt to further improve

the complexity, we define a new notion of approximate privacy suitable for near neighbor

problems, and we give non-trivial private protocols for these problems.

15

Chapter 2

Streaming Algorithms

In the data stream model we think of there being an underlying array A[1], A[2], . . . , A[m].

We then see a stream of n elements of the form (j, Uj), where j ∈ [m] and Uj is a number.

We may see the same pair (j, Uj) more than once, or see (j, U ′j) for U ′j 6= Uj . There are four

common models of data streams: the time series model, the cash register model, the strict

turnstile model, and the turnstile model (see, e.g., [58] for an exposition).

In the time series model, for each j ∈ [m], there is only pair in the stream with first

coordinate j. Moreover, the pairs are sorted by first coordinate, so the stream appears as

(1, U1), (2, U2), . . . , (m,Um). This model is often unrealistic due to the sortedness of the

stream, and we do not consider it in this thesis.

A more general model is the cash register model. In this model, the only restriction is

that for each pair (j, Uj) in the stream, Uj ≥ 0. This is perhaps the most popular data

stream model ([58]), and is suitable for monitoring IP addresses that access a web server.

An even more general model is the strict turnstile model. Here, the Uj may be arbitrary

numbers subject to the following constraint. Consider the (ordered) substream of pairs

(j, Uj,1), (j, Uj,2), . . . , (j, Uj,fj),

where fj is the number of occurrences of j in the data stream. The constraint is that for

any i, 1 ≤ i ≤ fj , we have
∑i

k=1 Uj,k ≥ 0. This models many applications, such as in a

database where you can only delete items that have already been entered.

Finally, the most general model is the turnstile model. This is like the strict turnstile

model, but without any restrctions on the Ujs. This models signals that may be both

16

positive and negative at any point in time.

In our lower bounds, we will consider the cash register model, which is the second

weakest model (only the time series model is weaker, and actually quite trivial to compute

statistics in). In our upper bounds, we will consider the turnstile model, which is the most

general model.

We will be interested in computing norms on data streams. Formally, we are given a

stream of elements S = (1, a1), (2, a2), ..., (n, an), which appear in arbitrary order, and we

have an algorithm A which computes a function f : [m]n → Z≥0 on the stream.

Definition 1 An algorithm A is an (ε, δ)-approximation algorithm if for all streams S of

n elements of the universe [m],

Pr[(1− ε)f(S) ≤ A(S) ≤ (1 + ε)f(S)] ≥ 1− δ,

where the probability is over the coin tosses of A.

Various efficiency measures of A are possible, including its space, update time, and query

time.

Definition 2 The space complexity of an (ε, δ)-approximation algorithm A for a function

f , denoted S(A) is the maximum amount of space the algorithm uses, over all possible input

streams S and all random coin tosses of the algorithm. Its update time, denoted UT (A) is

the maximum, over all input streams S, all integers i ∈ [n], and all random coin tosses,

of the time taken to process ai given a1, . . . , ai−1. The query time, denoted QT (A), is the

maximum, over all input streams S and all random coin tosses, of the time taken to report

f(S) after given a1, . . . , an.

Definition 3 For a function f its (ε, δ)-space complexity, denoted Sε,δ(f) is the minimum

over all (ε, δ)-approximation algorithms A for f , of S(A). We similarly define UTε,δ(f) and

QTε,δ(f).

We will mostly be concerned with the space complexity of functions, since low space com-

plexity usually implies a reasonably low time complexity. Also, as we will see in Section 4,

there is an intimate connection between the space complexity of a streaming algorithm and

the communication complexity of a related problem.

17

One class of functions f we will focus on is the set of frequency moments of a data

stream.

Definition 4 The pth frequency moment is defined to be Fp =
∑

i∈[m] g
p
i , where gi is the

sum of second coordinates of all pairs of the form

(i, Ui,1), (i, Ui,2), . . . , (i, Ui,fi),

where fi is the number of such pairs. If p = 0, we interpret 00 as 0, and thus F0 is the

number of distinct elements in S.

Remark 5 In most of the previous work on frequency moments, the setting considered was

a restricted cash register model with pairs of the form (j, 1) for j ∈ [m] that appear in any

number of times in an arbitrary order. We will, however, handle the more general turnstile

model.

18

Chapter 3

Upper Bounds for Lp Distances

We describe our upper bounds for Lp, p > 2, as originally presented in an extended abstract

by Indyk and the author [46]. We will describe the upper bound by first giving an upper

bound for approximating the k-th frequency moment Fk in the restricted cash register data

stream model where we see a stream of pairs of the form (j, 1) for j ∈ [m]. Later, we will

extend it to the turnstile model and make the connection from frequency moments to Lp

norms.

The earlier algorithms for estimating Fk were obtained by constructing a single estima-

tor, which was shown to equal Fk in expectation, and to have small variance. Our algorithm

departs from this approach. Instead, the main idea of our algorithm is as follows. First,

we (conceptually) divide the elements into classes Si, such that the elements in class Si

have frequency ≈ (1 + ε)i. We observe that, in order for the elements in Si to contribute

significantly to the value of Fk, it must be the case that the size si of Si is comparable to the

size of Si+1 ∪ . . .∪Slog1+ε n. If this is the case, we have a good chance of finding an element

from Si if we restrict the stream to an ≈ 1/si fraction of universe elements, and then find

the most frequent elements in the substream. The contribution of Si to Fk can then be

approximately estimated by si · (1 + ε)ik. By summing up all estimated contributions, we

obtain an estimator for Fk.

Unfortunately, finding the most frequent element in a general stream (even approxi-

mately) requires storage that is linear in the stream size. However, if the distribution of the

stream elements is not very “heavy-tailed”, then a more efficient algorithm is known [21].

This more efficient method is based on the sketching algorithm for F2 given in [2]. We show

19

that the streams generated by our algorithm (for Si’s that contribute to Fk), satisfy this

“tail property”, and thus we can use the algorithm of [21] in our algorithm.

A somewhat technical issue that arises in implementing the above algorithm is a need

to classify a retrieved element i into one of the classes. For this, we need to know fi.

This information is easy to obtain using a second pass. In the absence of that, we use the

estimation of fi provided by the algorithm of [21], but we define the thresholds defining the

classes randomly, to ensure that the error in estimating the frequencies is unlikely to result

in misclassification of a frequency.

Our algorithm will be implementable in 1-pass with space Õ(m1−2/k)poly(1/ε). We do

not try to optimize the logarithmic factors or the poly(1/ε) factors.

3.1 Preliminaries

We are given a stream S of n elements, each drawn from the universe [m]. Our goal is

to output an approximation to the kth frequency moment Fk. For simplicity, we assume

k ≥ 2 is a constant (for k < 2, space-optimal algorithms already exist [2, 9]), while m,n, 1/ε

may be growing. Let 0 < δ, ε < 1 be the desired confidence and accuracy of our estimate,

respectively. We define the following parameters:

c > 0, ε′ = cε, α = 1 + ε′, λ = ε′/αk, L =
λ

log n+ 1
.

In the analysis we will often assume that c is a sufficiently small constant. W.l.o.g., we may

assume that m is a power of two and that n is a power of α. Unless otherwise specified,

logs are to the base α. We define the frequency classes Si, for 0 ≤ i ≤ log n, as

Si = {j | αi ≤ fj < αi+1}.

We use the shorthand notation si for |Si|. We say that a class Si contributes if

siα
ik > LFk.

Lemma 6 If Si contributes, then si > L
∑

l>i sl.

20

Proof: Since Si contributes,

siα
ik > LFk ≥ L

∑
l

slα
lk ≥ L

∑
l>i

slα
ik,

and the lemma follows by dividing by αik.

We define FCk to be the component of Fk due to the contributing frequency classes, namely,

FCk =
∑

contributing Si

∑
j∈Si

fkj .

We define FNCk to be the component due to the non-contributing classes, so FCk +FNCk = Fk.

The next lemma shows that FNCk is small.

Lemma 7

FNCk ≤ λαkFk.

Proof: We note that if j ∈ Si, then fj < αi+1. Therefore,

FNCk ≤
∑

non-contr. Si

siα
(i+1)k (using the definition of Si)

≤ αk
∑

non-contr. Si

siα
ik

≤ αk
∑

non-contr. Si

LFk (using the definition of non-contributing Si)

≤ αkλFk
log n+ 1

(log n+ 1) (using the definition of L)

= λαkFk.

We will also make heavy use of the following inequality.

Lemma 8 Let 0 ≤ x < 1 and y ≥ 1 be real numbers. Then,

xy − (xy)2

2
≤ 1− (1− x)y ≤ xy.

21

Proof: For the lower bound,

1− (1− x)y ≥ 1− e−xy (using that 1 + z ≤ ez for all reals z see, e.g., [57])

= 1−
(

1− xy +
(xy)2

2
− · · ·

)
(using the Taylor expansion for e−xy)

= xy − (xy)2

2
+ · · ·

≥ xy − (xy)2

2
.

For the upper bound, we first show (1−x)y ≥ 1−xy. By monotonicity of the ln(·) function,

(1 − x)y ≥ 1 − xy iff ln(1 − x)y ≥ ln(1 − xy). We use the Taylor expansion for ln(1 + x),

that is, for |x| < 1 we have the expansion ln(1 + x) =
∑∞

n=0
(−1)n

n+1 x
n+1. Then,

ln(1− x)y = −y
∞∑
i=1

xi

i+ 1
.

Also,

ln(1− xy) = −
∞∑
i=1

(xy)i

i+ 1
.

We will have ln(1− x)y ≥ ln(1− xy) if for all i ≥ 1,

−y xi

i+ 1
≥ −(xy)i

i+ 1
.

This holds provided yi−1 ≥ 1, which holds for y ≥ 1, as given by the premise of the lemma.

Thus,

1− (1− x)y ≤ 1− (1− xy) ≤ xy,

completing the proof.

Corollary 9 Let 0 ≤ x < 1 and y ≥ 1 be real numbers. Then,

(1− x)y ≥ (1− xy).

Proof: This follows from the proof of the upper bound in the previous lemma.

22

3.2 The Idealized Algorithm

We start by making the unrealistic assumption that we have the following oracle algo-

rithm. Later we remove this assumption by approximating the oracle with the Countsketch

algorithm of [21].

Assumption 10 For some B = B(m,n), there exists a 1-pass B-space algorithm Max that

outputs the maximum frequency of an item in its input stream.

We start by describing our algorithm which outputs a (1 ± ε)-approximation to Fk with

probability at least 8/9. The main idea is to estimate Fk by estimating each of the set sizes

si and computing
∑

i siα
ik. Although in general it will not be possible to estimate all of the

si, we show that we can estimate the sizes of those Si that contribute. By Lemma 7, this

will be enough to estimate Fk. The space complexity will be B up to poly
(

1
ε lnn lnm

)
terms.

The algorithm approximates si by restricting the input stream to randomly-chosen sub-

streams. By this, we mean that it randomly samples subsets of items from [m], and only

considers those elements of S that lie in these subsets. More precisely, the algorithm creates

b = O(ln m
ε′L) families of R = O

(
1

ε′L3 ln (lnm log n)
)

substreams Srj , for j ∈ [b] and r ∈ [R].

We will assume that the constants in the big-Oh notation for both b and R are sufficiently

large in several steps in the analysis. For each r, Srj will contain about m/2j randomly

chosen items. If a class contributes, we can show there will be some j for which a good

fraction of the maximum frequencies of the Srj come from the class. This fraction is used

to estimate the class’s size.

We separate the description of the algorithm from its helper algorithm Estimate used in

Step 4. In Section 3.6 we will show how to choose the hash functions in Step 1 of the main

algorithm Fk-Approximator below.

23

Fk-Approximator (stream S):

1. For j ∈ [b] and r ∈ [R], independently sample hash functions hrj : [m] → [2j] using the

pseudorandom technique described in Section 3.6.

2. Let Srj be the restriction of S to those items x for which hrj(x) = 1.

3. For each j, r, compute M r
j = Max(Srj).

4. For i = log n, . . . , 0,

(a) Find the largest j for which at least RL(1−ε′)ε′/8 different r satisfy αi ≤M r
j < αi+1.

If no such j exists, set s̃i = 0.

(b) Otherwise, set temp = Estimate(i, j,
∑

l>i s̃l,M
1
j , . . . ,M

R
j).

(c) If temp ≤ L2j , set s̃i = temp, otherwise set s̃i = 0.

5. Output F̃k =
∑

i s̃iα
ik.

We now describe Estimate. Define

ri,j = (1− (1− 2−j)si).

Estimate computes an approximation r̃i,j to ri,j , and uses it to estimate si.

Estimate (i, j,
∑

l>i s̃l,M
1
j , . . . ,M

R
j):

1. Set Ai,j = #r for which αi ≤M r
j < αi+1.

2. Compute r̃i,j = Ai,j

R(1−2−j)
∑
l>i s̃i

. If r̃i,j < 1, output ln(1−r̃i,j)
ln(1−2−j)

. Otherwise, output 0.

Lemma 11 The output of Estimate is non-negative.

Proof: Note that 0 ≤ r̃i,j and j ≥ 1. If r̃i,j 6= 0 and r̃i,j < 1, then ln(1 − r̃i,j) and

ln(1− 2−j) are both negative, so the output of Estimate is positive. If r̃i,j = 0, the output

is 0, and finally if r̃i,j ≥ 1, the output of Estimate is 0 by definition.

24

3.3 Analysis

We first observe that if the s̃i are good approximations to the si, then F̃k is a good approx-

imation to Fk. More precisely, define the event E as follows:

� for all i, 0 ≤ s̃i ≤ (1 + ε)si, and

� for all i, if Si contributes, then s̃i ≥ (1− ε/(k + 2))si.

We claim that proving F̃k is a (1 ± ε)-approximation reduces to bounding the probability

that event E occurs. More precisely,

Claim 12 Suppose that with probability at least q, event E occurs. Then with probability at

least q, we have |F̃k − Fk| ≤ εFk.

Proof: Assume E occurs. Put ε∗ = ε/(k + 2). Then,

F̃k =
∑
i

s̃iα
ik ≤

∑
i

(1 + ε)siαik ≤ (1 + ε)Fk.

For the other direction, write F̃k = F̃Ck + F̃NCk , where F̃Ck denotes the contribution to F̃k

due to the contributing Si. Then, assuming ε′ ≤ ε∗ by setting c to be sufficiently small,

F̃Ck =
∑

contributing Si

s̃iα
ik

≥ (1− ε∗)
αk

∑
contributing Si

siα
(i+1)k (using the definition of event E and ε∗)

≥ (1− ε∗)
αk

FCk

≥ (1− ε∗)(1− λαk)
αk

Fk (using Lemma 7)

= (1− ε∗)
(

1
αk
− λ
)
Fk

≥ (1− ε∗)2

αk
Fk (using the definition of λ and ε′ ≤ ε∗)

≥ (1− ε∗)2(1− ε∗)kFk (definition of α and 1/(1 + ε′) ≥ (1− ε′) ≥ (1− ε∗))

≥ (1− ε∗)2(1− kε∗)Fk (using Corollary 9)

≥ (1− (k + 2)ε∗)Fk (expanding, and dropping positive terms)

= (1− ε)Fk. (using the definition of ε∗)

25

Noting that F̃NCk ≥ 0 by Lemma 11. We conclude that with probability at least q, we have

|F̃k − Fk| ≤ εFk.

Our goal is now to prove the following theorem.

Theorem 13 For sufficiently large m,n, with probability at least 8/9, event E occurs.

In the analysis we will assume the hrj are truly random functions. This assumption will

be removed using the techniques of [44], and we wil describe how to do this in Section

3.6. It may also be possible to remove it by a slight modification of the inclusion-exclusion

approach used in [9], though we do not attempt that approach here. We start by showing

that with probability at least 8/9, a very natural event occurs. We then condition on this

event in the remainder of the proof.

Observe that in Estimate,

E[Ai,j] = R(1− 2−j)
∑
l>i sl(1− (1− 2−j)si) = R(1− 2−j)

∑
l>i slri,j .

We define F to be the event that for all Ai,j ,

� If E[Ai,j] ≥ RL(1− ε′)ε′/(16e), then |Ai,j −E[Ai,j]| ≤ LE[Ai,j].

� If E[Ai,j] ≤ RL(1− ε′)ε′/(16e), then Ai,j < RL(1− ε′)ε′/8.

Lemma 14 Pr[F] ≥ 8/9.

Proof: Fix any i, j for which E[Ai,j] ≥ RL(1− ε′)ε′/(16e). By Chernoff bounds [57],

Pr[|Ai,j −E[Ai,j]| ≥ LE[Ai,j]] ≤ e−Θ(L2E[Ai,j])

= e−Θ(L3R(1−ε′)ε′)

= e−Θ(L3Rε′)

= e−Θ(ln(lnm logm))

= O

(
1

lnm log n

)
.

Now suppose Ai,j is such that E[Ai,j] ≤ RL(1 − ε′)ε′/(16e). Then, using the fact that

RL(1 − ε′)ε′/8 ≥ 2eE[Ai,j], we may apply another Chernoff bound (see, e.g., Exercise 4.1

26

of [57]) to conclude

Pr[Ai,j ≥ RL(1− ε′)ε′/8] ≤ 2−RL(1−ε′)ε′/8

≤ 2−Θ(ln(lnm logm))

= O

(
1

lnm log n

)
,

where we have used the fact that ε′, L ≤ 1. The lemma follows by a union bound over all i

and j, assuming the constant in the big-Oh notation defining R is sufficiently large.

In the remainder, we assume that F occurs.

Definition 15 We say that temp is set if in step 4 of the main algorithm, temp is set to

the output of Estimate. We say that s̃i is set if in step 4, s̃i is set to temp.

For any stream Srj , the probability that αi ≤M r
j < αi+1 is precisely

pi,j = (1− 2−j)
∑
l>i sl(1− (1− 2−j)si) = (1− 2−j)

∑
l>i slri,j .

We would like to approximate si by approximating pi,j . We start with a few propositions.

Proposition 16 Suppose si/L ≤ 2j and 0 < γ < 1. Let temp = ln(1−r̃i,j)
ln(1−1/2j)

.

� If r̃i,j − ri,j ≤ γri,j, then temp− si ≤ (γ +O(L))si.

� If ri,j − r̃i,j ≤ γri,j, then si − temp ≤ (γ +O(L))si.

Proof: For |x| < 1, we have the Taylor expansion ln(1 + x) =
∑∞

n=0
(−1)n

n+1 x
n+1. Thus,

ln(1− 2−j) =
∞∑
n=0

(−1)n

n+ 1
(−2−j)n+1

=
∞∑
n=0

(−1)2n+1

n+ 1
(2−j)n+1

= −
∞∑
n=0

(2−j)n+1

n+ 1

= −2−j −
∞∑
n=1

(2−j)n+1

n+ 1
.

So,

2−j ≤ − ln(1− 2−j) ≤ 2−j + η1,

27

where η1 = O(1/4j). Similarly,

r̃i,j ≤ − ln(1− r̃i,j) ≤ r̃i,j + η2,

where η2 = O(r̃2
i,j). Recall that ri,j = (1 − (1 − 2−j)si). We want to deduce that si2−j −

(si2−j)2/2) ≤ ri,j ≤ si2−j . If si = 0 this is clear, since all three terms are 0 in this case.

Otherwise, since si is an integer, si ≥ 1. As 0 ≤ 1 − 2−j < 1, we may apply Lemma 8 to

deduce that si2−j − (si2−j)2/2 ≤ ri,j ≤ si2−j . Therefore,

temp ≤ 2j(r̃i,j + η2) (using the definition of temp and our bounds above)

≤ 2j(r̃i,j + r̃i,jO(ri,j)) (using the bound on r̃i,j)

≤ 2jri,j(1 + γ)(1 +O(ri,j)) (using the bound on r̃i,j)

≤ si(1 + γ)(1 +O(ri,j)) (using that ri,j ≤ si2−j)

≤ si(1 + γ +O(L)) (using that ri,j ≤ si2−j ≤ L).

Suppose now that ri,j − r̃i,j ≤ γri,j . Then,

temp ≥ r̃i,j
2−j + η1

(using the definition of temp and our bounds above)

≥ 2j(1− γ)ri,j
1 + 2jη1

(using the new bound on r̃i,j)

≥ si(1− γ)(1− si2−j/2)
1 + 2jη1

(using that ri,j ≥ si2−j − (si2−j)2/2)

≥ si(1− γ)(1− si2−j/2)
1 +O(2−j)

(using that η1 = O(1/4j))

≥ si(1− γ)(1− si2−j/2)(1−O(2−j)) (using that 1/(1 +O(2−j)) ≥ 1−O(2−j))

≥ si(1− γ −O(L)) (using that si2−j ≤ L and 2−j ≤ L since si ≥ 1),

where in the last step we may assume si ≥ 1 since si is a non-negative integer, and if si = 0

the bound holds because of Lemma 11.

Proposition 17 Suppose for some i and some 0 < γ < 1/3,
∑

l>i s̃l ≤ (1 + γ)
∑

l>i sl. If

temp is set for Si, then r̃i,j ≤ (1 + γ + L)ri,j.

Proof: Put σ =
∑

l>i sl, and σ′ =
∑

l>i s̃l. In Estimate, r̃i,j = Ai,j
R(1−2−j)σ′

. Also,

since temp is set, at least RL(1 − ε′)ε′/4 different r satisfy αi ≤ M r
j < αi+1. Therefore,

28

since we are conditioning on event F , we must have E[Ai,j] ≥ RL(1 − ε′)ε′/(16e), where

E[Ai,j] = R(1− 2−j)σri,j . Moreover, since we are conditioning on F , this means that

|Ai,j −E[Ai,j]| ≤ LE[Ai,j].

Using the definition of Ai,j and dividing by R(1− 2−j)σ
′
, we obtain,

r̃i,j ≤ (1 + L)ri,j(1− 2−j)σ−σ
′
.

Using that σ′ ≤ (1 + γ)σ,

r̃i,j ≤ (1 + L)(1− 2−j)−γσri,j .

Moreover,

(1 + L)(1− 2−j)−γσri,j ≤ (1 + L)eγσ/2
j
ri,j (using that (1− x)y ≤ e−xy for all reals x, y)

≤ (1 + L)eγ/2ri,j (using that σ ≤ 2j−1)

Now, using the Taylor expansion for eγ/2 and the fact that γ < 1/3,

eγ/2 =
∞∑
i=0

(γ
2

)i
i!
≤ 1 +

∞∑
i=1

(γ
2

)i
= 1 +

γ/2
1− γ/2

≤ 1 +
6γ
10

= 1 +
3γ
5
.

Thus, since we may assume L ≤ 1/2 by setting the parameter c sufficiently small,

(1+L)(1−2−j)−γσri,j ≤ (1+L)(1+3γ/5)ri,j ≤ (1+L+3γ/5+3γ/10)ri,j ≤ (1+L+γ)ri,j ,

which completes the proof.

Our first lemma shows that we do not overestimate a class’s size provided our estimates of

previous classes were not overestimated.

Lemma 18 Suppose for some i and some 0 < γ < 1/3,
∑

l>i s̃l ≤ (1 + γ)
∑

l>i sl. Then

0 ≤ s̃i ≤ si + (γ +O(L))si.

Proof: If either temp or s̃i is not set, then s̃i = 0 and we’re done. Otherwise, s̃i = temp

and 2j ≥ s̃i/L. If s̃i < si, since the output of Estimate is nonnegative by Lemma 11, we

have 0 ≤ s̃i < si. Otherwise, 2j ≥ s̃i/L ≥ si/L. The conditions of the lemma together with

29

Proposition 17 imply that r̃i,j ≤ (1+γ+L)ri,j . Since 2j ≥ si/L and s̃i = temp, Proposition

16 implies that s̃i ≤ si + (γ +O(L))si.

Let µ > 0 be a constant for which, for any γ, 0 < γ < 1/3, and
∑

l>i s̃l ≤ (1 + γ)
∑

l>i sl,

0 ≤ s̃i ≤ si + (γ + µL)si. Such a µ exists by Lemma 18, and we can assume µ ≥ 1, since

this can only make the inequality s̃i ≤ si + (γ + µL)si weaker.

Define βi = µ(log n + 1 − i)L for i = log n + 1, . . . , 0. We may assume for all i that

βi + µL < ε. Indeed, for all i, βi ≤ β0 = µ(log n + 1)L = µλ ≤ µε′ = cµε, using that

L = λ/(log n+ 1), λ = ε′/αk ≤ ε′, and ε′ = cε. As L ≤ cε, for all i, βi + µL ≤ 2cµε, which

can be made less than ε by setting c ≤ 1/(2µ). We will also assume that βi < 1/3 for all i,

which we can also achieve by setting c to be sufficiently small.

We now use the previous lemma to show that in step 4 of the algorithm, we do not

overestimate the class sizes.

Lemma 19 For i = log n, . . . ,−1,

0 ≤
∑
l>i

s̃l ≤ (1 + βi+1)
∑
l>i

sl.

Proof: For each i, the lower bound 0 ≤
∑

l>i s̃l holds since for each l, s̃l ≥ 0 by Lemma

11. To prove the upper bound, we induct downwards on i. In the base case, i = log n, we

have
∑

l>i s̃i =
∑

l>i si = 0, and so the claim holds. We show the upper bound for some

i < log n assuming it holds for i+ 1.

∑
l≥i

s̃l = s̃i +
∑
l>i

s̃l

≤ s̃i +
∑
l>i

sl + βi+1

∑
l>i

sl (by the inductive hypothesis)

≤ si + (βi+1 + µL)si +
∑
l>i

sl + βi+1

∑
l>i

sl (by Corollary 18)

≤
∑
l≥i

sl + βi
∑
l≥i

sl (using the definition of βi),

which completes the induction and the proof of the lemma.

The following corollary combines the two previous lemmas and shows the first condition of

event E holds.

30

Corollary 20 For all i, 0 ≤ s̃i ≤ (1 + ε)si.

Proof: Lemma 19 implies that for all i,
∑

l>i s̃l ≤ (1+βi+1)
∑

l>i sl. Since 0 < βi+1 < 1/3,

Corollary 18 implies that for all i, 0 ≤ s̃i ≤ si + (βi+1 + µL)si. Since βi+1 + µL ≤ ε for all

i, the corollary follows.

The following lemma shows the second condition of event E holds.

Lemma 21 For a sufficiently small choice of the parameter c, which may depend on k, for

all i, if Si contributes, then s̃i ≥ (1− ε/(k + 2))si.

Proof: Define σ =
∑

l>i sl and σ′ =
∑

l>i s̃l. Choose j′ for which si/(ε′L) ≤ 2j
′
<

2si/(ε′L). To see that this is possible, we just need to check that there is a value of j′ ∈ [b]

for which si/(ε′L) ≤ 2j
′
. But si ≤ m and b = O(ln m

ε′L), so by setting the constant in the

big-Oh notation defining b to be sufficiently large, we can find such a j′.

Recall that E[Ai,j′] = R(1− 2−j
′
)σ(1− (1− 2−j

′
)si). Since σ is a non-negative integer,

(1− 2−j
′
)σ ≥ 1−σ/2j′ , since either σ = 0 and we have equality, or we may apply Corollary

9. Since Si contributes, Lemma 6 implies that si > Lσ. Thus, (1− 2−j
′
)σ > 1− si/(L2j

′
).

By our choice of j′, si/(L2j
′
) ≤ ε′. Thus, (1− 2−j

′
)σ > 1− ε′.

Also, in particular, si > 0. Thus, applying Lemma 8, (1 − (1 − 2−j
′
)si) ≥ si/2j

′ −

(si/2j
′
)2/2. By our choice of j′, si/2j

′ ≤ ε′L ≤ 1, so si/2j
′ − (si/2j

′
)2/2 ≥ si/2j

′+1. By our

choice of j′, si/2j
′+1 > ε′L/4, and so (1− (1− 2−j

′
)si) > ε′L/4.

Thus, E[Ai,j′] ≥ RL(1−ε′)ε′/4. Since we are conditioning on event F , and since L ≤ 1/2

for a small enough setting of the parameter c,

Ai,j′ ≥ (1− L)E[Ai,j′] ≥ RL(1− ε′)ε′/8.

Since Fk-Approximator chooses the largest value of j for which Ai,j ≥ RL(1 − ε′)ε′/8, and

we have just shown there is one such value of j (namely, j = j′), it follows that temp is set.

Let j be the value in Fk-Approximator for which temp is set. Then Ai,j ≥ RL(1− ε′)ε′/8,

and since we are conditioning on F , this means that E[Ai,j] ≥ RL(1 − ε′)ε′/(16e), and

further that |Ai,j −E[Ai,j]| ≤ LE[Ai,j].

Thus,

Ai,j ≥ (1− L)E[Ai,j] = (1− L)R(1− 2−j)σri,j ,

31

and using the definition of r̃i,j ,

r̃i,j ≥ (1− L)(1− 2−j)σ−σ
′
ri,j .

By Lemma 19, σ′ ≥ 0, and thus

r̃i,j ≥ (1− L)(1− 2−j)σri,j ≥ (1− L)(1− ε′)ri,j = (1− L− ε′)ri,j .

Note that j ≥ j′, and thus si/(ε′L) ≤ 2j and so si/L ≤ 2j . Since also 0 < L + ε′ < 1, we

may apply Proposition 16 to infer that temp ≥ (1− ε′ −O(L))si.

We now show that s̃i is set. This happens if temp ≤ L2j . This in turn happens if temp ≤

si/ε
′. We may assume that ε′ ≤ 1/2 by setting the parameter c to be sufficiently small, and

therefore, this will happen if temp ≤ 2si. By Lemma 19, 0 ≤ σ′ ≤ (1 + βi+1)σ. Using the

fact that βi+1 < 1/3 and temp is set, Proposition 17 implies that r̃i,j ≤ (1 + βi+1 + L)ri,j .

Since j ≥ j′, si/L ≤ 2j , and therefore by Proposition 16, temp ≤ (1 +βi+1 +O(L))si. For a

sufficiently small choice of the parameter c, 1 + βi+1 +O(L) ≤ 2, and therefore temp ≤ 2si,

so that s̃i is set. Thus, s̃i = temp ≥ (1− ε′ −O(L))si.

The last observation is that ε′ + O(L) ≤ ε/(k + 2) for a sufficiently small choice of the

parameter c. This completes the proof.

Theorem 22 With probability at least 8/9, we have |F̃k − Fk| ≤ εFk.

Proof: By Claim 12, this will follow if we show that with probability at least 8/9, event

E occurs. By Lemma 14, event F occurs with probability at least 8/9. Conditioned on F ,

Corollary 20 and Lemma 21 hold, and this shows that E occurs. Thus, Pr[E] ≥ 8/9.

3.4 A 2-pass Algorithm

We instantiate Assumption 10 with the CountSketch algorithm of [21]. We review it in the

next section, and then modify it for our application. We then describe how it can be used

in place of the Max oracle in Fk-Approximator in the following section.

3.4.1 CountSketch

In [21], the authors solve a problem that they call FindApproxTop(S, k, ε):

32

� Given: an input stream S of length n with elements drawn from [m], an integer k,

and a real number ε > 0.

� With probability at least 1 − η, output a list of k elements from S such that every

element i in the list has frequency fi larger than (1− ε)nk, where nk is the kth largest

frequency of an item in S.

The following is Theorem 1 of [21]:

Theorem 23 The CountSketch algorithm solves FindApproxTop(S, k, ε) in space1

O

((
F2(S)
εn2
k

ln
n

η
+ k

)
lnm

)
.

In fact, the authors prove an additional property of their algorithm: with probability at

least 1 − η, the list output by CountSketch satisfies the above and the additional property

that every element x with fx > (1 + ε)nk occurs in the list.

Theorem 23 is not quite in the form we need, since the space required may be quite

large if nk is small. For our application, we would like the space to be independent of nk,

which we can do if we relax the problem FindApproxTop. Although our modification of

[21] is simple, we describe it here for completeness.

The algorithm is the same as described in [21]. There are t = O(ln n
η) hash functions

h1, h2, . . . , ht from [m] to [B′], for a parameter B′, and t hash functions s1, s2, . . . , st from

[m] to {−1, 1}. The hi and si are pairwise independent, and can be represented using only

O(lnm) bits. We think of these hash functions as forming a t × B′ array of counters. For

an element x ∈ [m], we will use the notation c(hi(x)) to refer to the current count of the

hi(x)-th counter. Given a new stream element x, for each i ∈ [t] we add to c(hi(x)) the

value si(x). For each item x ∈ [m], we can estimate its frequency fx as follows:

f ′x = mediani{c(hi(x)) · si(x)}.
1In [21], the authors state that the space is O(tB + k), where t = Θ(ln n

η
) and B = F2(S)

εn2
k

. This gives the

same bound that we state, up to the lnm factor. The reason for the additional lnm factor is that we are
looking at bit complexity, whereas [21] counted the number of machine words.

33

Indeed, observe that for any given i,

E[c(hi(x)) · si(x)] = E

 ∑
y | hi(y)=hi(x)

fysi(y)si(x)


=

∑
y | hi(y)=hi(x)

fyE[si(y)si(x)]

= fxs
2
i (x)

= fx,

where we have used the pairwise independence of the si. Thus c(hi(x)) ·si(x) is an unbiased

estimator, and the median is taken to reduce the variance of the estimator.

We need the following key lemma from [21], which we state without proof.

Lemma 24 (Lemma 4 of [21], restated) With probability at least 1− η/2, for all ` ∈ [n], if

q is the `-th item appearing in the stream and nq(`) is its frequency after the first ` items,

|median{c(hi(q))si(q)} − nq(`)| ≤ 8

√
F2

B′
,

where c(hi(q)) refers to the value of the hi(q)-th counter after processing the first ` items.

Given an input parameter B, we would like to use the lemma above to accomplish the

following two tasks with probability at least 1− η for an input parameter η > 0:

1. Return all items x for which fx ≥
√

F2
B .

2. For all items x that are returned, return an estimate f̃x for which fx ≤ f̃x ≤ (1+κ)fx,

where 0 < κ ≤ 1/2 is an input parameter.

We accomplish these tasks as follows.

Our CountSketchFilter Algorithm

We modify CountSketch as follows. We refer to this new algorithm as CountSketchFilter.

Set the parameter B′ = (4096/κ2)B. We keep a heap of the top B′ items as we process the

stream. When we encounter an item x in the stream, if x is already in the heap, we update

the estimated frequency f ′x of x in the heap. If not, we compute f ′x and insert x into the

heap if it is larger than any of the B′ items already in the heap, or if there are less than B′

items already in the heap.

34

In parallel, we also run the algorithm of [2] (see the remark after the proof of Theorem 2.2

of [2]) which gives a 2-approximation F̃2(S) of F2(S) using space O((lnm+ ln lnn) ln 1/η),

where η/2 is the failure probability. We can assume by scaling that with probability at least

1− η/2,
1
2
F2(S) ≤ F̃2(S) ≤ 2F2(S).

After processing all of the items in S, we remove all elements x from the heap for which

f ′x ≤
1
2

√
F̃2

B
.

For those x still in the heap, we define the estimate

f̃x = f ′x + 8

√
F2

B′
.

Analysis

Let E be the event that the event in Lemma 24 occurs, and also 1
2F2(S) ≤ F̃2(S) ≤ 2F2(S).

By a union bound, Pr[E] ≥ 1− η. Let us condition on E occurring.

First Task: Suppose x is such that fx ≥
√

F2
B . Then using that B′ > 4096B,

8

√
F2

B′
≤ 1

8

√
F2

B
.

Thus,

f ′x ≥ fx − 8

√
F2

B′
≥ 7

8

√
F2

B
>

7
8
√

2

√
F̃2

B
>

1
2

√
F̃2

B
,

and so if x occurs in the heap, it will not be removed when we remove the elements y for

which f ′y ≤ 1
2

√
F̃2
B .

Now by Lemma 24, for any two elements x and y whose frequencies fx and fy differ by

more than 16
√

F2
B′ , their estimates correctly identify the more frequent item. Suppose x is

some item for which fx ≥
√

F2
B and x is not in the heap of the top B′ items. Note that x

is clearly among the top B′ items (in fact, the top B′/4096) in the stream. Moreover,

fx ≥
√
F2

B
≥ 64

√
F2

B′
.

35

Therefore, there must be some y for which fy <
√

F2
B′ for which f ′y ≥ f ′x. But

f ′y ≤ fy + 8

√
F2

B′
≤ 9

√
F2

B′
.

On the other hand,

f ′x ≥ fx − 8

√
F2

B′
≥ 56

√
F2

B′
> f ′y,

a contradiction. Thus, all x for which fx ≥
√

F2
B are returned, and we have accomplished

the first task.

Second Task: Using the definition of f̃x, conditioning on event E occurring, if x is returned

then f̃x ≥ fx. Moreover, since x was returned we have

f ′x ≥
1
2

√
F̃2

B
≥ 1

2
√

2

√
F2

B
,

and thus since κ ≤ 1/2,

fx ≥ f ′x − 8

√
F2

B′
≥ 1

2
√

2

√
F2

B
− κ

8

√
F2

B
≥ (2

√
2− 1/2)

8

√
F2

B
>

1
4

√
F2

B
.

Using the fact that B′ = 4096B/κ2, we have

16

√
F2

B′
≤ 16κ

√
F2

4096B
=
κ

4

√
F2

B
.

Thus, since event E occurs,

f̃x = f ′x + 8

√
F2

B′

≤ fx + 16

√
F2

B′

≤ fx +
κ

4

√
F2

B
.

As fx ≥ 1
4

√
F2
B , it holds that f̃x ≤ (1 + κ)fx, and so we have accomplished the second task

as well.

36

Space Complexity: We need O(tB′ lnm) space to maintain the counters, and O(B′ lnm)

space to maintain the heap. We also need O((lnm + ln lnn) ln 1/η) space to compute

F̃2(S). Recall that t = O(ln n
η) and B′ = Θ(B

κ2).

The total space complexity is O(B
κ2 lnm ln n

η +ln lnn ln 1
η). We summarize our discoveries

by the following theorem.

Theorem 25 Let 0 < η < 1 and 0 < κ < 1/2. Given a stream S and a parameter B, there

is an algorithm CountSketchFilter that with probability at least 1 − η, succeeds in returning

all items x for which f2
x ≥ F2/B, no items x for which f2

x ≤ F2/(2B), and for all items x

that are returned, there is also an estimate f̃x provided which satisfies fx ≤ f̃x ≤ (1 + κ)fx.

The space complexity is O(B
κ2 lnm ln n

η + ln lnn ln 1
η).

3.4.2 The new algorithm

We modify Fk-Approximator(S) as follows. In step 3 we invoke the algorithm CountSketch-

Filter of Theorem 25 on Srj with parameters

B = O(bRm1−2/k), η = O(1/(bR)), κ = 1/2.

We obtain lists Lrj of candidate maxima for Srj . In parallel, we compute a 2-approximation

F̃2(Srj) to F2(Srj) for each j and r. To do this, we run the algorithm (see the remark

after the proof of Theorem 2.2 of [2]) which gives a 2-approximation F̃2(Srj) using space

O((lnm+ ln lnn) ln 1/η), where η is the failure probability. We assume η ≤ 1/(9bR), which

can be made by setting the constant in the big-Oh above to be less than 1/9.

Then, before invoking steps 4 and 5, we make a second pass over S and compute the true

frequency of each element of each Lrj . Since the Lrj are relatively small, this is efficient. We

then prune the lists Lrj by removing all items with squared frequency less than 2F̃2(Srj)/B.

We set M r
j to be the maximum frequency among the remaining items in Lrj , if there is at

least one remaining item. Otherwise we set M r
j = 0. At the end of the second pass, we

proceed with steps 4 and 5 as before.

37

3.4.3 Conditioning on a few natural events

To analyze the modified algorithm, we start by conditioning on the following event:

G1
def= ∀j, r, CountSketchFilter succeeds.

Lemma 26 Pr[G1] ≥ 8/9.

Proof: This follows by our choice of η and a union bound over all j ∈ [b] and r ∈ [R].

We also condition on the event:

G2
def= ∀j, r, F2(Srj) ≤ 9bR · F2(S)

2j
.

Lemma 27 Pr[G2] ≥ 8/9.

Proof: We have E[F2(Srj)] = F2(S)/2j , so

Pr
[
F2(Srj) ≥ 9bRF2(S)

2j

]
≤ 1

9bR
,

by Markov’s inequality. By a union bound over all j ∈ [b] and r ∈ [R], we have

Pr
[
∃j, r | F2(Srj) ≥ 9bRF2(S)

2j

]
≤ 1

9
.

Finally, define the event:

G3
def= ∀j, r,

F2(Srj)
2

≤ F̃2(Srj) ≤ 2F2(Srj).

Lemma 28 Pr[G3] ≥ 8/9.

Proof: We are running the F2-approximator of [2] in space O((lnm+ lnn) ln 1/η), where

η = 1/(9bR) is the failure probability. A union bound gives the lemma.

Combining Lemma 14 with the previous three lemmas and a union bound, we have

Lemma 29 Pr[G1 ∧ G2 ∧ G3] ≥ 2/3.

38

In the remainder, we assume that G1 ∧ G2 ∧ G3 occurs. We need a few technical claims.

Claim 30 For all j, r, either M r
j is set to the maximum frequency in Srj , or to 0.

Proof: Suppose for some j, r the pruned list Lrj contains at least one element x of Srj ,

but does not contain the most frequent element y of Srj . Then, since G1 occurs,

f2
x < f2

y <
F2(Srj)
B

.

Since G3 occurs,

f2
x <

F2(Srj)
B

≤
2F̃2(Srj)

B
,

which contradicts the fact that x wasn’t pruned.

Corollary 31 For all i, j, E[Ai,j] ≤ Rpi,j.

Proof: Recall that in Section 3.3, we had E[Ai,j] = R(1 − 2−j)σri,j = Rpi,j . After

instantiating Assumption 10 with CountSketchFilter, Claim 30 implies that M r
j is what it

was before or 0. Thus, for each i, Ai,j cannot increase, and so after instantiating with

CountSketchFilter, E[Ai,j] ≤ Rpi,j .

At this point we may define the event F as before, since the definition of F doesn’t depend

on what the actual values of the E[Ai,j] are. All that matters is that for any fixed i, and

any j ∈ [b], as we range over the r ∈ [R], the events αi ≤ M r
j < αi+1 are i.i.d. Bernoulli

random variables, and Ai,j is the sum of indicators for these events. This allows us to apply

Chernoff bounds.

Thus, as before we define F to be the event that for all Ai,j ,

� If E[Ai,j] ≥ RL(1− ε′)ε′/(16e), then |Ai,j −E[Ai,j]| ≤ LE[Ai,j].

� If E[Ai,j] ≤ RL(1− ε′)ε′/(16e), then Ai,j < RL(1− ε′)ε′/8.

Lemma 14 still holds with the same proof, and we have Pr[F] ≥ 8/9. By a union bound,

Pr[F ∧ G1 ∧ G2 ∧ G3] ≥ 5/9. In the remainder, we assume that these four events all occur.

3.4.4 Walking through the previous proofs

Most of the arguments in Section 3.3 go through as before, though there are a few differences.

We carefully guide the reader through the modified arguments. First, note that the lemmas

39

and corollary in Section 3.1 continue to hold, since they are independent of the algorithm.

Also, the only lemma in Section 3.2, Lemma 11 that states that the output of Estimate is

non-negative, continues to hold since this property is independent of the inputs to Estimate,

and the algorithm Estimate has not changed. Now we turn to the analysis in Section 3.3.

The definitions of pi,j and ri,j remain unchanged.

We define E as before. Claim 12 that reduces correctness to bounding the probability

that event E occurs, continues to hold. As observed in Section 3.4.3, we may define F as

before and Lemma 14 continues to hold. The definition of set for temp and s̃i, as given by

Definition 15, remains the same. Proposition 16, relating the estimate on the r̃i,j to the

value of temp, is the same as before. Indeed, this property does not depend on the fact that

the random variables Ai,j are now distributed differently.

We now reprove Proposition 17. We will need to make use of Corollary 31.

Proposition 32 Suppose for some i and some 0 < γ < 1/3,
∑

l>i s̃l ≤ (1 + γ)
∑

l>i sl. If

temp is set for Si, then r̃i,j ≤ (1 + γ + L)ri,j.

Proof: Put σ =
∑

l>i sl, and σ′ =
∑

l>i s̃l. In Estimate, r̃i,j = Ai,j
R(1−2−j)σ′

. Also,

since temp is set, at least RL(1 − ε′)ε′/4 different r satisfy αi ≤ M r
j < αi+1. Therefore,

since we are conditioning on event F , we must have E[Ai,j] ≥ RL(1 − ε′)ε′/(16e), where

E[Ai,j] ≤ Rpi,j = R(1− 2−j)σri,j by Corollary 31. Moreover, since we are conditioning on

F , this means that

|Ai,j −E[Ai,j]| ≤ LE[Ai,j].

Thus, using the definition of Ai,j and these bounds, we have

r̃i,jR(1− 2−j)σ
′

= Ai,j ≤ (1 + L)E[Ai,j] ≤ (1 + L)R(1− 2−j)σri,j .

Dividing by R(1− 2−j)σ
′

we obtain,

r̃i,j ≤ (1 + L)ri,j(1− 2−j)σ−σ
′
.

Using that σ′ ≤ (1 + γ)σ,

r̃i,j ≤ (1 + L)(1− 2−j)−γσri,j .

40

Moreover,

(1 + L)(1− 2−j)−γσri,j ≤ (1 + L)eγσ/2
j
ri,j (using that (1− x)y ≤ e−xy for all reals x, y)

≤ (1 + L)eγ/2ri,j (using that σ ≤ 2j−1)

Now, using the Taylor expansion for eγ/2 and the fact that γ < 1/3,

eγ/2 =
∞∑
i=0

(γ
2

)i
i!
≤ 1 +

∞∑
i=1

(γ
2

)i
= 1 +

γ/2
1− γ/2

≤ 1 +
6γ
10

= 1 +
3γ
5
.

Thus, since we may assume L ≤ 1/2 by setting the parameter c sufficiently small,

(1+L)(1−2−j)−γσri,j ≤ (1+L)(1+3γ/5)ri,j ≤ (1+L+3γ/5+3γ/10)ri,j ≤ (1+L+γ)ri,j ,

which completes the proof.

Now, Lemma 18 continues to hold, but in the proof we replace Proposition 17 with Proposi-

tion 32. We may then define µ > 0 and the βi as before. Moreover, Lemma 19 concerning the

inductive approximation of the s̃i continues to hold. Consequently, Corollary 20 continues

to hold, that is, the first part of event E continues to hold.

The main modification of this section is to Lemma 21, which we now reprove.

Lemma 33 For a sufficiently small choice of the parameter c, which may depend on k, for

all i, if Si contributes, then s̃i ≥ (1− ε/(k + 2))si.

Proof: For each j ∈ [b] and r ∈ [R], let U rj be the indicator random variable for the event

that αi ≤ M r
j < αi+1. Note that the U rj are independent and identically distributed, and

that Ai,j =
∑

r∈[R] U
r
j . We start by showing that for any j′ for which 2j

′ ≥ si/(ε′L), the val-

ues U rj′ are distributed just as under Assumption 10, that is, they are i.i.d. Bernoulli(pi,j′).

For this, it suffices to show that for an Si that contributes and j′ for which 2j
′ ≥ si/(ε′L),

∀r ∈ [R], if αi ≤ Max(Srj′) < αi+1, then Max2(Srj′) ≥ 4F2(Srj′)/B, (3.1)

where B = O(bRm1−2/k) is the parameter in CountSketchFilter. Then, by Theorem 25, and

the fact that CountSketchFilter succeeds because G1 occurs, the item x realizing Max(Srj′)

will occur in Lrj′ . Moreover, this will imply Max2(Srj′) ≥ 2F̃2(Srj′)/B, since G3 occurs, and

41

therefore x will not be pruned from Lrj′ . In the second pass, the algorithm will then learn

that αi ≤ fx < αi+1, and U rj = 1. Conversely, if we do not have αi ≤ Max(Srj′) < αi+1,

then by Claim 30, U rj = 0.

To show (3.1), it suffices to show that for all x ∈ Si and all r ∈ [R], f2
x ≥ 4F2(Srj)/B.

Indeed, if it happens that αi ≤ Max(Srj′) < αi+1, then this will guarantee that Max2(Srj′) ≥

4F2(Srj′)/B.

To show this, by Hölder’s inequality (a generalization of the Cauchy-Schwartz inequal-

ity),

F2 =
m∑
i=1

f2
i · 1 ≤

(
m∑
i=1

fki

)2/k (m∑
i=1

1

)1−2/k

= F
2/k
k m1−2/k. (3.2)

Since Si contributes, fkxsi ≥ αiksi > LFk by definition. Therefore,

f2
xs

2/k
i ≥ F

2/k
k L2/k

≥ F2L
2/k

m1−2/k
(using (3.2))

≥
2j
′
F2(Srj′)L2/k

9bRm1−2/k
(since G2 occurs)

≥
2j
′+1F2(Srj′)L2/k

B
(for a large enough constant in the big-Oh for B)

≥
2j
′+1F2(Srj′)L

B
. (since L2/k ≥ L for k ≥ 2)

Since k ≥ 2, we have 2j
′+1/s

2/k
i ≥ 2j

′+1/si. Moreover, our choice of j′ is that 2j
′ ≥

si/(ε′L) ≥ 2si/L, where the second inequality follows for a small enough setting of the

parameter c (to ensure ε′ ≤ 1/2). Thus, 2j
′+1/s

2/k
i ≥ 2j

′+1/si ≥ 4/L. It follows that

f2
x ≥

2j
′+1F2(Srj′)L

s
2/k
i B

≥
4F2(Srj′)L

LB
≥

4F2(Srj′)
B

,

as desired.

The rest of the proof is now the same as that of Lemma 21. Indeed, using the fact that

the U rj′ are distributed just as under Assumption 10, for any j′ for which 2j
′ ≥ si/(ε′L), the

Ai,j′ are also distributed just as under Assumption 10. Thus, an identical analysis shows

that temp is set with some value of j for which 2j ≥ si/(ε′L), and temp ≥ (1− ε′−O(L))si.

42

To see that s̃i is set, we use the same analysis except instead of applying Proposition 21 to

infer that r̃i,j ≤ (1 + βi+1 + L)ri,j , we use Proposition 33. This completes the proof.

Up to the pseudorandom technique to be described in Section 3.6, we now have a 2-pass

algorithm for Fk.

Theorem 34 Assuming there is access to an infinite random string, for any ε, δ > 0, there

is a 2-pass algorithm which (ε, δ)-approximates Fk in space Õ(m1−2/k)poly(1/ε) ln(1/δ).

Proof: With probability at least 5/9, F ∧ G1 ∧ G2 ∧ G3 occurs. In this case, Corollary 20

continues to hold, that is, the first part of event E holds. Moreover, Lemma 33 still holds,

and so E occurs. Thus, by Claim 12, Pr[|F̃k − Fk| ≤ εFk] ≥ 5/9. Taking the median of

O(ln 1/δ) independent repetitions makes the output an (ε, δ)-approximation to Fk.

The algorithm is a 2-pass algorithm. In our total space calculation, we will suppress

a poly(ln lnm, ln lnn, ln 1/ε) factor. Since we have an infinite random string, the random

functions chosen in step 1 of Fk-Approximator do not contribute to the space complexity.

Fk-Approximator invokes CountSketchFilter O(bR ln 1/δ) times, which by Theorem 25 uses

space O(B lnm lnn/η)) in each invocation, up to a ln lnn factor. Here, B = O(bRm1−2/k)

and η = O(1/(bR)). This has total space

O

((
bR ln

1
δ

)
bRm1−2/k lnm ln (nbR)

)
= O

(
m1−2/kb2R2 lnm ln(nbR) ln

1
δ

)
.

The algorithm also invokes the 2-approximation algorithm for F2 of [2] a total of bR ln 1/δ

times. This has total space

O

(
bR(lnm+ ln lnn) ln

1
η

ln
1
δ

)
= O

(
bR(lnm+ ln lnn) ln(bR) ln

1
δ

)
.

The second pass, where we compute the true frequencies of the elements in the Lrj , can be

done with space

O

(
B

(
bR ln

1
δ

)
lnm

)
= O

(
B

(
bR ln

1
δ

)
lnm

)
= O

(
m1−2/kb2R2 ln

1
δ

)
.

Thus, the total space is,

O

(
m1−2/kb2R2 lnm ln(nbR) ln

1
δ

)
+O

(
bR(lnm+ ln lnn) ln(bR) ln

1
δ

)
.

43

Note that since k is constant, αk is constant, and so we can bound the parameter L as

follows. Recall that we have defined log n to be log1+α n, which is just O
(

lnn
ε

)
.

L = Θ
(

λ

log n

)
= Θ

(
ε

αk log n

)
= Θ

(
ε

log n

)
= Θ

(
ε

log1+α n

)
= Θ

(
ε ln(1 + α)

lnn

)
= Θ

(
ε2

lnn

)
.

Now, recall that b = O(ln m
ε′L) and R = O

(
1

ε′L3 ln (lnm log n)
)
. Using our bound on L,

b = O

(
lnm+ ln

1
ε

+ ln lnn
)
,

and

R = O

(
ln3 n

ε7

(
ln lnm+ ln lnn+ ln

1
ε

))
.

Suppressing a poly(ln lnm, ln lnn, ln 1/ε) factor, b = O(lnm) and R = O(ln3 n
ε7

). Moreover,

ln b and lnR are O(1) if we suppress such a factor. Thus, suppressing such a factor, the

total space is:

O

(
m1−2/kb2R2 lnm lnn ln

1
δ

)
+O

(
bR(lnm+ ln lnn) ln

1
δ

)
.

The first term dominates, and so up to a poly(ln lnm, ln lnn, ln 1/ε) factor, the space is

O

(
m1−2/kb2R2 lnm lnn ln

1
δ

)
= O

(
m1−2/k

ε14
ln3m ln7 n ln

1
δ

)
,

and the theorem follows.

3.5 The 1-pass Algorithm

In this section we show how to remove the second pass from the algorithm in the previous

section, and obtain a 1-pass algorithm. We will again assume the existence of an infinite

random string, and remove this in Section 3.6.

Recall that, in the previous section, the algorithm assumed an oracle that we refer to as

Partial Max. For each stream Srj and a certain value of a threshold T (namely, for a given j

and r we set the threshold T = 2F̃2(Srj)/B), the oracle reported the element i∗ ∈ [m] with

the maximum value of fi∗ , but if and only if fi∗ ≥ T . The second pass was needed in order

to compute the exact frequencies of the candidate maxima, and check if (a) any of them

44

was greater than T and (b) find the element with the maximum frequency.

We reduce the need of the second pass by transforming the algorithm in such a way

that, if we replace each frequency fi by its estimation f̃i provided by CountsketchFilter, the

behavior of the transformed algorithm is, with high probability, the same as in the original

algorithm.

Let κ = o(1) be a function to be determined. Since there are O(bR ln 1/δ) invoca-

tions of CountSketchFilter, if η = o(1/(bR ln 1/δ)) in the premise of Theorem 25, then with

probability 1− o(1), for all invocations of CountSketchFilter and for all items i reported by

CountSketchFilter in each invocation,

fi ≤ f̃i ≤ (1 + κ)fi.

We assume this event occurs in the rest of this section. The transformations are as follows.

Shifted boundaries: We modify the algorithm so that the thresholds T passed to Partial

Max are multiplied by some value y ∈ [1, α), and the frequency boundaries αi are multiplied

(consistently) by some value x ∈ [1/α, 1). The algorithm and its analysis of correctness can

be easily adapted to this case. This requires natural adjustments, such as replacing each

term αi in step 5 of Fk-Approximator in the estimator by (xα)i. The other modifications

are to the calls CountSketchFilter(Srj) in step 3 of Fk-Approximator.

The reason for this modification is that, if we choose x, y independently at random from

a near-uniform distribution, then, for fixed i, the outcome of comparisons, say, fi ≥ yT and

f̃i ≥ yT , is likely to be the same, as long as fi and f̃i differ by a small multiplicative factor.

Class reporting: We replace the Partial Max oracle by another oracle, called Rounded

Partial Max, which does the following: for a permutation π : [m]→ [m], it reports i with the

smallest value of π[i] such that fi is in the same frequency class as fi∗ , but only if fi∗ ≥ yT .

The algorithm and its analysis remain unchanged, since it only performs comparisons of fi

with values xαj and yT .

In the following we assume π is choosen uniformly at random from the set of all permu-

tations of [m]. Later, we show how to reduce the required randomness by choosing π from

a family of 2-approximate min-wise independent functions [43].

45

Approximate frequencies: Now we consider the following key modification to Rounded

Partial Max. The modification replaces the use of the exact frequencies fi by their approxi-

mations f̃i. Specifically, we replace each comparison fi ≥ v by a comparison f̃i ≥ v(1 + κ).

Note that f̃i ≥ v(1 + κ) implies fi ≥ v. Call the resulting oracle Approximate Max.

Let i′ be such that π(i′) is the smallest value of π(i) over all i for which fi is in the

same frequency class as fi∗ , and let [xαk
′
, xαk

′+1) be the frequency class containing fi∗ . If

we invoke Rounded Partial Max with parameters j, r, we denote the values i′, i∗, k′, T by

i′(j, r), i∗(j, r), k′(j, r) and T (j, r). Consider the following event B(j, r):

1. fi′(j,r) ≥ xαk
′(j,r)(1 + κ), and

2. fi∗(j,r) ≥ yT (j, r)⇒ fi∗(j,r) ≥ yT (j, r)(1 + κ)

This event allows us to use the approximate frequencies provided by CountSketchFilter in

lieu of the actual frequencies. The following is easy to verify.

Claim 35 Fix the random bits of Fk-Approximator. If B(j, r) holds for all j, r, then the

behaviors of all invocations of Rounded Partial Max and Approximate Max, respectively, are

exactly the same. Therefore, the output of Fk-Approximator using either oracle is the same.

Now it suffices to show that each B(j, r) holds with good probability. We show that this

holds even if π is chosen from a family of 2-approximate min-wise permutations i.e., such

that for any A ⊂ [m], a ∈ [m]−A, we have Prπ[π(a) < minb∈A π(b)] ≤ 2
|A|+1 . Such families

exist and are constructible from only O(log2m) random bits [43].

Lemma 36 There is a distribution of x so that, for any 0 < ζ < 1, if 0 < κ < 1 < α =

1 + ε′ < 2, then for a fixed pair (j, r) the probability of

fi′(j,r) < xαk
′(j,r)(1 + κ)

is at most O(κ/ε′ · logm · 1/ζ + ζ). Moreover, this fact holds even if π is chosen at random

from a family of 2-wise functions.

Proof: For simplicity, we are going to omit the pair (j, r) in the notation below.

46

For a parameter β, define I ′(β) = |{i : β ≤ fi}|, and I ′′ = |{i : β ≤ fi < β(1 + κ)}|.

Consider β = xαk
′
. Observe that the event we are concerned in this lemma occurs if

i′ ∈ I ′′(β).

We choose x = (1+κ)s/α, where s is chosen uniformly at random from {0, . . . , log1+κ α}.

Note that log1+κ α = Θ(ε′/κ).

Observe that the value of β ranges in [fi∗/α, . . . , fi∗]. Also, observe that each value in

that interval is assumed at most once (that is, for only one value of x).

Claim 37 For any 0 < ζ < 1, the number of different values of β such that I ′′(β)/I ′(β) ≥ ζ

is at most log1+ζ(m+ 1) + 1 = O(logm/ζ).

Proof: Assume this is not the case, and let β1, . . . , βt, t ≥ log1+ζ(m + 1) + 1 be the

different values of β such that I ′′(β)/I ′(β) ≥ ζ, in decreasing order.

Since I ′(β) = I ′′(β) + I ′(β(1 +κ)), we have that for each βi, I ′(βi) ≥ 1
1−ζ I

′(βi(1 +κ)) ≥

(1+ζ)I ′(β(1+κ)). Moreover, the value of I ′(β) does not decrease as β decreases. It follows

that I ′(βt) ≥ (1 + ζ)t−1 > m, which is a contradiction.

Thus, for the value β induced by a random choice of x, the probability that I ′′(β)/I ′(β) ≥

ζ is at most O(κ/ε′ log1+ζm). The probability that i′ belongs to I ′′(β) is at most ζ (if π

is a truly random permutation) or at most 2ζ (if π is chosen from 2-approximate min-wise

independent family).

The other part of the event B(j, r) can be handled in a similar way. By setting ζ =√
κ/ε′ · logm we get,

Lemma 38 The probability that some event B(j, r) does not hold is at most

O(Rb
√
κ/ε′ · logm)

which is o(1) for small enough κ = 1/(1/ε′ + logm)O(1).

3.6 Reducing the Randomness

It remains to show that the functions hrj used by our algorithm can be generated in small

space. To this end, we will use Nisan’s pseudorandom generator (PRG), as done in [44].

47

Specifically, observe that the state maintained by algorithm consists of several counters c

(as in the CountSketch algorithm). Each counter is identified by indices j, r and i. Given

a new element x, the counter performs the following operation: if hrj(x) = 1 and g(x) = i,

then c = c+ Yx.

Therefore, we can use Lemma 3 of [44], to show that the random numbers hrj(0), . . . hrj(m−

1) can be generated by a PRG using only O(log2(nm)) truly random bits as a seed. Thus,

the total number of random bits we need to store is bounded by the total storage used by

our 1-pass algorithm times O(log(nm)).

Wrapping Up: At this point we have proven the correctness and efficiency of our 1-

pass algorithm in the restricted cash register model where the input consists of pairs of

the form (x, 1). Note that the algorithm can easily be modified to handle the cash register

model where the input consists of pairs of the form (x, z) where z is a positive integer.

Indeed, instead of adding 1 to the appropriate counters, we simply add z. That is, CountS-

ketchFilter is easily seen to be implementable in the (unrestricted) cash register model. In

fact, Fk-Approximator is even correct in the turnstile model. This again follows from the fact

that CountSketch and CountSketchFilter can be implemented in the turnstile model. That

is, when seeing a pair (x, z) ∈ [m] × R, we find the hi(x)-th counter for each i ∈ [t]. We

then add to c(hi(x)) the value z · si(x), for each value of i. The analysis proceeds as before.

Theorem 39 There is a 1-pass Õ(m1−2/p)poly(1/ε)-space streaming algorithm for (1± ε)-

approximating the Lp norm of an m-dimensional vector presented as a data stream for any

p ≥ 2. This also holds for the frequency moments Fp.

48

Chapter 4

Lower Bounds for Lp Distance and

Frequency Moments

4.1 Communication Complexity

Here we review a few notions from communication complexity. We closely follow the pre-

sentation in the book by Kushilevitz and Nisan [53]. The interested reader may consult [53]

for more detail.

Let f : X × Y → {0, 1} be a Boolean function. We will consider two parties, Alice and

Bob, receiving x and y respectively, who try to compute f(x, y). For non-trivial f , Alice

and Bob will need to communicate with each other to evaluate f(x, y). The communication

is carried out according to some fixed protocol Π, which depends only on f .

In each round of the protocol, Π must determine whether the protocol terminates or if

not, which player should speak next. If the protocol terminates, it must specify an answer

(that is, f(x, y)). This information must depend only on the bits communicated thus far,

as this is the only information common to both parties. Also, if it is a party’s turn to

speak, the protocol must specify what the party sends, and this must depend only on the

communication thus far and the input of the party.

We are only interested in the amount of communication between Alice and Bob. We

thus allow Alice and Bob to be computationally unbounded. The cost of a protocol Π on

input (x, y) is the number of bits communicated by Π on (x, y). The cost of a protocol Π

is the maximal cost of Π over all inputs (x, y). This is formalized as follows.

49

Definition 40 A protocol Π over domain X × Y with range Z is a binary tree where

each internal node v is labeled either by a function av : X → {0, 1} or by a function

bv : Y → {0, 1}, and each leaf is labeled with an element z ∈ Z.

The value of a protocol Π on input (x, y) is the label of the leaf reached by starting

from the root, and walking on the tree. At each internal node v labeled by av walking left

if av(x) = 0 and right if av(x) = 1, and at each internal node labeled by bv walking left if

bv(y) = 0 and right if bv(y) = 1. The cost of Π on input (x, y) is the length of the path

taken on input (x, y). The cost of the protocol Π is the height of the tree.

Definition 41 For a function f : X×Y → Z, the deterministic communication complexity

of f , denoted D(f), is the minimum cost of Π, over all protocols Π that compute f .

Note that we always have D(F) ≤ min(log2 |X|, log2 |Y |) + 1.

We will be mostly interested in the setting where both parties have access to random

coins. Here, Alice has access to a random string rA and Bob has access to a random

string rB. Here the random strings are of arbitrary length, and are chosen independently

according to some probability distribution. Now when we look at the protocol tree, Alice’s

node are labeled by arbitrary functions of x and rA, while Bob’s nodes are labeled by

arbitrary functions of y and rB. Every combination of x, y, rA, and rB determines a leaf of

the protocol tree with a specified output. The difference now is that for some inputs (x, y)

and some choices of rA and rB, the protocol may output the wrong answer. We say that a

protocol Π computes a function f with δ-error if for every (x, y),

Pr[Π(x, y) = f(x, y)] ≥ 1− δ.

Our measure of communication cost is as follows.

Definition 42 The worst case running time of a randomized protocol Π on input (x, y) is

the maximum number of bits communicated for any choice of the random strings, rA and

rB. The worst case cost of Π is the maximum, over all inputs (x, y) of the worst case

running time of Π on (x, y).

We note that it is also possible to define the cost with respect to average, rather than

worst-case random strings, though we do not take this up here. We can now defined the

randomized communication complexity of a function.

50

Definition 43 Let f : X × Y → {0, 1} be a function. Then for 0 < δ < 1/2, Rδ(f) is

the minimum worst case cost of a randomized protocol that computes f with error δ. We

denote R(f) = R1/3(f).

Note that for any two constants δ, δ′ with 0 < δ, δ′ < 1/2, we have Rδ(f) = Θ(Rδ′(f)), so

it is w.l.o.g. that we fix R(f) = R1/3(f). Indeed, given a protocol with error probability

δ > δ′, we may repeat it O(log 1/δ′) times, using independently chosen random strings each

time, and take the majority output. This operation defines a new protocol which errs at

most an δ′ fraction of the time (for every input).

In many of the protocols we consider, we have an even simpler model. Namely, Alice

computes some function A(x) of x and sends the result to Bob. Bob then attempts to

compute f(x, y) from A(x) and y. Here only one message is sent, and it is from Alice to

Bob.

Definition 44 Let f : X × Y → {0, 1} be a function. Then for 0 < δ < 1/2, the δ-error

1-way randomized communication complexity R1−way
δ (f) is the minimum worst case cost of

a randomized protocol that computes f with error δ, in which only a single message is sent

from Alice to Bob. We denote R1−way(f) = R1−way
1/3 (f).

As defined, in a randomized protocol Alice and Bob each have random strings but they

do not have any random bits in common. We could have instead allowed the parties to

have a “public” coin, so that both parties can see the results of a single series of random

coin flips. More precisely, there is a common random string r (chosen according to some

distribution) and in the protocol tree Alice’s communication corresponds to function of x

and r and Bob’s communication corresponds to functions of y and r. This can be viewed

as a distribution {Πr}r over deterministic protocols.

Definition 45 A public coin protocol is a probability distribution over deterministic pro-

tocols. The success probability of a public coin protocol on input (x, y) is the probability of

choosing a deterministic protocol, according to the distribution of r, that computes f(x, y)

correctly. We let Rpubδ (f) be the minimum cost of a public coin protocol that computes f

with an error of at most δ on every input (x, y). We denote Rpub(f) = Rpub1/3(f).

Clearly Rpubδ (f) ≤ Rδ(f) since the parties can use a public coin to define their individual

private coins. In fact, there is a close converse due to Newman.

51

Theorem 46 ([62]) Let f : {0, 1}m × {0, 1}m → {0, 1} be a function. For every δ, δ′ > 0,

Rδ+δ′(f) ≤ Rpubδ (f)+O(logm+log 1/δ′). This continues to hold if both protocols are 1-way.

Throughout we have been discussing protocols which, for every input (x, y), err with prob-

ability at most δ, where the probability is only over the random strings of the protocol. It

is sometimes natural to look at protocols which err on a certain fraction of inputs.

Definition 47 Let µ be a probability distribution on X×Y . The (µ, δ)-distributional com-

munication complexity of f , Dµ,δ(f), is the cost of the best deterministic protocol that gives

the correct answer for f on at least a 1− δ fraction of all inputs in X × Y , weighted by µ.

We denote Dµ(f) = Dµ,1/3(f).

A famous theorem, known as Yao’s Minimax Principle, relates Dµ,δ(f) to Rpubδ (f).

Theorem 48 ([71])

Rpubδ (f) = max
µ

Dµ,δ(f).

Furthermore, the same relationship holds for 1-way protocols.

One of these directions is quite easy to prove, as we now show.

Lemma 49 Dµ,δ(f) ≤ Rpubδ (f) for any distribution µ, and this also holds if both protocols

are 1-way.

Proof: If Π is a randomized protocol realizing Rδ(f), then for all inputs x, y, we have

Pr[Π(x, y) 6= f(x, y)] ≤ δ. This means that Pr(x,y)∼µ[Prcoins of Π[Π(x, y) 6= f(x, y)]] ≤ δ,

and by switching the order of summations we have

Pr
coins of Π

[Pr
(x,y)∼µ

[Π(x, y) 6= f(x, y)]] = Ecoins of Π Pr
(x,y)∼µ

[Π(x, y) 6= f(x, y)] ≤ δ.

So we can fix a certain random string of Π, making it a deterministic protocol realizing

Dµ,δ(f).

We will also need to extend the above definitions to handle relations rather than just

functions. Here we have a relation T ⊆ X × Y × Z. The communication problem is the

following: Alice is given x ∈ X and Bob y ∈ Y , and their task is to find some z ∈ Z for

which (x, y, z) ∈ T .

52

Definition 50 A protocol Π computes a relation T if for every legal input (x, y) ∈ X × Y ,

the protocol reaches a leaf marked by a value z such that (x, y, z) ∈ T . The deterministic

communication complexity of a relation T , denoted D(T), is the number of bits sent on the

worst case input (legal or illegal) by the best protocol that computes T . The definitions of

Rδ(T), R1−way
δ (T), Rpubδ (T), and Dµ,δ(T) are similar.

We will mostly consider a special type of relation, known as a promise problem. Here

Z = {0, 1} and we have disjoint subsets Pyes and Pno of X ×Y . The relation T is such that

if (x, y) ∈ Pyes, then (x, y, 1) ∈ T but (x, y, 0) /∈ T . If (x, y) ∈ Pno, then (x, y, 0) ∈ T but

(x, y, 1) /∈ T . If (x, y) /∈ Pyes ∪ Pno, then both (x, y, 0) and (x, y, 1) are in T .

The following is our generalization of Lemma 49 to promise problems.

Lemma 51 Let T be a promise problem with sets Pyes and Pno. Let g : X ×Y → {0, 1} be

any function for which for all (x, y) ∈ Pyes, g(x, y) = 1, and for all (x, y) ∈ Pno, g(x, y) = 0.

For any distribution µ on X × Y,

Rpubδ (T) ≥ Dµ,δ′(g),

where δ′ = δ + µ(P̄yes ∩ P̄no). This also holds if both protocols are 1-way.

Proof: Let Π be a randomized protocol realizing Rδ(T). Then for all inputs (x, y) ∈ Pyes,

Pr[Π(x, y) = 1] ≥ 1− δ, and for all inputs (x, y) ∈ Pno, Pr[Π(x, y) = 0] ≥ 1− δ. Thus,

Pr
(x,y)∼µ

[Pr
coins of Π

[Π(x, y) 6= g(x, y)] | (x, y) ∈ Pyes ∪ Pno]

= Pr
(x,y)∼µ

[Pr
coins of Π

[(x, y,Π(x, y)) /∈ T] | (x, y) ∈ Pyes ∪ Pno]

≤ δ.

Thus,

Pr
(x,y)∼µ

[Pr
coins of Π

[Π(x, y) 6= g(x, y)]] ≤ Pr
(x,y)∼µ

[Pr
coins of Π

[(x, y,Π(x, y)) /∈ T] | (x, y) ∈ Pyes ∪ Pno]

+ Pr
(x,y)∼µ

[(x, y) /∈ Pyes ∪ Pno]

≤ δ + µ(P̄yes ∩ P̄no).

53

By switching the order of summations we have

Pr
coins of Π

[Pr
(x,y)∼µ

[Π(x, y) 6= g(x, y)]] = Ecoins of Π Pr
(x,y)∼µ

[Π(x, y) 6= g(x, y)] ≤ δ+µ(P̄yes∩ P̄no).

We can fix a random string of Π, making it deterministic with Pr(x,y)∼µ[Π(x, y) 6= g(x, y)] ≤

δ + µ(P̄yes ∩ P̄no).

In everything that follows we will assume that protocols are public-coin, since this will only

change the communication complexity by an additive O(logm), which will be negligible.

We will omit the superscript pub for simplicity.

4.2 The Gap Hamming Problem

In our lower bounds, we are particularly concerned with the c-Gap-Hamming distance

promise problem, denoted c-GH.

Definition 52 In the c-GH problem X = {0, 1}m, Y = {0, 1}m, Pyes = {(x, y) | ∆(x, y) ≥

m/2 + c
√
m}, and Pno = {(x, y) | ∆(x, y) ≤ m/2− c

√
m}. Here, c > 0 is allowed to depend

on m.

This relation captures the communication complexity of approximating the Hamming dis-

tance. Indeed, consider the following relation Tε ⊆ {0, 1}m × {0, 1}m × {0, 1, 2, . . . ,m}

defined as follows: (x, y, z) ∈ Tε iff (1− ε)∆(x, y) ≤ z ≤ (1 + ε)∆(x, y).

Lemma 53 D(Tε) ≥ D(ε
√
m-GH), R(Tε) ≥ R(ε

√
m-GH), R1−way(Tε) ≥ R1−way(ε

√
m-

GH), Dµ(Tε) ≥ Dµ(ε
√
m-GH).

Proof: Let Π be a protocol for the ε
√
m-GH problem which behaves as follows. Let

Π′ be a protocol for Tε. On input (x, y), Π invokes Π′ to obtain an answer z. If z >

m/2, Π(x, y) = 1, else Π(x, y) = 0. The (deterministic, randomized, randomized 1-way,

distributional) communication cost of Π is that same as that of Π′.

To analyze the correctness of Π, observe that for the ε
√
m-GH problem we have Pyes =

{(x, y) | ∆(x, y) ≥ m/2 + εm} and Pno = {(x, y) | ∆(x, y) ≤ m/2 − εm}. Suppose (x, y) ∈

Pyes. In this case (x, y, z) ∈ Tε iff (1 − ε)∆(x, y) ≤ z ≤ (1 + ε)∆(x, y). In particular

(1 − ε)(m/2 + εm) = m/2 + εm − εm/2 − ε2m = m/2 + (1 − 2ε)εm/2 > m/2. Now

suppose (x, y) ∈ Pno. Then if (x, y, z) ∈ Tε, z ≤ (1 + ε)∆(x, y) ≤ (1 + ε)(m/2 − εm) =

54

m/2− εm+ εm/2− ε2m < m/2− εm/2 < m/2. Thus, Π is correct for ε
√
m-GH whenever

Π′ is correct for Tε. The lemma follows.

For general Lp norms for arbitrary real numbers p ≥ 0, we may consider the relation Tp,ε ⊆

{0, 1, 2, . . . r}m × {0, 1, 2, . . . , r}m → {0, 1, 2, . . . , dmrpe} defined as follows: (x, y, z) ∈ Tp,ε

iff (1− ε)||x− y||pp ≤ z ≤ (1 + ε)||x− y||pp. Observe that if x, y have coordinates either 0 or

1, then ||x− y||pp = ∆(x, y). We thus have,

Lemma 54 For all p ≥ 0, D(Tp,ε) ≥ D(ε
√
m-GH), R(Tp,ε) ≥ R(ε

√
m-GH), R1−way(Tp,ε) ≥

R1−way(ε
√
m-GH), Dµ(Tp,ε) ≥ Dµ(ε

√
m-GH). Here we take T0,ε = Tε, i.e., we consider

the Hamming distance when p = 0.

Let c > 0 be an arbitrary constant. We need the following reduction from c-GH on inputs

of length m′ = c2/ε2, denoted c-GHm′ to ε
√
m-GH on inputs of size m, denoted ε

√
m-

GHm. Here, w.l.o.g., we assume that c2/ε2 is an integer. We will only be interested in

the randomized 1-way communication complexity, though the statement also holds for the

other notions of complexity we have considered.

Lemma 55 For any ε ≥ c√
m

, R1−way(ε
√
m-GHm) ≥ R1−way(1-GHm′).

Proof: Given an input (x, y) to c-GHm′ , we create x′ by replacing each bit xi of x

with a block of ε2m/c2 bits all of value xi. Do the same operation to obtain y′ from

y. Then |x′| = |y′| = m. If ∆(x, y) ≥ m′/2 + c
√
m′, then ∆(x′, y′) ≥ m/2 + εm. If

∆(x, y) ≤ m′/2− c
√
m′, then ∆(x′, y′) ≤ m/2− εm. Thus, running a randomized 1-round

protocol for ε
√
m-GHm and outputting whatever it outputs yields a randomized 1-round

protocol for c-GHm′ with the same properties.

Combining the previous two lemmas,

Corollary 56 For any ε ≥ c√
m

and any p ≥ 0, R1−way(Tp,ε) ≥ R1−way(1-GHm′).

We will later see that R1−way(1-GHm′) = Ω(1/ε2), and thus the restriction that ε ≥ c√
m

is necessary. Indeed, the trivial protocol in which Alice just sends her input to Bob has

communication m.

Next we state some bounds on the communication complexity of c-GH.

Theorem 57 For any constant c > 0, D(c-GH) = Ω(m).

55

Proof: We reduce from the equality function EQ : X×Y → {0, 1} defined by EQ(x, y) = 1

iff x = y. We need the fact that there is a constant ζ > 0 and an encoding C : {0, 1}m/6 →

{0, 1}m/2+ζm/2 such that for any distinct x, y ∈ {0, 1}m/6, ∆(x, y) > ζm (see, e.g., [67]).

We consider the setting |x| = |y| = m/6. It is known that in this case D(EQ) = Ω(m) (see,

e.g., [53]).

Given an instance (x, y) of EQ with |x| = |y| = m/6, the parties compute C(x) and

C(y), respectively, which are of length m/2 + ζm/2. Let m′ = m/2− ζm/2. Alice creates

x′ ∈ {0, 1}m by padding x with m′ trailing zeros. Bob creates y′ ∈ {0, 1}m by padding y

with m′ trailing ones. If x = y, then ∆(x′, y′) = m′ = m/2 − ζm/2 < m/2 − c
√
m for

any constant c. If x 6= y, then ∆(x′, y′) > m′ + ζm = m/2 + ζm/2 > m/2 + c
√
m for any

constant c. Thus, any deterministic protocol Π which solves c-GH for any constant c on

inputs of size m, also solves EQ on inputs of size m/6. Thus, D(c-GH) = Ω(m).

Theorem 58 ([5]) For any constant 0 < c < 1/
√

3, R(c-GH) = Ω(
√
m).

Proof: We reduce from the disjointness function DIS : X × Y → {0, 1} defined by

DIS(x, y) = 1 iff there is an i ∈ [m] for which xi = yi = 1. It is known [50, 64] that

R(DIS) = Ω(m). Actually, it is known that even for the restriction to the case when

wt(x) = wt(y) = m/4, the disjointness function has Ω(m) randomized complexity [64].

This is what we’ll reduce from.

Let m′ = 2c
√
m, which we assume is a multiple of 4. Given an instance (x, y) of DIS

with |x| = |y| = m′ and wt(x) = wt(y) = m′/4, the parties do the following. Alice first

replaces each bit xi of x with a block of
√
m/(2c)− 1 bits, all of which equal xi. She then

pads this with a block of 2c
√
m zeros, to obtain x′. Similarly, Bob replaces each bit yi of y

with a block of
√
m/(2c)− 1 bits, all of which equal yi. He then pads this with a block of

2c
√
m ones, to obtain y′. Note that |x′| = |y′| = m.

IfDIS(x, y) = 0, then ∆(x′, y′) = (m′/2)·(
√
m/(2c)−1)+2c

√
m = m/2−c

√
m+2c

√
m =

m/2 + c
√
m. If DIS(x, y) = 1, then ∆(x′, y′) = (m′/2 − 2) · (

√
m/(2c) − 1) + 2c

√
m =

m/2 + c
√
m−

√
m/c+ 2 ≤ m/2 + c

√
m− 3c

√
m+ 2 since c < 1/

√
3. The latter is at most

m/2− c
√
m for sufficiently large m. Thus, any randomized protocol Π which solves c-GH

on inputs of size m must have communication complexity Ω(
√
m).

The main open question here is whether R(c-GH) = Ω(m) for constant c. We will prove

this is true for 1-round protocols. This is of major importance to streaming algorithms,

56

where the streaming algorithm is usually assumed to only have one pass over the data

stream. Here we formalize the connection between this problem and streaming algorithms

for approximating Fp, as discovered by the author [68] (and earlier for F0 by Indyk and

the author [46]). We show the lower bound holds even in the cash register model for data

streams.

Theorem 59 For all p 6= 1 and any constants ε, δ > 0, Sε′,δ(Fp) ≥ R1−way(1-GHm′) −

O(log 1/ε), where ε′ = ε/(2p−1 − 1) and m′ = 1/ε2.

Proof: We use an (ε′, δ)-approximation algorithm for Fp in the streaming model to

build a protocol for 1-GHm′ . Alice chooses an arbitrary stream ax with characteristic

vector x ∈ {0, 1}m′ , and Bob chooses an arbitrary stream ay with characteristic vector

y ∈ {0, 1}m′ . Note that the universe the stream elements are drawn from is [m′], and the

meaning is that i occurs in ax iff xi = 1 (and similarly for ay and yi).

Let M be an (ε, δ) Fp-approximation algorithm for some constant p 6= 1. Alice runs M

on ax. When M terminates, she transmits the state S of M to Bob along with wt(x). Bob

feeds both S and ay into his copy of M . Let F̃p be the output of M . The claim is that F̃p

along with wt(x) and wt(y) can be used to solve Tp,ε. We first decompose Fp:

Fp(ax ◦ ay) =
∑
i∈[m]

fpi

= 2pwt(x ∧ y) + 1p∆(x, y)

= 2p−1(wt(x) + wt(y)−∆(x, y)) + ∆(x, y)

= 2p−1(wt(x) + wt(y)) + (1− 2p−1)∆(x, y).

and thus, for p 6= 1.

∆(x, y) =
2p−1

2p−1 − 1
(wt(x) + wt(y))− Fp(ax ◦ ay)

2p−1 − 1
.

For p 6= 1, define the quantity E to be

E =
2p−1(wt(x) + wt(y))

1− 2p−1
− M(ax ◦ ay)

1− 2p−1
.

If E > m′/2, Bob decides that ∆(x, y) > m′/2 +
√
m′, and otherwise Bob decides that

∆(x, y) < m′/2−
√
m′. We now analyze correctness. Suppose M outputs a (1± ε′) approx-

57

imation to Fp(ax ◦ ay).

Case 1: Suppose ∆(x, y) > m′/2 +
√
m′. Then

E ≥ 2p−1(wt(x) + wt(y))
1− 2p−1

− (1 + ε′)
Fp(ax ◦ ay)

2p−1 − 1
= ∆(x, y)− ε′Fp(ax ◦ ay)

2p−1 − 1
.

Now, Fp(ax ◦ ay) ≥ ∆(x, y), and thus

E ≥ ∆(x, y)− ε′ ∆(x, y)
2p−1 − 1

= (1− ε)∆(x, y) =
(

1− 1√
m′

)
∆(x, y) >

m′

2
.

Case 2: Suppose ∆(x, y) < m′/2−
√
m′. Then

E ≤ 2p−1(wt(x) + wt(y))
1− 2p−1

− (1− ε′)Fp(ax ◦ ay)
2p−1 − 1

= ∆(x, y) + ε′
Fp(ax ◦ ay)

2p−1 − 1
.

Now, Fp(ax ◦ ay) ≤ m′, and thus

E ≤ ∆(x, y) + ε′
m′

2p−1 − 1
= ∆(x, y) + εm′ ≤ ∆(x, y) +

√
m′ <

m′

2
.

It follows that the parties can decideR1−way
δ (1-GHm′) with communication at most Sε′,δ(Fp)+

dlogm′e, where the additive O(logm′) = O(log 1/ε) is due to the transmission of wt(x).

4.3 The Randomized 1-way Lower Bound

Here we prove that R1−way(1-GH) = Ω(m). The original proofs of this fact are due to

Indyk and the author [46, 68]. The proof presented here is based on a reduction from the

function IND : {0, 1}m × [m] → {0, 1}, where IND(x, i) = xi. The proof is quite similar

to the simplified proof due to Bar-Yossef, Jayram, Kumar, and Sivakumar [8]. We present

this proof rather than the original proofs [46, 68] due to its simplicity. At the end we will

discuss the original proofs since they establish a number of other results, and in the next

section we will present a new proof due to the author, which is stronger in a certain sense.

Recall that we are assuming all randomized protocols are public-coin. By Theorem 46,

this will change our bounds by at most an additive O(logm) factor, which will not matter.

Also, assume w.l.o.g. that m is odd. The following is well-known, and can be found in [51].

Theorem 60 R1−way(IND) = Ω(m).

58

We need the following lemma.

Lemma 61 Let m be a sufficiently large odd integer. There is a constant c > 0 such that

for i.i.d. Bernoulli(1/2) random variables B1, . . . , Bm, for any i, 1 ≤ i ≤ m,

Pr[MAJ(B1, . . . , Bm) = 1 | Bi = 1] >
1
2

+
c√
m
,

where MAJ(B1, . . . , Bm) = 1 iff the majority of the Bi are 1.

Proof: Let B =
∑m

i=1Bi. Then Pr[MAJ(B1, . . . , Bm) = 1 | Bi = 1] = Pr[B > m/2 |

Bi = 1]. Using Stirling’s approximation (see Section 2.9 of [30]), we derive that

Pr[B >
m

2
| Bi = 1] =

m∑
k=dm

2
e

Pr[B = k | Bi = 1]

=
m∑

k=m+1
2

(
m− 1
k − 1

)
2−(m−1) = 2−(m−1)

[
2m−2 +

(
m− 1
m−1

2

)]

= 2−(m−1)

[
2m−2 + 2m−1

√
2

π(m− 1)
(1 + o(1))

]
,

=
1
2

+

√
2
πm

(1 + o(1)) .

which, for sufficiently large m, is 1/2 + c/
√
m for any 0 < c <

√
2/π.

We design a protocol Π for IND based on a protocol Π′ for 1-GH, where we assume

w.l.o.g. that Π′ errs with probability at most 1/12 on all inputs. Let d = c2/9, where c

is the constant in Lemma 61, and assume w.l.o.g. that dm is an integer. Alice is given

x ∈ {0, 1}dm and Bob is given k ∈ [dm], that is, the parties are given an instance of IND

when Alice’s input is of size dm. Alice and Bob use a public coin to generate random

r1, . . . , rdm ∈ {0, 1}m. Alice then computes the string s ∈ {0, 1}m as follows: for each

j ∈ [m], sj = MAJ(ri,j | xi = 1). Thus, s is just the coordinate-wise majority of the strings

ri for which xi = 1. Alice and Bob then run Π′(s, rk). Bob outputs Π(x, k) = 1−Π′(s, rk).

Lemma 62 For all x ∈ {0, 1}m and k ∈ [m],

Pr[Π(x, k) = IND(x, k)] ≥ 2
3
,

where the probability is over the public coin.

59

Proof: Suppose xk = 1. Then

Pr[Π(x, k) = 1] = Pr[Π′(s, rk) = 0] ≥ Pr[∆(s, rk) ≤
m

2
−
√
m]− 1

12
.

The equality follows by definition of Π′ and the inequality follows from the fact that for

every input (in particular, for (s, rk)), Π′ errs with probability at most 1/12.

Let Z1, . . . , Zm be independent Bernoulli random variables defined as follows: Zi =

Pr[si = rk,i]. By Lemma 61, since there are at most dm coordinates j for which xj = 1,

we have Pr[Zi = 1] > 1/2 + c/
√
dm = 1/2 + 3/

√
m. Let Z =

∑m
i=1 Zi. Then E[Z] =∑m

i=1 E[Zi] > m/2 + 3
√
m. By independence of the Zis, Var[Z] =

∑m
i=1 Var[Zi] ≤∑m

i=1 E[Zi] ≤ m. By Chebyshev’s inequality,

Pr
[
Z <

m

2
+
√
m
]
≤ Var[Z]

(3
√
m−

√
m)2

≤ 1
4
.

Thus, Pr[∆(s, rk) < m/2] ≥ 3/4 and Pr[Π(x, k) = 1] ≥ 3/4 − 1/12 = 2/3. An analogous

argument shows that if xk = 0, then Pr[Π(x, k) = 0] ≥ 2/3. This proves the lemma.

As the communication of Π is just that of Π′, from Lemma 62 we have,

Theorem 63 R1−way(1-GH) = Ω(m).

It follows that for ε ≥ 1√
m

, we have R1−way(1-GHm′) = Ω(1/ε2). Thus, by Corollary 56,

Theorem 64 For any ε ≥ 1√
m

and any p ≥ 0, R1−way(Tp,ε) = Ω(1/ε2).

Using the connection to streaming algorithms given in Theorem 59,

Theorem 65 For any ε ≥ 1√
m

and any constants p 6= 1 and δ > 0, Sε,δ(Fp) = Ω(1/ε2).

Remark 66 The major implications of this algorithm are for p = 0 and p = 2, corre-

sponding to counting distinct elements in a data stream and computing Gini’s index of

homogeneity. In both cases, up to sub-logarithmic factors, there are matching 1-pass upper

bounds. For p > 2, there are lower bounds of the form Ω(m1−2/p) [7, 6, 65, 20].

Remark 67 We will not present the original proof of the lower bound due to Indyk and

the author [46], since it did not hold for all m and the proof in the previous section is

simpler. For simplicity, we will also not present the original proof that held for all m due

60

to the author [68]. That proof is a bit complicated, and uses an approach based on shatter

coefficients [5]. It is worth noting that the more combinatorial approach in [68] established

a few additional results on degree-constrained bipartite graphs. We refer the reader to that

paper for the details.

4.4 A Lower Bound for the Uniform Distribution

We now give a new proof that there is a constant c > 0 for which R1−way(c-GH) = Ω(m).

Unlike the proof in the previous section, our proof uses Yao’s minimax principle and goes

through distributional complexity. One advantage of this proof is that it may extend to

multiple rounds, whereas the proof in the previous section cannot. This is because the

IND function in that reduction has a 2-round protocol with only O(logm) bits. To give

further evidence that R(c-GH) = Ω(m), in the next section we adapt this argument to prove

that if the protocol is a linear multiround protocol for deciding c-GH, then its randomized

complexity is Ω(m). We define such protocols in that section.

Another advantage is the implication this new proof has in practice. Practitioners in the

area may complain that the lower bound in the previous section is artificial in the sense that

the inputs that are hard to approximate are not likely to occur in practice. In practice two

entities may wish to mine their joint data with additional assumptions on the distribution of

their data. A natural assumption is that the input data is uniformly distributed over some

domain. We show that this does not make the problem easier by giving an Ω(m) bound for

D1−way
µ (c-GH) when µ is uniform on X × Y.

Assume m is odd. Let µ be the uniform distribution on {0, 1}m × {0, 1}m, and let X

and Y be uniform on {0, 1}m. Thus, µ = X × Y as distributions.

Lemma 68 For any constant d > 0, for a sufficiently small choice of the parameter c,

Pr
(x,y)∼µ

[|∆(x, y)−m/2| ≥ c
√
m] > 1− d.

Proof: Let v =
(

m
(m+1)/2

)
/2m. There is a constant b > 0 for which v < bm−1/2 by

Stirling’s formula [30]. So Pr[|∆(x, y)− n/2| ≥ c
√
m] ≥ 1− 2vc

√
m > 1− 2bc. Choose c so

that 2bc = d.

Define the function g : {0, 1}m × {0, 1}m → {0, 1} as follows: g(x, y) = 1 if and only if

61

∆(x, y) > m/2.

Corollary 69 For a sufficiently small constant c and constant δ, Rδ(c − GH) ≥ Dµ,2δ(g)

and R1−way
δ (c-GH) ≥ D1−way

µ,2δ (g).

Proof: By Lemma 51, Rδ(c-GH) ≥ Dµ,δ′(g), where δ′ = δ + µ(P̄yes ∩ P̄no). By the

previous lemma, for c small enough, µ(P̄yes ∩ P̄no) ≤ δ, so δ′ ≤ 2δ. Since Lemma 51 also

holds if both protocols are one-way, the corollary follows.

Fix a 1-round protocol Π realizing D1−way
µ,2δ (g). We assume k def= D1−way

µ,2δ = o(m), and derive

a contradiction. Let M be the single message sent from Alice to Bob in Π. Let Alg be the

(deterministic) algorithm run by Bob on M and Y . By the properties of Π,

Pr
(x,y)∼µ

[Alg(M,Y) = g(X,Y)] ≥ 1− 2δ.

We need the following information-theoretic inequality, known as Fano’s inequality.

Fact 70 ([27]) For any random variables R,S ∈ {0, 1} and any function h,

H(Pr[h(R) 6= S]) ≥ H(S | R).

Applying this inequality with h = Alg and assuming that δ ≤ 1/6,

H(g(X,Y) |M,Y) ≤ H(2δ).

We will now lower bound H(g(X,Y) |M,Y) in order to reach a contradiction.

For any r ∈ {0, 1}k, let Sr be the set of x ∈ {0, 1}m for which M = r. Then E[|SM |] =

2m−k. By a Markov argument, the number of different x contained in some Sr for which

|Sr| ≤ 2m−k−1 is at most 2m−1. Therefore, Pr(x,y)∼µ[|SM | ≥ 2m−k−1] ≥ 1
2 . Let us condition

on the event E : |SM | ≥ 2m−k−1. By concavity of the entropy,

H(g(X,Y) |M,Y) ≥ H(g(X,Y) |M,Y, E) Pr[E] ≥ H(g(X,Y) |M,Y, E)/2.

Now let S ∈ {0, 1}m be any set of size at least 2m−k−1, and let X ′ be the uniform distribution

on x ∈ S. For y ∈ {0, 1}m, let Vy = Prx∼X′ [g(x, y) = 1]. Then Ey∼Y [Vy] = 1
2 . For u ∈ S,

62

let Cu = 1 if g(u, Y) = 1, and Cu = 0 otherwise. Then Vu = 1
|S|
∑

u∈S Cu. We use the

second-moment method (see, e.g., [3] for an introduction to this technique).

Consider

Vary∼Y [Vy] =
1
|S|2

∑
u,v∈S

E[CuCv]−E[Cu]E[Cv]

 .

Then E[Cu] = 1
2 for all u ∈ S. Moreover, E[C2

u] = E[Cu] = 1
2 for all u ∈ S. Thus,

Vary∼Y [Vy] =
1
|S|2

 |S|
4

+
∑
u6=v

(
E[CuCv]−

1
4

) = o(1) +
1
|S|2

∑
u6=v

(
E[CuCv]−

1
4

)
.

The difficulty is in bounding E[CuCv] = Pry[g(u, y) = 1 ∧ g(v, y) = 1]. The latter equals

Pr
u⊕y

[wt(y) > m/2 ∧ g(u⊕ v, y) = 1] = Pr
y

[g(u⊕ v, y) = 1 ∧ wt(y) > m/2]

=
1
2

Pr
y

[g(u⊕ v, y) = 1 | wt(y) > m/2].

Now we use the fact that |S| is large. The following is well-known.

Fact 71 ([67]) For any u ∈ {0, 1}m, the number of v ∈ {0, 1}m for which ∆(u, v) < m/3

or ∆(u, v) > 2m/3 is at most 2 · 2H(1/3)m.

Now, |S| > 2m−k−1. It follows that of the
(|S|

2

)
pairs of u, v ∈ S with u 6= v, all but

2|S|2H(1/3)m of them have Hamming distance at least m/3 and at most 2m/3. Thus, at

least half of the pairs have this property. Let α be the fraction of pairs with this property.

63

Then α ≥ 1/2.

Vary∼Y [Vy] = o(1) +
1
|S|2

∑
u6=v

(
E[CuCv]−

1
4

)

= o(1) +
1
|S|2

∑
∆(u,v)≤n/3 or ∆(u,v)≥2m/3

(
E[CuCv]−

1
4

)

+
1
|S|2

∑
m/3<∆(u,v)<2m/3

(
E[CuCv]−

1
4

)

≤ o(1) +
(1− α)

4
+

1
|S|2

∑
m/3<∆(u,v)<2m/3

(
E[CuCv]−

1
4

)

= o(1) +
(1− α)

4

+
1

2|S|2
∑

m/3<∆(u,v)<2m/3

(
Pr
y

[g(u⊕ v, y) = 1 | wt(y) > m/2]− 1
2

)
.

For u, v withm/3 < ∆(u, v) < 2m/3, we will upper bound Pry[g(u⊕v, y) = 1 | wt(y) > m/2]

by lower bounding Pry[g(u⊕ v, y) = 0 | wt(y) > m/2]. Let r = wt(u⊕ v) = ∆(u, v). Then

∆(u⊕ v, y) = r+wt(y)−2t, where t is the number of coordinates which are 1 in both u⊕ v

and in y. Thus, g(u⊕ v, y) = 0 iff r
2 + wt(y)

2 − m
4 < t.

We collect some standard facts about the binomial distribution.

Fact 72 For any integer m,
(

m
m/2+O(

√
m)

)
= Θ

(
2m√
m

)
.

Proof: Using Stirling’s approximation, for any c = O(1),

(
m

m/2 + c
√
m

)
=

m!
(m/2 + c

√
m)!(m/2− c

√
m)!

=
Θ(m−1/2)

(1/2 + cm−1/2)m/2+cm1/2(1/2− cm−1/2)m/2−cm1/2

=
2m

Θ(
√
m)(1 + 2cm−1/2)m/2+cm1/2(1− 2cm−1/2)m/2−cm1/2

≥ 2m

Θ(
√
m)ec

√
m+2c2−c

√
m+2c2

=
2m

Θ(
√
m)

,

where we have used that (1 + x)y ≤ exy for all x, y. But
(

m
m/2+c

√
m

)
≤
(
m
m/2

)
= m!

((m/2)!)2
=

2m

Θ(
√
m)

, and so
(

m
m/2+c

√
m

)
= 2m

Θ(
√
m)

.

64

Fact 73 For any constant β > 0, there is a constant η > 0 for which

Pr
y∼Y

[wt(y) < m/2 + β
√
m | wt(y) > m/2] ≥ η.

Proof: By Fact 72, for any i, m/2 < i ≤ β
√
m, Pr[wt(y) = i] = Θ(1/

√
m). Thus,

Pr[wt(y) = i | wt(y) > m/2] = 2 ·Θ(1/
√
m) = Θ(1/

√
m).

Thus,

Pr[wt(y) < m/2 + β
√
m | wt(y) > m/2] = β

√
mΘ(1/

√
m) = Ω(1) > η > 0

for a sufficiently small constant η.

Fact 74 For any constant β > 0 and any i, m/2 < i < m/2 + β
√
m,

Pr
y∼Y

[wt(y) = i | m/2 < wt(y) < m/2 + β
√
m] = Ω

(
1√
m

)
.

Proof: By Fact 72, for any i, m/2 < i ≤ β
√
m there are Θ(2m/

√
m) strings of weight i.

Thus, after conditioning on the event that m/2 < wt(y) < m/2 + β
√
m, these β

√
m weight

classes all have the same probability of occurring, up to a constant factor.

Returning to our distributional lower bound and using the facts above, for any constant

β > 0, there is a constant η > 0 for which

Pr
y

[g(u⊕ v, y) = 0 | wt(y) > m/2] ≥ ηPr
y

[g(u⊕ v, y) = 0 | m/2 < wt(y) < m/2 + β
√
m].

= Ω
(

1√
m

) ∑
m/2<i<m/2+β

√
m

Pr
y

[g(u⊕ v, y) = 0 | wt(y) = i]

= Ω
(

1√
m

) ∑
m/2<i<m/2+β

√
m

min(r,i)∑
t> r

2
+ i

2
−m

4

(
r

t

)(
m− r
i− t

)
/

(
m

i

)
.

We claim that this expression is Ω(1). To see this, we first show that min(r, i)− r
2−

i
2 + m

4 =

Ω(
√
m). Indeed,

min(r, i)− r

2
− i

2
+
m

4
≥ min(r, i)− r

2
≥ min(r/2, i− r/2) ≥ m/6,

65

since m/3 ≤ r ≤ 2m/3, and i > m/2. Next, we show that
(

r
r
2

+ i
2
−m

4
+O(
√
m)

)
= Ω(2r/

√
m).

This follows immediately from the fact that m/2 < i < m/2 + β
√
m, Fact 72, and the

fact that r = Θ(m). Next we show that
(m−r
i−(r

2
+ i

2
−m

4
)+O(

√
m)

)
= Ω(2m−r/

√
m). This again

follows from the fact that m/2 < i < m/2 + β
√
m and Fact 72. It follows that for every

value of i, there are Ω(
√
m) values of t for which

(
r
t

)
·
(
m−r
i−t
)

is Ω(2m/m). Now by Fact 72,(
m
i

)
= Θ(2m/

√
m) for every value of i. Thus, there are Ω(m) pairs of i and t for which(

r
t

)
·
(
m−r
i−t
)
/
(
m
i

)
= Ω(1/

√
m). It follows that

Pr
y

[g(u⊕ v, y) = 0 | wt(y) > m/2] = Ω(1).

Thus, Pry[g(u ⊕ v, y) = 0 | wt(y) > m/2] = Ω(1). Let γ > 0 be a constant such that for

sufficiently large m, Pry[g(u ⊕ v, y) = 0 | wt(y) > m/2] > γ. Returning to our variance

computation,

Vary∼Y [Vy] ≤ o(1) +
(1− α)

4

+
1

2|S|2
∑

m/3<∆(u,v)<2m/3

(
Pr
y

[g(u⊕ v, y) = 1 | wt(y) > m/2]− 1
2

)

≤ o(1) +
(1− α)

4
+

1
2|S|2

∑
m/3<∆(u,v)<2m/3

(
1− γ − 1

2

)

= o(1) +
(1− α)

4
+
α(1− γ − 1

2)
2

.

So, there is a constant ζ < 1/4 for which for sufficiently large m,

Vary∼Y [Vy] < ζ.

Define the constant ζ ′ =
√

ζ
2 + 1

8 , and note that ζ ′ < 1/2. It follows by Chebyshev’s

inequality that,

Pr
y∼Y

[∣∣∣∣Vy − 1
2

∣∣∣∣ > ζ ′
]
<

ζ
ζ
2 + 1

8

< 1.

Thus, for an Ω(1) fraction of y, |Vy − 1/2| ≤ ζ. Let us return to bounding the conditional

entropy. Consider the event

F : |VY − 1/2| ≤ ζ ′,

where VY is a random variable that depends on Y and is defined with respect to the set of

66

x in SM . Since X ′ and Y are independent, the above analysis implies that

Pr
(x,y)∼µ

[F | E] = Ω(1).

Thus, H(g(X,Y) | M,Y, E) = Ω(H(g(X,Y) | M,Y, E ,F)), where the constant in the Ω(·)

is absolute (i.e., independent of δ). But, by definition of VY , if E ∩ F occurs, then

1/2− ζ ′ ≤ Pr
x∼X′

[g(x, Y) = 1] ≤ 1/2 + ζ ′.

Thus, H(g(X,Y) | M,Y, E ,F) = Ω(1), where the constant is independent of δ. It follows

that H(g(X,Y) |M,Y) = Ω(1).

On the other hand, we have shown that H(g(X,Y) | M,Y) ≤ H(2δ). This is a contra-

diction if δ > 0 is a small enough constant. Thus, our assumption that k = o(m) was false.

We conclude,

Theorem 75 For a small enough constant c, R1−way
δ (c-GH) = Ω(D1−way

µ,2δ (g)) = Ω(m).

4.5 A Multiround Lower Bound for Linear Protocols

In this section we prove that for a class of protocols that we call linear, the multiround

randomized communication complexity of the gap Hamming distance problem is Ω(m).

This can be viewed as a first step in extending the lower bound of the previous section to

hold for more than one round.

Again assume that m is odd and let µ = X×Y be the uniform distribution on {0, 1}m×

{0, 1}m. By Corollary 69, for a small enough constant c > 0, Rδ(c-GH) ≥ Dµ,2δ(g). By

increasing the communication by at most a factor of 2, we may assume that each message

sent between the players is a single bit and that the players take turns alternating messages

with Bob outputting the answer.

Let Π be an arbitrary protocol realizing Dµ,2δ(g). We think of Π as a binary decision

tree with vertices v labeled by subsets Sv of {0, 1}m. At the root r, if x ∈ Sr, then Alice

transmits a 0, and otherwise she transmits a 1. This corresponds to either going to the

left child of r or the right child of r. Call the visited child w. Then Bob transmits either

a 0 or 1, depending on whether or not y ∈ Sw, and in the decision tree the path goes to

the corresponding child of w. This process repeats until Bob reaches a leaf vertex (we can

67

assume Bob reaches the leaf vertex by increasing the depth by at most 1), at which point

he outputs the label of the leaf. The cost of Π is the depth of this tree.

Definition 76 Π is a linear protocol if each set Sv in the decision tree for Π is described

by a linear function over GF (2). That is, Sv is described by a vector Lv ∈ {0, 1}m. If it

is Alice’s turn, then if 〈Lv, x〉 mod 2 = 0, the protocol branches left, otherwise it branches

right. If it is Bob’s turn, then if 〈Lv, y〉 mod 2 = 0, the protocol branches left, otherwise it

branches right.

We note that the trivial protocol, in which the parties just exchange inputs, is linear since the

sets Sv are described by the unit vectors in {0, 1}m. Protocols in which parties adaptively

sample bits of their inputs are also captured here. Various other classes of protocols can be

reduced to linear ones. For instance, if the sets Sv are described by affine functions, then

by swapping certain branches in the decision tree, the protocol can be made linear.

Let Π be a protocol realizing Dµ,2δ(g) and let T be the associated decision tree. We

create a new tree T ′ as follows. By averaging, there exists a y∗ ∈ {0, 1}m for which

Pr
x∼X

[Π(x, y∗) = g(x, y∗)] ≥ 1− 2δ.

We claim that without loss of generality, we can assume y∗ = 0m. Indeed, consider the

following procedure. Let v1, v2, . . . , vr be a list of vertices in T that occur in a breath-first-

order starting at the root. So, v1 is the root of T , v2 and v3 are its children, v4, v5, v6, v7 its

grandchildren, etc. For v ∈ T , let Lchild(v) be its left child, and Rchild(v) its right child.

1. For i = 1 to r,

� If Lvi(y
∗) = 1 and vi is not a leaf, then

– temp← Lchild(vi).

– Lchild(vi)← Rchild(vi).

– Rchild(vi)← temp.

Let T ′ be the resulting tree. For inputs x and y, let T ′(x, y) be the label of the leaf reached

by x and y.

Lemma 77 T ′(x, y) = Π(x⊕ y∗, y ⊕ y∗).

68

Proof: We argue inductively that the ith node wi that we visit in T ′ given inputs x

and y is the same as the ith node that we visit in T given inputs x ⊕ y∗ and y ⊕ y∗.

When i = 1, this is true, since the roots of T and T ′ coincide. Assume, inductively,

that this is true for some i ≥ 1, and consider the (i + 1)st node visited. If Lwi(y
∗) = 0,

then the left and right children of wi in T are the same as those in T ′. If it is Alice’s

turn, then Lwi(x ⊕ y∗) = Lwi(x) ⊕ Lwi(y∗) = Lwi(x), and thus we choose the left child

of wi in T ′ iff we choose the left child of wi in T . Similarly, if it is Bob’s turn, then

Lwi(y ⊕ y∗) = Lwi(y)⊕ Lwi(y∗) = Lwi(y), and so we choose the left child of wi in T ′ iff we

choose the left child of wi in T .

More interestingly, if Lwi(y
∗) = 1, then the children of wi in T are swapped in T ′. If it

is Alice’s turn, then Lwi(x ⊕ y∗) = 1 ⊕ Lwi(x), and if it is Bob’s turn then Lwi(y ⊕ y∗) =

1⊕ Lwi(y). Thus, in both cases we choose the left child of wi in T ′ iff we choose the right

child of wi in T . Since the children of wi in T are swapped in T ′, it follows that the (i+1)st

node that we visit in T given inputs x ⊕ y∗ and y ⊕ y∗ is the same as the (i + 1)st node

that we visit in T ′ given inputs x and y. This completes the inductive step, and the lemma

follows since the leaf visited by T ′(x, y) is the same as that visited by T (x⊕ y∗, y⊕ y∗).

Since for any x, y, y∗ ∈ {0, 1}m we have g(x, y) = g(x⊕ y∗, y ⊕ y∗), by the previous lemma

Pr
x∼X

[T ′(x, 0m) = g(x, 0m)] = Pr
x∼X

[Π(x⊕ y∗, y∗) = g(x, 0m)]

= Pr
x∼X

[Π(x⊕ y∗, y∗) = g(x⊕ y∗, y∗)]

= Pr
x∼X

[Π(x, y∗) = g(x, y∗)]

≥ 1− 2δ,

so we may indeed assume that y∗ = 0m. In this case g(x, 0m) = 1 iff wt(x) > m/2.

Now for each level in T ′ for which it is Bob’s turn, we follow the path assuming Bob’s

input is 0m. This results in collapsing levels for which it is Bob’s turn. We are left with a

tree T ′ in which Alice just follows a path of linear functions and outputs the label of the

leaf at the end of the path. By the propertes of T ′,

Pr
x∼X

[T ′(x) = g(x, 0m)] ≥ 1− 2δ.

69

4.5.1 Linear-algebraic Lemmas

Consider the m-dimensional vector space V consisting of all linear combinations of the

variables X1, X2, . . . , Xm with coefficients in GF (2).

Let A be a set of linearly independent vectors in V . Suppose we extend A to a basis of

V by adding as many Xi as possible.

Definition 78 The extension number, denoted ex(A), is the maximum number of Xi we

may add to A in order to obtain a basis of V .

Since the Xi are linearly independent, ex(A) = m − |A|. Say a set B ⊆ {X1, . . . , Xm}

realizes ex(A) if the vectors in A ∪B are linearly independent and |B| = ex(A).

Lemma 79 Let A ⊆ V be a set of linearly independent vectors. Suppose L /∈ span(A). If

B realizes ex(A), then a subset of B realizes ex(A ∪ {L}) = ex(A)− 1.

Proof: Let B realize ex(A), so that A∪B is a basis of V . Write L =
∑

a∈A′ a⊕
∑

b∈B′ b

for unique A′ ⊆ A and B′ ⊆ B.

Note that B′ 6= ∅ since L /∈ span(A). Let b′ ∈ B′. The claim is that the vectors (A ∪

{L})∪ (B \ {b′}) are linearly independent. Any non-trivial zero combination must have the

form
∑

a∈A′′ a⊕L⊕
∑

b∈B′′ b = 0, for some A′′ ⊆ A and B′′ ⊆ B\{b′}. Using the definition of

L,
∑

a∈A′′ a⊕
∑

a∈A′ a⊕
∑

b∈B′ b⊕
∑

b∈B′′ b = 0. Rewriting,
∑

a∈A′′∆A′ a⊕
∑

b∈B′′∆B′ b = 0.

Since A ∪ B is a basis, A′′∆A′ = B′′∆B′ = ∅. But b′ ∈ B′′∆B′, a contradiction. Thus,

B \ {b′} realizes ex(A ∪ {L}).

Let A ⊆ V be a set of linearly independent vectors, and let B realize ex(A). Let B′ =

{X1, . . . , Xn} \ B. For v ∈ V , let ρ(v) be the projection of v onto A, and let σ(v) be the

projection of v onto B.

Lemma 80 The set of vectors {ρ(Xi) | Xi ∈ B′} is a linearly independent set.

Proof: By definition, |B ∪B′| = m. Thus the multiset {ρ(Xi) | Xi ∈ B′} ∪B has size m.

To prove the lemma, we will show that rank({ρ(Xi) | Xi ∈ B′} ∪B) = m.

First note that for all Xi ∈ B′, Xi ∈ span(A ∪ B) since A ∪ B is a basis. Thus, for all

Xi ∈ B′, Xi = ρ(Xi) ⊕ σ(Xi). It follows that for all Xi ∈ B′, Xi ∈ span({ρ(Xi) | Xi ∈

B′} ∪ B). Thus for all i, Xi ∈ span({ρ(Xi) | Xi ∈ B′} ∪ B). But X1, . . . , Xm are linearly

independent, so their rank is m, and thus rank({ρ(Xi) | Xi ∈ B′} ∪B) = m.

70

4.5.2 The Lower Bound for Linear Protocols

For each node v ∈ T ′, let Av be the set of linear combinations queried from the root along

the unique path to v in T ′, including the query made at v. We may assume, w.l.o.g., that

the set of linear combinations queried along any path are linearly independent since any

node with a dependent linear combination may be collapsed. Moreover, we can assume T ′

is a complete binary tree. This does not change the depth, which is the communication

complexity. Let k be the depth of T ′, so that any path from root to leaf contains exactly

k + 1 nodes. We will derive a contradiction assuming k = o(m).

Let Bv be a set of vectors realizing ex(Av). By Lemma 79, we may assume that for

all v, w ∈ T for which w is a child of v, Bw ⊆ Bv and |Bw| = |Bv| − 1. Define B′v =

{X1, . . . , Xm} \Bv for each vertex v.

Bounding the Conditional Entropy

Let L0, L1, . . . , Lk be the linear combinations in T queried, and let A = (L0, L1, . . . , Lk) be

the list of these combinations. Note that the Li and A are random variables. Define the

list U of evaluations of these random variables:

U = (L0(X), L1(X), . . . , Lk(X)).

Note that U determines A,L0, L1, . . . , Lk. Let Alg be the (deterministic) algorithm run to

determine the label of a leaf. By the properties of T ′,

Pr
x∼X

[Alg(U) = g(X, 0m)] ≥ 1− 2δ.

By Fact 70, H(g(X, 0m) | U) ≤ H(2δ). We will now lower bound H(g(X, 0m) | U) in order

to reach a contradiction.

We define the events E1 and E2 as follows. Let B be the set of vectors realizing ex(A).

Note that there may be more than one such set. We choose B = Bv, where v is the leaf

reached in T ′ on input X, and Bv is as defined above. Let B′ = {X1, . . . , Xm} \ B. Note

that B and B′ are random variables and B ∪ B′ is a basis of V . Since k = o(m) and T ′ is

non-empty, we have |B|, |B′| > 0.

71

Let W1 be the number of different Xi ∈ B for which Xi = 1. Define the event

E1 :
∣∣∣∣W1 −

|B|
2

∣∣∣∣ > c
√
|B|.

Recall that c is the parameter in the c-GH problem. Let W2 be the number of different

Xi ∈ B′ for which Xi = 1. Define the event

E2 :
∣∣∣∣W2 −

|B′|
2

∣∣∣∣ < 1
c

√
|B′|.

Note that E1 and E2 are independent since B ∪B′ is a basis of V and B ∩B′ = ∅. The crux

of the argument is the following lemma.

Lemma 81 For a sufficiently small choice of the parameter c > 0,

Pr[E1 ∧ E2] ≥ 1− δ.

Before proving this, let us see how it implies a contradiction. By concavity of the entropy,

H(g(X, 0m) | U) ≥ H(g(X, 0m) | U, E1 ∧ E2) Pr[E1 ∧ E2]

≥ H(g(X, 0m) | U, E1 ∧ E2)(1− δ).

By the definition of conditional entropy,

H(g(X, 0m) | U, E1 ∧ E2) =
∑
u

Pr[U = u | E1 ∧ E2] ·H(g(X, 0m) | U = u ∧ E1 ∧ E2).

Let F be the event that W1 − |B|2 > c
√
|B|. Fix any u for which Pr[U = u | E1 ∧ E2] > 0.

Conditioned on E1 ∩ E2 and U = u, g(X, 0m) = 1 iff F occurs. Indeed, g(X, 0m) = 1 iff

W1 +W2 > m/2. Since k = o(m) and B realizes ex(A), |B′| = o(m) and |B| = m− o(m).

By definition of events E1 and E2, conditioned on E1 ∩ E2, W1 +W2 > m/2 iff F occurs (for

sufficiently large m). Thus,

H(g(X, 0m) | U = u ∧ E1 ∧ E2) = H(F | U = u ∧ E1 ∧ E2).

72

Let pu = Prx∼X [F | U = u ∧ E1 ∧ E2]. By the definition of entropy,

H(F | U = u ∧ E1 ∧ E2) = pu log2

1
pu

+ (1− pu) log2

1
1− pu

.

Let b1, b2, . . . , b|B| be the vectors in B, and let b′1, b
′
2, . . . , b

′
|B′| be the vectors in B′. Let

S+ ⊆ {0, 1}|B| be the vectors with weight more than |B|/2 + c
√
|B|, and let S− be the

vectors with weight less than |B|/2− c
√
|B| ones. Let S = S+ ∪ S−. Let S′ ⊆ {0, 1}|B′| be

the set of vectors of weight less than |B′|/2 +
√
|B′|/c but weight at least |B′|/2−

√
|B′|/c.

For s ∈ {0, 1}|B|, we use the notation ~b = s to indicate that b1(x) = s1, b2(x) =

s2, . . . , b|B|(x) = s|B|. Analogously, we use the notation ~b′ = s′ for s′ ∈ {0, 1}|B′| to indicate

that b′1(x) = s′1, b
′
2(x) = s′2, . . . , b

′
|B′|(x) = s|B′|.

In the following, for any events G1 and G2 we let Pr[G1 | G2] = 0 whenever Pr[G2] = 0.

Lemma 82

pu =
∑

s∈{0,1}|B|, t∈{0,1}|B′|
Pr
x∼X

[F | U = u∧~b = s∧ ~b′ = t] Pr
x∼X

[~b = s∧ ~b′ = t | U = u∧E1 ∧E2].

Proof: By definition of E1 and E2,

Pr[E1 ∧ E2] =
∑
s,t

Pr[~b = s ∧ ~b′ = t].

By Bayes’ rule, and noting that Pr[U = u ∧ E1 ∧ E2] > 0 by our choice of u,

Pr[F | U = u ∧ E1 ∧ E2] =
Pr[F ∧ U = u ∧ E1 ∧ E2]

Pr[U = u ∧ E1 ∧ E2]
.

Noting that the events F ∧ (U = u)∧ (~b = s)∧ (~b′ = t) are disjoint for different s and t, via

another application of Bayes’ rule,

Pr[F ∧ U = u ∧ E1 ∧ E2]
Pr[U = u ∧ E1 ∧ E2]

=

∑
s,t Pr[F ∧ U = u ∧~b = s ∧ ~b′ = t]

Pr[U = u ∧ E1 ∧ E2]

=

∑
s,t Pr[F | U = u ∧~b = s ∧ ~b′ = t] Pr[U = u ∧~b = s ∧ ~b′ = t]

Pr[U = u ∧ E1 ∧ E2]
.

73

Since the events ~b = s and ~b′ = t imply E1 ∧ E2 occurs, we can rewrite the above as

∑
s,t

Pr[F | U = u ∧~b = s ∧ ~b′ = t]

(
Pr[U = u ∧~b = s ∧ ~b′ = t ∧ E1 ∧ E2]

Pr[U = u ∧ E1 ∧ E2]

)
=

∑
s,t

Pr[F | U = u ∧~b = s ∧ ~b′ = t] Pr[~b = s ∧ ~b′ = t | U = u ∧ E1 ∧ E2],

which completes the proof.

Now consider a term Pr[F | U = u∧~b = s∧ ~b′ = t]. Note that A∪B is a basis for V , so the

event U = u ∧~b = s uniquely determines the value t(s) of ~b′. It follows from the previous

lemma that by dropping terms that are zero, we may write

pu =
∑

s∈{0,1}|B|
Pr[F | U = u ∧~b = s] Pr[~b = s | U = u ∧ E1 ∧ E2].

Since A ∪ B is a basis of V , Pr[U = u ∧~b = s] > 0 for any values of u and s, and in fact

this probability is independent of s. The occurrence of F is entirely determined from the

event ~b = s, and F occurs iff wt(s) > |B|/2 + c
√
|B|. Thus, we may rewrite pu as

pu =
∑
s∈S+

Pr[~b = s | U = u ∧ E1 ∧ E2].

Since A∪B is a basis and A∩B = ∅, for any s ∈ S+ we have Pr[~b = s | U = u∧ E1 ∧ E2] =

Pr[~b = s | E1]. Thus,

pu =
∑
s∈S+

Pr[~b = s | E1].

By symmetry, pu = Pr[~b ∈ S+ | E1] = Pr[~b ∈ S− | E1] = 1/2. It follows that H(F | U =

u ∧ E1 ∧ E2) = 1. At long last, it follows that H(g(X, 0m) | U) ≥ 1− δ.

For small enough δ > 0, this contradicts our earlier observation thatH(g(X,Y) | U, Y) ≤

H(2δ). We conclude that k = Ω(m).

It remains to prove Lemma 81.

Proof of Lemma 81: : We argue that both Pr[E1] ≥ 1 − δ/2 and Pr[E2] ≥ 1 − δ/2 for

a sufficiently small choice of the parameter c, which implies the lemma by a union bound

74

(and actually, E1 and E2 are even independent). We have,

Pr[E1] =
∑
u

Pr[E1 | U = u] Pr[U = u] (law of total probability)

=
∑
u

Pr
[∣∣∣∣W1 −

|B|
2

∣∣∣∣ > c
√
|B| | U = u

]
Pr[U = u] (definition)

=
∑
u

Pr
[∣∣∣∣W1 −

|B|
2

∣∣∣∣ > c
√
|B|
]

Pr[U = u] (independence)

≥
∑
u

(1− δ/2) Pr[U = u] (Lemma 68)

= 1− δ/2.

Now we bound the more difficult probability, Pr[E2] = Pr
[∣∣∣W2 − |B

′|
2

∣∣∣ < 1
c

√
|B′|

]
.

Let Z1, . . . , Zr be the r random variables in B′. Since for all nodes u and v in the

decision tree for which v is a child of u, we have Bv ⊂ Bu, we have B′u ⊂ B′v. Moreover,

since |Bv| = |Bu| − 1, |B′u| = |B′v| − 1. Therefore, we can think of the Z1, . . . , Zr as being

added to the set B′ one-by-one along the path taken in T ′. Thus, Z1 denotes the first

random variable added to B′, Z2 the second, etc.

We claim that it suffices to show that the random variables Z1, . . . , Zr are i.i.d. Bernoulli(.5)

random variables. Suppose for the moment that we could prove this. The following is a

standard fact about the binomial distribution on N variables.

Fact 83 Let X1, . . . , XN be i.i.d. Bernoulli(.5) random variables. For any constant d > 0

and for a sufficiently small choice of the parameter c (that depends on d),

Pr

[∣∣∣∣∣
N∑
i=1

Xi −
N

2

∣∣∣∣∣ < 1
c

√
N

]
> 1− δ/2.

Applying the fact to the Zi, we will have Pr[E2] > 1− δ/2, as needed.

It remains to show that Z1, . . . , Zr are i.i.d. Bernoulli(.5) random variables.

For a node u ∈ T ′ and for any vector v ∈ V , let ρu(v) be the projection of v onto

Au. We inductively show that for any u visited along the random path in T ′, the set

{ρu(Zi) | Zi ∈ B′u} is a set of i.i.d. Bernoulli(.5) random variables. Thus, when i = r we

will have that ρ(Z1), . . . , ρ(Zr) are i.i.d. Bernoull(.5) random variables. We will later show

this implies that Z1, . . . , Zr are i.i.d. Bernoulli(.5) random variables.

75

Base case: Let u be the root of T ′, so B′u = {Z1}. Then Z1 = L0 ⊕ σu(Z1), where

σu(Z1) is the projection of Z1 onto Bu. Thus, ρu(Z1) = L0(X) = U0, which is Bernoulli(.5).

Inductive step: Assume that for the jth vertex visited along the path in T ′, call it

u, {ρu(Zi) | Zi ∈ B′u} is a set of i.i.d. Bernoulli(.5) random variables. Suppose u′ is the

j + 1st vertex visited. We need to show that the set {ρu′(Zi) | Zi ∈ B′u′} is a set of i.i.d.

Bernoulli(.5) random variables. For all Zi ∈ B′u′ , we have Zi ∈ span(Au′ ∪Bu′).

Let Z be the unique element in B′u′ \B′u = Bu \Bu′ . Then Au′ = Au ∪ {Lj+1} (since u′

is the (j+1)st vertex visited in T ′). For those Zi ∈ B′u in span(Au∪Bu′), we have ρu
′
(Zi) =

ρu(Zi) since the vectors in Au′ ∪Bu′ are linearly independent and Au ∪Bu′ ⊂ Au′ ∪Bu′ .

Now if Zi is in B′u but not in span(Au ∪Bu′), then σu(Zi) has a non-zero coefficient in

front of Z. It follows that ρu
′
(Zi) = ρu(Zi) ⊕ ρu

′
(Z). Since Z ∈ span(Au ∪ {Lj+1} ∪ Bu′),

but Z /∈ span(Au ∪ Bu′) (since Z can be added to Bu′ to obtain Bu, and the vectors in

Au ∪Bu are linearly independent), it follows that ρu
′
(Z) has a non-zero coefficient in front

of Lj+1. Since Lj+1(X) = Uj+1 and Uj+1 is independent of U1, . . . , Uj , it follows that

ρu
′
(Z) is Bernoulli(.5) and independent of the random variable (ρu(Z1), . . . , ρu(Zj)), which

is determined by U1, . . . , Uj .

It follows by the inductive hypothesis and the above that the random variables in the

set

{ρu′(Zi) | Zi ∈ B′u′} = {ρu′(Z)} ∪ {ρu′(Zi) | Zi ∈ B′u}

= {ρu′(Z)}

∪ {ρu(Zi) | Zi ∈ B′u and Zi ∈ span (Au ∪Bu′)}

∪ {ρu(Zi)⊕ ρu
′
(Z) | Zi ∈ B′u and Zi /∈ span (Au ∪Bu′)},

are i.i.d. Bernoulli(.5).

Thus, we have shown that ρ(Z1), . . . , ρ(Zr) are i.i.d. Bernoulli(.5) random variables. It

remains to show that this implies Z1, . . . , Zr are i.i.d. Bernoulli(.5) random variables. For

each i, 1 ≤ i ≤ r, we have Zi = ρ(Zi) ⊕ σ(Zi). For any fixed assignment ~b = s, we have

Zi = ρ(Zi) ⊕ βi, where βi ∈ {0, 1} is the result of evaluating σ(Zi) on s. Now since the

76

ρ(Zi) are i.i.d. Bernoulli(.5), so are the ρ(Zi)⊕ βi. Thus, the Zi are i.i.d. Bernoull(.5).

The proof of the lemma is now complete.

Theorem 84 For a constant c > 0, for linear protocols Rδ(c-GH) ≥ Dµ,2δ(g) = Ω(m).

The lower bound for unrestricted multiround randomized protocols is still open. Our con-

jecture is the following, which was made independently by Ravi Kumar [52]. This problem is

listed as the 10th question in the list of open problems at the IITK Workshop on Algorithms

for Data Streams (http://www.cse.iitk.ac.in/users/sganguly/data-stream-probs.pdf).

Conjecture 85 For every constant c > 0, R(c-GH) = Ω(m).

77

Chapter 5

Private Protocol for the Euclidean

Distance

Recent years witnessed the explosive growth of the amount of available data. Large data

sets, such as transaction data, astronomical data, the web, or network traffic, are in abun-

dance. Much of the data is stored or made accessible in a distributed fashion. This necces-

sitates the development of efficient protocols that compute or approximate functions over

such data (e.g. see [13]).

At the same time, the availability of this data has raised significant privacy concerns. It

became apparent that one needs cryptographic techniques in order to control data access

and prevent potential misuse. In principle, this task can be achieved using the general

results of secure function evaluation (SFE) [70, 36]. However, in most cases the resulting

private protocols are much less efficient than their non-private counterparts (an exception

is the result of [60], who show how to obtain private and communication-efficient versions

of non-private protocols, as long as the communication cost is logarithmic). Moreover, SFE

applies only to algorithms that compute functions exactly, while for many problems, only

efficient approximation algorithms are known or are possible. Indeed, while it is true that

SFE can be used to privately implement any efficient algorithm, it is of little use applying

it to an approximation algorithm when the approximation leaks more information about

the inputs than the solution itself.

In a pioneering paper [29], the authors introduced a framework for secure computation

78

of approximations. They also proposed an Õ(
√
m)-communication1 two-party protocol for

approximating the Hamming distance between two binary vectors. This improves over the

linear complexity of computing the distance exactly via SFE, but still does not achieve the

polylogarithmic efficiency of a non-private protocol of [54]. Improving the aforementioned

bound was one of the main problems left open in [29].

In this and the next chapter we provide several new results for secure computation of

approximations. In this chapter we provide a Õ(1)-communication protocol for approxi-

mating the Euclidean (`2) distance between two vectors. This, in particular, solves the

open problem of [29]. Since distance computation is a basic geometric primitive, we believe

that our result could lead to other algorithms for secure approximations. Indeed, in [2] the

authors show how to approximate the `2 distance using small space and/or short amount

of communication, initiating a rich body of work on streaming algorithms.

5.1 Cryptographic Tools

We start by reviewing homomorphic encryption, oblivious transfer (OT), and secure func-

tion evaluation (SFE).

Homomorphic Encryption: An encryption scheme, E : (G1,+) → (G2, ·) is homo-

morphic if for all a, b ∈ G1, E(a+ b) = E(a) ·E(b). For more background on this primitive

see, for example, [37, 59]. We will make use of the Paillier homomorphic encryption scheme

[63]. in some of our protocols and so we briefly repeat it here:

1. Initialize: Choose two primes, p and q and set N = p · q. Let λ = lcm(p− 1, q − 1).

Let the public key PK = (N, g) where the order of g is a multiple of N . Let the secret

key, SK = λ.

2. Encrypt: Given a message M ∈ ZN , choose a random value x ∈ Z∗N . The encryption

of M is, E(M) = gMxNmodN2.

3. Decrypt: Let L(u) = (u−1)
N , where u is congruent to 1 modulo N .To recover M from

E(M) calculate, L(E(M)λmodN2)
L(gλmodN2)

modN .

1We write f = Õ(g) if f(m, k) = O
(
g(m, k) logO(1)(m)poly(k)

)
, where k is a security parameter.

79

In [63] it’s shown that the Paillier encryption scheme’s semantic security is equivalent to

the Decisional Composite Residuosity Assumption. The following shows homomorphy:

E(M1) · E(M2) = (gM1x1
N mod N2) · (gM2x2

N mod N2)

= gM1+M2(x1x2)N mod N2 = E(M1 +M2).

Oblivious Transfer and SPIR: Oblivious transfer is equivalent to the notion of symmetrically-

private information retrieval (SPIR), where the latter usually refers to communication-

efficient implementations of the former. SPIR was introduced in [34]. With each invocation

of a SPIR protocol a user learns exactly one bit of a binary database of length N while

giving the server no information about which bit was learned. We rely on single-server

SPIR schemes in our protocols. Such schemes necessarily offer computational, rather than

unconditional, security [24]. Applying the transformation of [61] to the PIR scheme of [17]

give SPIR constructions with Õ(N) server work and Õ(1) communication.

One issue is that in some of our schemes, we actually perform OT on records rather than

on bits. It is a simple matter to convert a binary OT scheme into an OT scheme on records

by running r invocations of the binary scheme in parallel, where r is the record size. This

gives us a 1-round, Õ(r) communication, Õ(Nr) server work OT protocol on records of size

r. The dependence on r can be improved using techniques of [23].

Secure Function Evaluation: In [36, 70] it is shown how two parties holdings inputs

x and y can privately evaluate any circuit C with communication O(k(|C| + |x| + |y|)),

where k is a security parameter. In [16] it is shown how to do this in one round for the

semi-honest case we consider. The time complexity is the same as the communication. We

use such protocols as black boxes in our protocols.

5.2 Privacy

We assume both parties are computationally bounded and semi-honest, meaning they follow

the protocol but may keep message histories in an attempt to learn more than is prescribed.

In [36, 18, 60], it is shown how to transform a semi-honest protocol into a protocol secure in

the malicious model. Further, [60] does this at a communication blowup of at most a factor

80

of poly(k). Therefore, we assume parties are semi-honest in the remainder of the paper.

We briefly review the semi-honest model, referring the reader to [35, 55] for more details.

Let f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗ be a function, the first element denoted f1(x1, x2)

and the second f2(x1, x2). Let π be a two-party protocol for computing f . The views of

players P1 and P2 during an execution of π(x1, x2), denoted Viewπ1 (x1, x2) and Viewπ2 (x1, x2)

respectively, are:

Viewπ1 (x1, x2) = (x1, r1,m1,1, . . . ,m1,t), Viewπ2 (x1, x2) = (x2, r2,m2,1, . . . ,m2,t),

where ri is the random input and mi,j the messages received by player i respectively. The

outputs of P1 and P2 during an execution of π(x1, x2) are denoted outputπ1 (x1, x2) and

outputπ2 (x1, x2). We define outputπ(x1, x2) to be (outputπ1 (x1, x2), outputπ2 (x1, x2)). We

say that π privately computes a function f if there exist PPT algorithms S1, S2 for which

for i ∈ {1, 2} we have the following indistinguishability

{Si(xi, fi(x1, x2)), f(x1, x2)} c≡ {Viewπi (x1, x2), outputπ(x1, x2)}.

This simplifies to {Si(xi, fi(x1, x2))} c≡ {Viewπi (x1, x2)} if either f1(x1x2) = f2(x1, x2) or if

f(x1, x2) is deterministic or equals a specific value with probability 1− negl(k,N), for k a

security parameter.

We need a standard composition theorem [35] concerning private subprotocols. An

oracle-aided protocol (see [55]) is a protocol augmented with a pair of oracle tapes for each

party and oracle-call steps. In an oracle-call step parties write to their oracle tape and

the oracle responds to the requesting parties. An oracle-aided protocol uses the oracle-

functionality f = (f1, f2) if the oracle responds to query x, y with (f1(x, y), f2(x, y)), where

f1, f2 denote first and second party’s output respectively. An oracle-aided protocol privately

reduces g to f if it privately computes g when using oracle-functionality f .

Theorem 86 [35] If a function g is privately reducible to a function f , then the protocol

g′ derived from g by replacing oracle calls to f with a protocol for privately computing f ,

privately computes g.

We now define the functional privacy of an approximation as in [29]. For our approximation

protocols we will have f1(x, y) = f2(x, y) = f(x, y).

81

Definition 87 Let f(x, y) be a function, and let f̂(x, y) be a randomized function. Then

f̂(x, y) is functionally private for f if there is an efficient simulator S s.t. for every x, y,

we have f̂(x, y)
c≡ S(f(x, y)).

A private approximation of f privately computes a randomized function f̂ that is function-

ally private for f .

Finally, we need the notion of a protocol for securely evaluating a circuit with ROM. In

this setting, the ith party has a table Ri ∈ ({0, 1}r)s defined by his inputs. The circuit,

in addition to the usual gates, is equipped with lookup gates which on inputs (i, j), output

Ri[j].

Theorem 88 [60] If C is a circuit with ROM, then it can be securely computed with

Õ(|C|T (r, s)) communication, where T (r, s) is the communication of 1-out-of-s OT on words

of size r.

5.3 Private Euclidean Distance

Here we give a private approximation of the `2 distance. Alice is given a vector a ∈ [N]m,

and Bob a vector b ∈ [N]m. Note that ‖a−b‖2 ≤ Tmax
def= mN2. In addition, parameters ε, δ

and k are specified. For simplicity, we assume that k = Ω(log(Nm)). The goal is for both

parties to compute an estimate E such that |E − ‖x‖2| ≤ ε‖x‖2 with probability at least

1− δ, for x def= a− b. Further, we want E to be a private approximation of ‖x‖. As discussed

there, wlog we assume the parties are semi-honest. We set the parameter B = Θ(k); this

notation means B = ck for a large enough constant c independent from k, n,M, δ, ε. In our

protocol we make the following cryptographic assumptions.

1. There exists a PRG G stretching polylog(m) bits to m bits secure against poly(m)-

sized circuits.

2. There exists an OT scheme for communicating 1 of m bits with communication

polylog(m).

At the end of the section we discuss the necessity and plausibility of these assumptions.

Our protocol relies on the following fact and corollary.

82

Fact 89 [56] Let A be a random m × m orthonormal matrix (i.e., A is picked from a

distribution defined by the Haar measure). Then there is c > 0 such that for any x ∈ <m,

any i = 1, . . . ,m, and any t > 1,

Pr[|(Ax)i| ≥
‖x‖√
m
t] ≤ e−ct2 .

Corollary 90 Suppose we sample A as in Fact 89 but instead generate our randomness

from G, rounding its entries to the nearest multiple of 2−Θ(B). Then,

∀x ∈ <m, Pr[(1− 2−B)‖x‖2 ≤ ‖Ax‖2 ≤ ‖x‖2 and ∀i(Ax)2
i <
‖x‖2

m
B] > 1− neg(k,m)

Proof: If there were an infinite sequence of x ∈ [N]m for which this did not hold, a circuit

with x hardwired would contradict the pseudorandomness of G.

Protocol Overview: Before describing our protocol, it is instructive to look at some natural

approaches and why they fail. We start with the easier case of approximating the Hamming

distance, and suppose the parties share a common random string. Consider the following

non-private protocol of [54] discussed in [29]: Alice and Bob agree upon a random O(logm)×

m binary matrix R where the ith row consists of m i.i.d. Bernoulli(βi) entries, where β is

a constant depending on ε. Alice and Bob exchange Ra,Rb, and compute R(a − b) = Rx.

Then ‖x‖ can be approximated by observing that Pr[(Ra)i = (Rb)i] ≈ 1/2 if ‖x‖ � β−i,

and Pr[(Ra)i = (Rb)i] ≈ 1 if ‖x‖ � β−i. Let the output be E. The communication is

O(logm), but it is not private since both parties learn Rx. Indeed, as mentioned in [29], if

a = 0 and b = ei, then Rx equals the ith column of R, which cannot be simulated without

knowing i.

However, given only ‖x‖, it is possible to simulate E. Therefore, as pointed out in [29],

one natural approach to try to achieve privacy is to run an SFE with inputs Ra,Rb, and

output E. But this also fails, since knowing E together with the randomness R may reveal

additional information about the inputs. If E is a deterministic function of Ra,Rb, and if

a = 0 and b = ei, Alice may be able to find i from a and R.

In [29], two private protocols which each have Ω(m) communication for a worst-case

choice of inputs, were cleverly combined to overcome these problems and to achieve Õ(
√
m)

communication. The first protocol, High-Distance Estimator, works when ‖x‖ >
√
m. The

83

idea is for the parties to obliviously sample random coordinates of x, and use these to

estimate ‖x‖. Since the sampling is oblivious, the views depend only on ‖x‖, and since it

is random, the estimate is good provided we take Õ(
√
m) samples.

The second protocol, Low-Distance Estimator, works when ‖x‖ ≤
√
m. Roughly, the idea

is for the parties to perfectly hash their vectors into Õ(
√
m) buckets so that at most one

coordinate j for which aj 6= bj lies in any given bucket. The parties then run an SFE with

their buckets as input, which can compute ‖x‖ exactly by counting the number of buckets

which differ.

Our protocol breaks this O(
√
m) communication barrier as follows. First, Alice and

Bob agree upon a random orthonormal matrix A in Rm×m, and compute Aa and Ab. The

point of this step is to uniformly spread the mass of the difference vector x over the m

coordinates, as per Fact 89, while preserving the length. Since we plan to sample random

coordinates of Ax to estimate ‖x‖, it is crucial to spread out the mass of ‖x‖, as otherwise

we could not for instance, distinguish x = 0 from x = ei. The matrix multiplication can be

seen as an analogue to the perfect hashing in Low-Distance Estimator, and the coordinate

sampling as an analogue to that in High-Distance Estimator.

To estimate ‖x‖ from the samples, we need to be careful of a few things. First, the parties

should not learn the sampled values (Ax)j , since these can reveal too much information.

Indeed, if a = 0, then (Ax)j = (Ab)j , which is not private. To this end, the parties run a

secure circuit with ROM Aa and Ab, which privately obtains the samples.

Second, we need the circuit’s output distribution E to depend only on ‖x‖. It is not

enough for E[E] = ‖x‖2, since a polynomial number of samples from E may reveal non-

simulatable information about x based on E’s higher moments. To this end, the circuit

uses the (Ax)j to independently generate r.v.s zj from a Bernoulli distribution with success

probability depending only on ‖x‖. Hence, zj depends only on ‖x‖.

Third, we need to ensure that the zj contain enough information to approximate ‖x‖.

We do this by maintaining a loop variable T which at any point in time is guaranteed to

be an upper bound on ‖x‖2 with overwhelming probability. Using Corollary 90, for all j

it holds that q def= m(Ax)2
j/(TB) ≤ 1 for a parameter B, so we can generate the zj from a

Bernoulli(q) distribution. Since T is halved in each iteration, for some iteration E[
∑

j zj]

will be large enough to ensure that E is tightly concentrated.

84

We now describe the protocol in detail. Set ` = Θ(B)(1/ε2 log(Nm) log(1/δ) + k). In

the following, if q > 1, then the distribution Bernoulli(q) means Bernoulli(1).

`2-Approx (a, b):

1. Alice, Bob exchange a seed of G and generate a random A as in Corollary 90

2. Set T = Tmax

3. Repeat:

(a) {Assertion: ‖x‖2 ≤ T }

(b) A secure circuit with ROM Aa,Ab computes the following

� Generate random coordinates i1, . . . , i` and compute (Ax)2
i1
, . . . (Ax)2

i`

� For j ∈ [`], independently generate zj from a Bernoulli
(
m(Ax)2

ij
/(TB)

)
distribution

(c) T = T/2

4. Until
∑

i zi ≥
`

4B or T < 1

5. Output E = 2TB
`

∑
i zi as an estimate of ‖x‖2

Note that the protocol can be implemented in O(1) rounds by parallelizing the secure circuit

invocations.

Analysis: To show the correctness and privacy of our protocol, we start with the following

lemma.

Lemma 91 The probability that assertion 3a holds in every iteration of step 3 is 1 −

neg(k,m). Moreover, when the algorithm exits, with probability 1− neg(k,m) it holds that

E[
∑

j zj] ≥ `/(3B).

Proof: By Corollary 90, PrA[(1 − 2−B)‖x‖2 ≤ ‖Ax‖2 ≤ ‖x‖2 and ∀i(Ax)2
i <

‖x‖2
m B] =

1− neg(k,m), so we may condition on this occurring. If ‖x‖2 = 0, then Pr[Ax = 0] = 1−

neg(k,m), and thus Pr[E = 0] = 1−neg(k,m). Otherwise, ‖x‖2 ≥ 1. Consider the smallest

j for which Tmax/2j < ||x||2. We show for T = Tmax/2j−1 ≥ ‖x‖2 ≥ 1 that Pr[
∑

j zj <

85

`/(4B)] = neg(k,m). The assertion holds at the beginning of the jth iteration by our choice

of T . Thus, m(Ax)2
i ≤ TB for all i ∈ [m]. So for all j, Pr[zj = 1] = ‖Ax‖2

TB ≥ (1−2−B)/(2B),

and thus E[
∑

j zj] ≥ `/(3B). By a Chernoff bound, Pr[
∑

j zj < `/(4B)] = neg(k,m), so if

ever T = Tmax/2j−1, then this is the last iteration with overwhelming probability.

Correctness: We show Pr[|E − ‖x‖2| ≤ ε] ≥ 1 − δ. By Lemma 91, when the algorithm

exits, with probability 1− neg(k,m), E [
∑

i zi] >
`

3B , so we assume this event occurs. By a

Chernoff bound,

Pr

[∣∣∣∣∣∑
i

zi − E

[∑
i

zi

]∣∣∣∣∣ ≥ ε

2
E

[∑
i

zi

]
|
∑
i

zi ≥
`

4B

]
≤ e−Θ(ε2 `B) <

δ

2

By Lemma 91, assertion 3a holds, so that

`(1− 2−B)‖x‖2 ≤ TB ·E[
∑
i

zi] ≤ ` ‖x‖2

Setting E = 2TB
`

∑
i zi (recall that T is halved in step 3c) shows that Pr[|E − ‖x‖2 ≥

ε‖x‖2] ≤ δ.

Privacy: We replace the secure circuit with ROM in step 3b of `2-Approx with an oracle.

We construct a single simulator Sim, which given ∆ def= ‖x‖2, satisfies Sim(∆)
c≡ ViewπA (a, b)

and Sim(∆)
c≡ ViewπB (a, b), where ViewπA (a, b), ViewπB (a, b) are Alice, Bob’s real views re-

spectively. This, in particular, implies functional privacy. It will follow that `2-Approx is a

private approximation of ∆.

86

Sim (∆):

1. Generate a random seed of G

2. Set T = Tmax

3. Repeat:

(a) For j ∈ [`], independently generate zj from a Bernoulli(∆/(TB)) distribution

(b) T = T/2

4. Until
∑

i zi ≥
`

4B or T < 1

5. Output E = 2TB
l

∑
i zi

With probability 1 − neg(k,m), the matrix A satisfies the property in Corollary 90, so we

assume this event occurs. In each iteration, the random variables zj are independent in both

the simulation and the protocol. Further, the probabilities that zj = 1 in the simulated

and real views differ only by a multiplicative factor of (1− 2−B) as long as T ≥ ∆. But the

probability that, in either view, we encounter T < ∆ is neg(k,m).

Complexity. Given our cryptographic assumptions, we use Õ(1) communication and O(1)

rounds.

Remark 92 Our cryptographic assumptions are fairly standard, and similar to the ones

in [29]. There the authors make the weaker assumptions that PRGs stretching mγ bits to

m bits and OT with mγ communication exist for any constant γ. In fact, the latter implies

the former [41, 40]. If we were to instead use these assumptions, our communication would

be O(mγ), still greatly improving upon the O(m1/2+γ) communication of [29]. A candidate

OT scheme satisfying our assumptions can be based on the Φ-Hiding Assumption [17], and

can be derived by applying the PIR to OT transformation of [61] to the scheme in that

paper.

Remark 93 For the special case of Hamming distance, we have an alternative protocol

based on the following idea. Roughly, both parties apply the perfect hashing of the Low-

Distance Estimator protocol of [29] for a logarithmic number of levels j, where the jth level

contains Õ(2j) buckets. To overcome the Õ(
√
m) barrier of [29], instead of exchanging

87

the buckets, the set of buckets is randomly and obliviously sampled. From the samples,

an estimate of ∆(a, b) is output. For some j, 2j ≈ ∆(a, b), so the estimate will be tightly

concentrated, and for reasons similar to `2-Approx, will be simulatable. We omit the details,

but note that two advantages of this alternative protocol are that the time complexity will

be Õ(m) instead of Õ(m2), and that we don’t need the PRG G, as we may use k-wise

independence for the hashing.

88

Chapter 6

Private Protocols for Efficient

Matching

In this chapter, we look at secure computation of a near neighbor for a query point q (held

by Alice) among n data points P (held by Bob) in {0, 1}d. We improve upon known results

[28, 32] for this problem under various distance metrics, including `2, set difference, and

Hamming distance over arbitrary alphabets. Our techniques also result in better commu-

nication for the all-nearest-neighbors problem, where Alice holds n different query points,

resolving an open question of [32], and yield a binary inner product protocol with commu-

nication d+O(k) in the common random string model.

However, all of our protocols for the near neighbor problem have the drawback of needing

Ω(n) bits of communication, though the dependence on d is often optimal. Thus, we focus

on what we term the approximate near neighbor problem. For this we introduce a new

definition of secure computation of approximations for functions that return points (or sets

of points) rather than values.

Let Pt(q) be the set of points in P within distance t from q. In the c-approximate near

neighbor problem, the protocol is required to report a point in Pcr(q), as long as Pr(q) is

nonempty. We say that a protocol solving this problem is c′-private (or just private if c′ = c)

if Bob learns nothing, while Alice learns nothing except what can be deduced from the set

Pc′r(q). In our paper we always set c′ = c.

We believe this to be a natural definition of privacy in the context of the approximate

near neighbor problem. First, observe that if we insist that Alice learns only the set Pr (as

89

opposed to Pcr), then the problem degenerates to the exact near neighbor problem. Indeed,

even though the definition of correctness allows the protocol to output a point p ∈ Pcr−Pr,

in general Alice cannot simulate this protocol given only the set Pr. Thus, in order to

make use of the flexibility provided by the approximate definition of the problem, it seems

necessary to relax the definition of privacy as well.

Within this framework, we give a protocol based on dimensionality reduction [54] with

communication Õ(n1/2 + d) for any constant c > 1. We show how the dependence on

d can be made polylogarithmic if Alice just wants a coordinate of a point in Pcr. We

also give a protocol bacsed on locality-sensitive hashing (LSH) [45], with communication

Õ(n1/2+1/(2c) + d), but significantly less work (though still polynomial).

Finally, proceeding along the lines of [39], we say the protocol leaks b bits of information

if it can be simulated given b extra bits which may depend arbitrarily on the input. With

this definition, we give a protocol with Õ(n1/3 + d) communication leaking only k bits,

where k is a security parameter.

We also give an alternative protocol, based on locality-sensitive hashing (LSH) [45],

with communication Õ(n1/2+1/(2c) +d), but significantly less work. That is, the work of the

previous scheme is O(nd) + nρ(c−1), where ρ(x) = O(1/x2 + log(1 + x)/(1 + x)). Although

this is polynomial work for constant c, the computation time can be costly in practice, e.g.,

ρ(1) ≈ 12, see [42], p. 34 for a plot of the function. In contrast, the time complexity of the

LSH scheme is at most O(n2(d+ n)) for any c.

Here we consider the setting in which Alice has a point q, and Bob a set of n points P .

6.1 Exact Problems

6.1.1 Private Near Neighbor Problem

Suppose for some integer U , Alice has q ∈ [U]d, Bob has P = p1, . . . , pn ∈ [U]d, and Alice

should learn mini f(q, pi), where f is some distance function. In [28] protocols for `1, `2,

Hamming distance over U -ary alphabets, set difference, and arbitrary distance functions

f(a, b) =
∑d

i=1 fi(ai, bi) were proposed, using an untrusted third party. We improve the

communication of these protocols and remove the third party using homomorphic encryption

to implement polynomial evaluation as in [32], and various hashing tricks.

In [32], the authors consider the private all-near neighbors problem in which Alice has

90

n queries q1, . . . , qn ∈ [U]d and wants all pi for which ∆(pi, qj) ≤ t < d for some j and

parameter t. Our techniques improve the Õ(n2d) communication of a generic SFE and the

Õ(n
(
d
t

)
) communication of [32] for this problem to Õ(nd2 + n2). Finally, in the common

random string model we achieve dlog de + O(k) communication for the (exact) Hamming

distance, and an inner product protocol with d+O(k) communication.

6.1.2 Private Near Neighbor for `2 and Hamming Distance

Alice has q ∈ [U]d, and Bob a set of points P = p1, . . . , pn in [U]d. Alice should output

argmini
∑

j |pi,j − qj |2. The protocol is easily modified to return the pi realizing the mini-

mum. We assume a semantically secure homomorphic encryption scheme E such as Paillier

encryption, that the message domain is isomorphic to Zm for some m, and that m is large

enough so that arithmetic is actually over Z.

Exact-`2(q, P):

1. Alice generates (PK,SK) for E and sends PK, E(q1), . . . , E(qd) to Bob

2. For all i, Bob computes (by himself) zi = E(〈q, pi〉) and vi = ‖pi‖2

3. A secure circuit with inputs q, SK, {zi}i, and {vi}i computes

� 〈q, pi〉 = DSK(zi) for all i

� Return argmini(vi − 2〈q, pi〉)

Using the homomorphy of E and the Õ(n)-sized circuit in step 3, we make the communi-

cation Õ(n+ d) rather than the Õ(nd) of a generic SFE. The correctness is easy to verify.

Using theorem 86 and the semantic security of E, privacy is just as easy to show. We note

a natural extension to `p distances: Alice sends

{E(qi1)}, {E(qi1qi2)}, . . . , {E(qi1 · · · qip−1)},

where i1, . . . , ip−1 range over all of [d]. The communication is Õ(n+ dp−1), which is inter-

esting for d = O(n1/(p−2)).

91

6.1.3 Private Near Neighbor for Generic Distance Functions

Now Alice wants mini f(q, pi) for an arbitrary f(a, b) =
∑d

i=1 fi(ai, bi). We use homomor-

phic encryption to implement polynomial evaluation as in [32].

Exact-Generic(q, P):

1. Alice creates d degree-(U − 1) polynomials sj by interpolating from sj(u) = fj(pj , u)

for all u ∈ [U]

2. Alice generates (PK,SK) for E and sends the encrypted coefficients of the sj and

PK to Bob

3. Bob computes (by himself) zi = E(
∑

j sj(pi,j)) = E(f(q, pi)) for all i

4. A secure circuit with inputs SK, {zi}i outputs argminiDSK(zi)

The proofs are similar to those of the previous section and are omitted. The communication

here is Õ(dU+n), improving the O(ndU) communication of [28]. A special case of the result

in section 6.1.5 improves this to Õ(d2 + n) in case f(a, b) is Hamming distance and U > d.

6.1.4 Private Near Neighbor for n = 1

We now show how Alice, holding q ∈ {0, 1}d, and Bob, holding p ∈ {0, 1}d for some prime d,

can privately compute ∆(q, p) with communication ddlog de+ O(k). This extends to solve

the private near neighbor problem for n = 1 with communication 2ddlog de + Õ(k). The

communication outperforms the Θ(dk) communication of SFE.

We assume both parties have access to the same uniformly random string. We need a

homomorphic encryption whose message domain can be decoupled from its security param-

eter. Recall in Paillier encryption that if encryptions are k bits long, messages are about

k/2 bits long. For low communication we want the domain to be very small, that is, roughly

d elements instead of 2k/2. To do this, we use a Benaloh encryption scheme E [12], which

is homomorphic and semantically secure assuming the prime residuousity assumption. The

message domain is Zd while encryptions are of size k.

92

Exact-1(q, p):

1. Alice generate (PK,SK) for E, and sends PK to Bob

2. Both parties interpret 1 the common random string R as d encryptions E(zi)

3. Alice obtains the zi by decrypting, and sends Bob si = qi − zi mod d for all i

4. Bob computes (by himself) E(zi + qi) = E(qi) and E(
∑d

i=1(pi + (−1)piqi)) =

E(∆(p, q))

5. Bob rerandomizes the E(∆(p, q))

6. Alice outputs DSK(E(∆(p, q))) = ∆(x, y)

The correctness of the protocol is straightforward. The key property for security is that if R

is uniformly random, then for any PK,SK, the E(z1), . . . , E(zd) are independent uniformly

random encryptions of random elements z1, . . . , zd ∈ [d].

To see complexity ddlog de + o(d), the list of si’s that Alice sends has length ddlog de.

Also, E(∆(q, p)) has length k, the security parameter, which can be set to dε for any

ε > 0. Similar techniques give d + O(k) communication for private inner product, using

GM-encryption [37].

6.1.5 Private All-Near Neighbors

We consider the setting of [32], in which Alice and Bob have Q = q1, . . . , qn ∈ [U]d and

P = p1, . . . , pn ∈ [U]d respectively, and Alice wants all pj for which ∆(qi, pj) ≤ t < d for

some i ∈ [n] and parameter t. We assume a semantically secure homomorphic encryption

scheme E and OT with polylog(n) communication.

93

All-Near(Q,P):

1. The parties randomly permute their points

2. Alice generates parameters (PK,SK) of E and sends Bob PK

3. For l = 1, . . . , k,

� The parties choose a pairwise independent hash function h : [U]→ [2d]

� For i ∈ [n], Alice computes x̃i = h(xi), where h is applied coordinate-wise

� Replace each entry j of each x̃i with a length 2d unit vector with rth bit 1 iff

x̃i,j = r

� Bob forms ŷi similarly

� Alice sends the coordinate-wise encryption of each vector for each coordinate of

each x̃i

� Bob computes (by himself) Zi,j,l = E(∆(x̃i, ỹj)) for all i, j ∈ [n]

4. A secure circuit with inputs SK,Zi,j,l computes

� Zi,j = minlDSK(Zi,j,l)

� Output Z = {j | ∃i s.t. Zi,j ≥ d− t} to Alice

5. Perform OT on records of size d for Alice to retrieve Y = {yj | j ∈ Z}

Theorem 94 The above is a private all-near neighbors protocol with communication Õ(nd2+

n2).

Proof: We first argue correctness, which means showing Pr[Y = {yj | ∃i s.t. ∆(qi, pj) ≤

t}] = 1 − 2−Ω(k). We show for i, j ∈ [n], Pr[∆(qi, pj) = n − Zi,j] = 1 − 2−Ω(k). By a union

bound, for any h,

Pr[D(Zi,j) = n−∆(qi, pj)] ≥ T/2T = 1/2.

But D(Zi,j) ≥ n−∆(qi, pj) since hashing only increases the number of agreements. Thus,

Pr[minlD(Zi,j,l) > n − ∆(qi, pj)] < 2−Ω(k), so that Zi,j = n − ∆(qi, pj) with the required

probability.

For privacy, since the output assumes a specific value with probability 1 − 2−Ω(k), we

94

just need to show each party’s view is simulatable. As usual, we replace the SFE and OT

by oracles. Alice’s output from the SFE is a list of random indices, and her output from the

OT is her protocol output. Hence, her simulator just outputs a list of |Y | random indices.

Bob’s simulator chooses k random hash functions and 2d2nk encryptions of 0 under E. By

the semantic security of E and theorem 86, the protocol is secure.

To see that the communication is Õ(nd2+n2), in each of k executions, Alice sends O(nd2)

encryptions. Bob then inputs O(n2) encryptions to the SFE, which can be implemented

with a circuit of size Õ(n2). Step 5 of the protocol can be done with Õ(nd) communication

using the best OT schemes (see [23, 17]).

Remark 95 A simple modification of the protocol gives the promised Õ(d2 + n) commu-

nication for Hamming distance in the setting of [28] for any U .

Remark 96 The protocol can be adapted to give Õ(d+n) communication for set difference.

In this case Alice has a single vector q. The idea is that Alice, Bob can hash their entries

down to 2d values using h as in the protocol, and now Alice can homomorphically encrypt

and send the coefficients of a degree-(2d−1) polynomial pol, where pol is such that pol(t) = 0

if t ∈ {r | ∃i s.t. r = h(qi)} and pol(t) = 1 otherwise. Bob can evaluate pol on each (hashed)

coordinate of each pi and use E’s homomorphy to compute E(f(q̃, p̃i)), f denoting set

difference. We then repeat this k times over different h and take a maximum in the SFE.

Since coordinate order is immaterial for set difference, we achieve Õ(n + d) instead of

Õ(n+ d2) communication.

Although we have improved the communication of [32], one may worry about the work the

parties need to perform. We have the following optimization:

Theorem 97 The protocol can be implemented with total work Õ(n2d2c−4), where c ≈ 2.376

is the exponent of matrix multiplication.

Proof: The work is dominated by step 3, in which Bob needs to compute encryptions of

all pairwise Hamming distances. To reduce the work, we think of what Alice sends as an

encrypted n× d2 matrix M1, and that Bob has a d2×n matrix M2 and needs an encrypted

M1M2. It is shown in [11] that even the best known matrix multiplication algorithm still

works if one of the matrices is homomorphically encrypted. Thus Bob can perform (n/d2)2

95

fast multiplications of d2×d2 matrices, requiring Õ((n/d2)2(d2)r) = Õ(n2d2r−4) work, which

improves upon the Õ(n2d2) work of a naive implementation.

6.2 Approximate Near Neighbor Problems

6.2.1 Private c-approximate Near Neighbor Problem

Suppose q ∈ {0, 1}d and pi ∈ {0, 1}d for all i. Let Pt = {p ∈ P | ∆(p, q) ≤ t}, and c > 1 be

a constant.

Definition 98 A c-approximate NN protocol is correct if when Pr 6= ∅, Alice outputs

a point f(q, P) ∈ Pcr with probability 1 − 2−Ω(k). It is private if in the computational

sense, Bob learns nothing, while Alice learns nothing except what follows from Pcr. For-

mally, Alice’s privacy is implied by an efficient simulator Sim for which 〈q, P, f(q, P)〉 c≡

〈q, P, Sim(1n, Pcr, q)〉 for poly(d, n, k)-time machines.

Following [39], we say the protocol leaks b bits of information if there is a deterministic

“hint” function h : {0, 1}(n+1)d → {0, 1}b such that the distributions 〈q, P, f(q, P)〉 and

〈q, P, Sim(1n, Pcr, q, h(P, q))〉 are indistinguishable. We believe these to be natural exten-

sions of private approximations in [29, 39] from values to sets of values.

We give a private c-approximate NN protocol with communication Õ(
√
n+ d) and a c-

approximate NN protocol with communication Õ(n1/3+d) which leaks k bits of information.

Both protocols are based on dimensionality reduction in the hypercube [54]. There it is

shown that for an O(log n) × d matrix A with entries i.i.d. Bernoulli(1/d), there is an

τ = τ(r, cr) such that for all p, q ∈ {0, 1}d, the following event holds with probability at

least 1− 1/poly(n)

If ∆(p, q) ≤ r, then ∆(Ap,Aq) ≤ τ, and if ∆(p, q) ≥ cr, then ∆(Ap,Aq) > τ.

Here, arithmetic occurs in Z2. We use this idea in the following helper protocol DimReduce(τ,B, q, P).

Let A be a random matrix as described above. Let S = {p ∈ P | ∆(Ap,Aq) ≤ τ}. If

|S| > B, replace S with the lexicographically first B elements of S. DimReduce outputs

random shares of S.

96

DimReduce (τ,B, q, P):

1. Bob performs the following computation

� Generate a matrix A as above, and initialize L to an empty list.

� For each v ∈ {0, 1}O(logn), let L(v) be the first B pi for which ∆(Api, v) ≤ τ .

2. A secure circuit with ROM L performs the following computation on input (q, A),

� Compute Aq.

� Lookup Aq in L to obtain S. If |S| < B, pad S so that all S have the same

length.

� Output random shares (S1, S2) of S so that S = S1 ⊕ S2.

It is an easy exercise to show the correctness and privacy of DimReduce.

Remark 99 As stated, the communication is Õ(dB). The dependence on d can be im-

proved to Õ(d+B) using homomorphic encryption. Roughly, Alice sends E(q1), . . . , E(qd)

to Bob, who sets L(v) to be the first B different E(∆(pi, q)) for which ∆(Api, v) ≤ τ . Note

that E(∆(pi, q)) is efficiently computable, and has size Õ(1)� d.

It will be useful to define the following event H(r1, r2, P) with r1 < r2. Suppose we run

DimReduce independently k times with matrices Ai. Then H(r1, r2, P) is the event that at

least k/2 different i satisfy

∀p ∈ Pr1 , ∆(Aip,Aiq) ≤ τ(r1, r2) and ∀p ∈ P \ Pr2 , ∆(Aip,Aiq) > τ(r1, r2).

The next lemma follows from the properties of the Ai and standard Chernoff bounds:

Lemma 100 Pr[H(r1, r2, P)] = 1− 2−Ω(k).

6.2.2 Reducing the Dependence on d for Private c-approximate NN

Here we sketch how the communication of the protocol of section 6.2.3 can be reduced to

Õ(n1/2 + polylog(d)) if Alice just wants to privately learn some coordinate of some element

of Pcr.

97

Proof Sketch: The idea is to perform an approximation to the Hamming distance

instead of using the E(∆(pi, q)) in the current protocol (see, e.g., DimReduce, and the

following remark). The approximation we use is that given in [54], namely, the parties

will agree upon random matrices Ai for some subset of i in [n], and from the Aipi and

Aiq will determine (1 ± ε) approximations to the ∆(pi, q) with probability 1 − 2−k. We

don’t need private approximations since the parties will not learn these values, but rather,

they will input the Aipi, Aiq into a secure circuit which makes decisions based on these

approximations.

More precisely, Bob samples B of his vectors pi, and in parallel agrees upon B matrices

Ai and feeds the Aipi into a secure circuit. Alice feeds in the Aiq. Let c ≥ 1 + 8ε. The

circuit looks for an approximation of at most r(1 + 6ε). If such a value exists, the circuit

gives Alice the corresponding index. Observe that if |Pr(1+4ε)| >
√
n, then with probability

1− 2−k an index is returned to an element in Pcr, and that this distribution is simulatable.

So assume |Pr(1+4ε)| ≤
√
n.

The parties proceed by performing a variant of DimReduce(τ(r, r(1 + 4ε)), B, q, P), with

the important difference being that the output no longer consists of shares of the E(∆(pi, q)).

Instead, for each entry L(v), Bob pretends he is running the approximation of [54] with Al-

ice’s point q. That is, the parties agree on B different matrices Ai and Bob computes Aip for

each p ∈ L(v). A secure circuit obtains these products, and computes the approximations.

It outputs an index to a random element with approximation at most r(1 + 2ε). If Pr is

nonempty, such an index will exist with probability 1− 2−k. Also, the probability that an

index to an element outside of Pr(1+4ε) is returned is less than 2−k, and so the distribution

of the index returned is simulatable.

Finally, given the index of some element in Pcr, the parties perform OT and Alice obtains

the desired coordinate, The communication is now Õ(
√
n). 2

6.2.3 c-approximate NN Protocol

Protocol Overview: Our protocol is based on the following intuition. When |Pcr| is large, a

simple solution is to run a secure function evaluation with Alice’s point q as input, together

with a random sample P ′ of roughly a k/|Pcr| fraction of Bob’s points P . The circuit

returns a random point of P ′ ∩ Pcr, which is non-empty with overwhelming probability.

The communication is Õ(n/|Pcr|).

98

On the other hand, when |Pcr| is small, if Alice and Bob run DimReduce(τ(r, cr), |Pcr|, q, P)

independently k times, then with overwhelming probability Pr ⊆ ∪iSi, where Si denotes

the (randomly shared) output in the ith execution. A secure function evaluation can then

take in the random shares of the Si and output a random point of Pr. The communication

of this scheme is Õ(|Pcr|).

Our protocol combines these two protocols to achieve Õ(
√
n) communication, by sam-

pling roughly an n−1/2 fraction of Bob’s points in the first protocol, and by invoking DimRe-

duce with parameter B = Õ(
√
n) in the second protocol. This approach is similar in spirit

to the “high distance / low distance” approach used to privately approximate the Hamming

distance in [29].

c-Approx (q, P):

1. Set B = Õ(
√
n).

2. Independently run DimReduce(τ(r, cr), B, q, P) k times, generating shares (S1
i , S

2
i).

3. Bob finds a random subset P ′ of P of size B.

4. A secure circuit performs the following computation on inputs q, S1
i , S

2
i , P

′.

� Compute Si = S1
i ⊕ S2

i for all i.

� Let f(q, P) be a random point from Pcr ∩ P ′ 6= ∅ if it is non-empty,

� Else let f(q, P) be a random point from Pr ∩ ∪iSi if it is non-empty, else set

f(q, P) = ∅.

� Output (f(q, P), null).

Using the ideas in Remark 99, the communication is Õ(d+B), since the SFE has size Õ(B).

Let F be the event that P ′ ∩ Pcr 6= ∅, and put H = H(r, cr, P).

Correctness: Suppose Pr is nonempty. The probability s of correctness is just the proba-

bility we don’t output ∅. Thus s ≥ Pr[F] + Pr[¬F] Pr[f(q, P) 6= ∅ | ¬F].

Case |Pcr| ≥
√
n: For sufficiently large B, we have s ≥ Pr[F] = 1− 2−Ω(k).

99

Case |Pcr| <
√
n: It suffices to show Pr[f(q, P) 6= ∅ | ¬F] = 1−2−Ω(k). But this probability

is at least Pr[f(q, P) 6= ∅ | H,¬F] Pr[H], and if H occurs, then f(q, P) 6= ∅. By Lemma

100, Pr[H] = 1− 2−Ω(k).

Privacy Note that Bob gets no output, so Alice’s privacy follows from the composition

of of DimReduce and the secure circuit protocol of step 5. Similarly, if we can con-

struct a simulator Sim with inputs 1n, Pcr, q so that the distributions 〈q, P, f(q, P)〉 and

〈q, P, Sim(1n, Pcr, q)〉 are statistically close, Bob’s privacy will follow by that of DimReduce

and the secure circuit protocol of step 5.

Sim (1n, Pcr, q):

1. Set B = Õ(n1/2).

2. With probability 1−
(n−|Pcr|

B

)(
n
B

)−1, output a random element of Pcr,

3. Else output a random element of Pr.

Let X denote the output of Sim(1n, Pcr, q). It suffices to show that for each p ∈ P ,

|Pr[f(q, P) = p] − Pr[X = p]| = 2−Ω(k), since this also implies |Pr[f(q, P) = ∅] − Pr[X =

∅]| = 2−Ω(k). We have

Pr [f(q, P) = p] = Pr [f(q, P) = p,F] + Pr [f(q, P) = p,¬F]

= Pr [f(q, P) = p,F] + Pr [f(q, P) = p,¬F | H]± 2−Ω(k)

= Pr [F] |Pcr|−1 + Pr[¬F] Pr[f(q, P) = p | H,¬F]± 2−Ω(k),

where we have used Lemma 100. Since Pr[F] = 1−
(n−|Pcr|

B

)(
n
B

)−1, we have

|Pr[f(q, P) = p]−Pr[X = p]| ≤ Pr[¬F]
∣∣Pr[f(q, P) = p | H,¬F]− δ(p ∈ Pr)|Pr|−1

∣∣+2−Ω(k).

If |Pcr| ≥
√
n, then Pr[¬F] = 2−Ω(k). If |Pcr| <

√
n, then Pr[f(q, P) = p | H,¬F] = δ(p ∈

Pr)|Pr|−1.

Extensions: The way the current problem is stated, there is an Ω(d) lower bound. In

100

appendix 6.2.2 we sketch how, if Alice just wants to learn some coordinate of an element of

Pcr, this dependence can be made polylogarithmic. We also have a similar protocol based

on locality-sensitive hashing (LSH), which only achieves Õ(n1/2+1/(2c) + d) communication,

but has much smaller time complexity (though still polynomial). More precisely, the work of

the LSH scheme is nO(1), whereas the work of c-Approx is nO(1/(c−1)2), which is polynomial

only for constant c. See Appendix 6.2.4 for the details.

6.2.4 Private c-approximate NN Based on Locality Sensitive Hashing

We give an alternative private c-approximate NN protocol, with slightly more communi-

cation than that in section 6.2.1, but less work (though still polynomial). It is based on

locality sensitive hashing (LSH) [45]. The fact we need is that there is a family of functions

G : {0, 1}d → {0, 1}Õ(1) such that each g ∈ G has description size Õ(1), and G is such that

for all p, q ∈ {0, 1}d,

Pr
g∈G

[g(p) = g(q)] = Θ
(
n−∆(p,q)/cr

)
Recall that Alice has a point q ∈ {0, 1}d and Bob has n points P ⊆ {0, 1}d. For

correctness, Alice should learn a point of Pcr provided Pr 6= ∅. For privacy, her view should

be simulatable given only Pcr.

Our protocol is similar to that in section 6.2.1. When |Pcr| is large, one can run a secure

function evaluation with Alice’s point q as input, together with a random sample P ′ of

roughly a k/|Pcr| fraction of Bob’s points P . The circuit returns a random point of P ′∩Pcr

which is non-empty with probabiity 1− 2−Ω(k). The communication is Õ(n/|Pcr|).

On the other hand, when |Pcr| is small, if Alice and Bob exchange functions gi indepen-

dently Õ(n1/c) times, then with overwhelming probability Pr ⊆ ∪iSi, where Si denotes the

subset of Bob’s points p with gi(p) = gi(q). Using a secure ciruit with ROM, we can obtain

these sets Si, and output a random point of Pr. The communication is Õ(n1/c|Pcr|).

Our protocol balances these approaches to achieve Õ(n1/2+1/(2c)) communication.

There are a few technicalities dodged by this intuition. First, even though the parties

exchange Õ(n1/c) different gi, and can thus guarantee that each p is in some Si with proba-

bility 1− 2−Ω(k), it may be that whenever p ∈ Si, many points from P \Pcr also land in Si,

so that Si is very large. Even though we only expect |P \ Pcr|O(1/n) = O(1) points from

101

P \ Pcr in Si, since Pr[p ∈ Si] = Θ(n−1/c) is small, p may only be in Si when Si is large.

Because the size of the Si affects the communication of our protocol, we cannot always

afford for the ROM to receive the whole Si (sometimes we will truncate it). However, in

the analysis, we show that the average Si is small, and this will be enough to get by with

low communication.

Second, we need to extend the notion of a lookup gate given earlier. Instead of just

mapping inputs (i, j) to output Ri[j], the jth entry in the ith party’s ROM, we also allow j

to be a key, so that the output is the record in Ri keyed by j. This can be done efficiently

using [23], and Theorem 88 is unchanged, assuming the length of the keys is Õ(1).

102

LSH (q, P):

1. Set B = Õ(n1/2+1/(2c)) and C = Õ(n1/c).

2. Bob finds a random subset P ′ of P of size B .

3. For i = 1 to k,

(a) Alice and Bob agree upon C random gi,j ∈ G.

(b) Bob creates a ROM L with entries L(v) containing the points p for which g(p) =

v.

(c) A secure circuit with ROM L performs the following computation on input

(q, {gi,j}),

� Compute vi,j = gi,j(q) for each j.

� Lookup the L(vi,j) one by one for the different vi,j until the communication

exceeds dB. If it is less, make dummy queries so that it is exactly dB.

� Output shares S1
i , S

2
i so that S1

i ⊕ S2
i is the (possibly truncated) set of sets

L(vj).

4. A secure circuit with inputs P ′, S1
i , S

2
i ,

� Compute the set Si = S1
i ⊕ S2

i = ∪jL(vj) for all i.

� Let f(q, P) be random in Pcr ∩ P ′ if it is non-empty.

� Else let f(q, P) be random in Pr ∩ ∪iSi if it is non-empty, else set f(q, P) = ∅.

� Output (f(q, P), null).

The communication is Õ(dB). By using homomorphic encryption, one can reduce the de-

pendence on d, as per remark 99. Let E be the event that Pr ⊆ ∪iSi, and let F be the event

that Pcr ∩ P ′ is non-empty.

Correctness: Suppose Pr 6= ∅. The probability s of correctness is just the probability

we don’t output ∅. Thus s ≥ Pr[F] + Pr[¬F] Pr[f(q, P) 6= ∅ | ¬F].

Case |Pcr| ≥ n1/2−1/(2c): For sufficiently large B, we have s ≥ Pr[F] = 1− 2−Ω(k).

103

Case |Pcr| < n1/2−1/(2c): It is enough to show Pr[f(q, P) 6= ∅ | ¬F] = 1 − 2−Ω(k). Fix

i. Put Y =
∑

j |L(vi,j)|, where |L(vi,j)| denotes the number of points in L(vi,j). The ex-

pected number of points in P \ Pcr that are in L(vi,j) is at most n · O(1/n) = O(1). Since

|Pcr| < n1/2−1/(2c), E[L(vi,j)] < n1/2−1/(2c) + O(1). Thus E[Y] ≤ B/3 for large enough

B, so Pr[Y > B] ≤ 1/3 by Markov’s inequality. Thus, with probability 1 − 2−Ω(k), for at

least half of the i, Si is not truncated in step 3c. Moreover, for large enough B, any i, and

any p ∈ Pr, Pr[p ∈ Si] = 1 − 2−Ω(k) for large enough C. By a few union bounds then,

Pr[Pr ⊆ ∪iSi] = Pr[E] = 1− 2−Ω(k). Thus,

Pr[f(q, P) 6= ∅ | ¬F] ≥ Pr[f(q, P) 6= ∅, E | ¬F] = Pr[f(q, P) 6= ∅ | E , ¬F] Pr[E] ≥ 1−2−Ω(k).

Privacy: Note that Bob gets no output, so Alice’s privacy follows from that of the se-

cure circuit protocol. We construct a simulator Sim(1n, Pcr, q) so that the distributions

〈q, P, f(q, P)〉 and 〈q, P, Sim(1n, Pcr, q)〉 are statistically close. Bob’s privacy then follows

by the composition with the secure circuit protocol.

Sim (1n, Pcr, q):

1. Set B = Õ(n1/2+1/(2c)).

2. With probabiity 1−
(n−|Pcr|

B

)(
n
B

)−1, output a random element of Pcr.

3. Else output a random element of Pr.

Let X denote the output of Sim(1n, Pcr, q). It suffices to show that for each p ∈ P ,

|Pr[f(q, P) = p] − Pr[X = p]| = 2−Ω(k), since this also implies |Pr[f(q, P) = ∅] − Pr[X =

∅]| = 2−Ω(k). We have

Pr [f(q, P) = p] = Pr [f(q, P) = p,F] + Pr [f(q, P) = p,¬F]

= Pr [F] |Pcr|−1 + Pr [f(q, P) = p,¬F]

Note that Pr[F] = 1−
(n−|Pcr|

B

)(
n
B

)−1. Therefore,

|Pr[f(q, P) = p]− Pr[X = p]| = Pr[¬F]|Pr [f(q, P) = p | ¬F]− δ(p ∈ Pr)|Pr|−1|.

104

If |Pcr| ≥ n1/2−1/(2c), this is 2−Ω(k), since then Pr[¬F] = 2−Ω(k). Otherwise, |Pcr| <

n1/2−1/(2c), and as shown in the proof of correctness, we have Pr[E] = Pr[Pr ⊆ ∪iSi] =

1− 2−Ω(k). Thus

Pr[f(q, P) = p | ¬F] = Pr[f(q, P) = p | E , ¬F] Pr[E]± 2−Ω(k) = δ(p ∈ Pr)|Pr|−1 ± 2−Ω(k),

which completes the proof.

6.2.5 c-approximate NN Protocol Leaking k Bits

Protocol Overview: We consider three balls Pr ⊆ Pbr ⊆ Pcr, where c− b, b− 1 ∈ Θ(1). We

start by trying to use dimensionality reduction to separate Pr from P \ Pbr, and to output

a random point of Pr. If this fails, we try to sample and output a random point of Pcr.

If this also fails, then it will likely hold that n1/3 ≤ |Pbr| ≤ |Pcr| ≤ n2/3. We then sample

down the pointset P by a factor of n−1/3, obtaining P̃ with survivors P̃br, P̃cr of Pbr, Pcr

respectively. It will now likely hold that we can use dimensionality reduction to separate

P̃br from P̃ \ P̃cr to obtain and output a random point of P̃br. The hint function will encode

the probability, to the nearest multiple of 2−k, that the first dimensionality reduction fails,

which may be a non-negligible function of P \Pcr. This hint will be enough to simulate the

entire protocol.

105

c-ApproxWithHelp (q, P):

1. Set B = Õ(n1/3).

2. Independently run DimReduce(τ(r, br), B, q, P) k times, generating shares (S1
i , S

2
i).

3. Bob finds random subsets P ′, P̃ of P of respective sizes B and n2/3.

4. Independently run DimReduce(τ(br, cr), B, q, P̃) k times, generating shares (S̃1
i , S̃

2
i).

5. A secure circuit performs the following computation on inputs q, S1
i , S

2
i , P

′, S̃1
i , S̃

2
i .

� Compute Si = S1
i ⊕ S2

i and S̃i = S̃1
i ⊕ S̃2

i for all i.

� If for most i, |Si| < B, let f(q, P) be a random point in Pr ∩ ∪iSi, or ∅ if it is

empty.

� Else if Pcr ∩ P ′ 6= ∅, let f(q, P) be a random point in Pcr ∩ P ′.

� Else let f(q, P) be a random point in Pbr ∩∪iS̃i if it is non-empty, otherwise set

f(q, P) = ∅.

� Output (f(q, P), null).

The protocol can be implemented in polynomial time with communication Õ(B + d) =

Õ(n1/3 + d).

To prove correctness and privacy, we introduce some notation. Let E1 be the event that

the majority of the |Si| are less than B, and E2 the event that Pr ⊆ ∪iSi. Let F be the

event that P ′ ∩Pcr 6= ∅. Let G1 be the event that 1 ≤ P̃br ≤ P̃cr ≤ B and G2 the event that

P̃br ⊆ ∪iS̃i. Finally, let H1 = H(r, br, P) and H2 = H(br, cr, P̃). Note that Pr[H1],Pr[H2]

are 1− 2−Ω(k) by Lemma 100. We need two lemmas:

Lemma 101 Pr[E2 | E1] = 1− 2−Ω(k).

Proof: If H1 and E1 occur, then there is an i for which Pr ⊆ Si, so E2 occurs.

Lemma 102 Pr[G2 | G1] = 1− 2−Ω(k).

Proof: If H2 and E2 occur, then the majority of the S̃i contain P̃br, so G2 occurs.

106

Correctness: We may assume Pr 6= ∅. The probability s of correctness is just the proba-

bility the algorithm doesn’t return ∅. Since F , E1, and G1 are independent,

s ≥ Pr[E1] Pr[E2 | E1] + Pr[¬E1](Pr[F] + Pr[¬F] Pr[G1] Pr[G2 | G1]).

Case |Pbr| < B: H1 implies E1 since |Pbr| < B, and using Lemma 101, s ≥ Pr[E1] Pr[E2 |

E1] = 1− 2−Ω(k).

Case |Pbr| ≥ B: Since Pr[E2 | E1] = 1 − 2−Ω(k) by Lemma 101, we just need to show

that Pr[F] + Pr[¬F] Pr[G1] Pr[G2 | G1] = 1 − 2−Ω(k). If |Pcr| > n2/3, it suffices to show

Pr[F] = 1 − 2−Ω(k). This holds for large enough B = Õ(n1/3). Otherwise, if |Pcr| ≤ n2/3,

then it suffices to show Pr[G1] Pr[G2 | G1] = 1 − 2−Ω(k). By assumption, B ≤ |Pbr| ≤

|Pcr| ≤ n2/3. Therefore, for large enough B, Pr[G1] = 1− 2−Ω(k), and thus by Lemma 102,

Pr[G1] Pr[G2 | G1] = 1− 2−Ω(k).

Privacy: Note that Bob gets no output, so Alice’s privacy follows from the composi-

tion of DimReduce and the secure circuit protocol of step 5. Similarly, if we can construct

a simulator Sim with inputs 1n, Pcr, q, h(Pcr, q) so that the distributions 〈q, P, f(q, P)〉 and

〈q, P, Sim(1n, Pcr, q, h(Pcr, q))〉 are statistically close, Bob’s privacy will follow by that of

DimReduce and the secure circuit of step 5.

We define the hint function h(Pcr, q) to output the nearest multiple of 2−k to Pr[E1]. In

the analysis we may assume that Sim knows Pr[E1] exactly, since its output distribution in

this case will be statistically close to its real output distribution.

Sim (1n, Pcr, q,Pr[E1]):

1. Set B = Õ(n1/3).

2. With probabiity Pr[E1], output a random element of Pr, or output ∅ if Pr = ∅.

3. Else with probability 1−
(n−|Pcr|

B

)(
n
B

)−1, output a random element of Pcr,

4. Else output a random element of Pbr.

107

Let X denote the output of Sim(1n, Pcr, q,Pr[E1]). It suffices to show that for each p ∈ P ,

|Pr[f(q, P) = p]− Pr[X = p]| = 2−Ω(k),

since then we have |Pr[f(q, P) = ∅] − Pr[X = ∅]| = 2−Ω(k). Using the independence of

F , E1,G1, and Lemmas 101, 102, we bound Pr[f(q, P) = p] as follows

Pr[f(q, P) = p] = Pr[E1, f(q, P) = p] + Pr[¬E1, f(q, P) = p]

= Pr[E1] Pr[f(q, P) = p | E2E1]± 2−Ω(k) + Pr[¬E1] Pr[F] Pr[f(q, P) = p | F,¬E1]

+ Pr[¬E1] Pr[¬F] Pr[f(q, P) = p | ¬F,¬E1]

= Pr[E1]|Pr|−1δ(p ∈ Pr)± 2−Ω(k) + Pr[¬E1] Pr[F]|Pcr|−1

+ Pr[¬E1] Pr[¬F] Pr[G1] Pr[f(q, P) = p | G1G2¬F¬E1]± 2−Ω(k)

+ Pr[¬E1] Pr[¬F] Pr[¬G1] Pr[f(q, P) = p | ¬G1¬F¬E1]

= Pr[E1]|Pr|−1δ(p ∈ Pr) + Pr[¬E1] Pr[F]|Pcr|−1 + Pr[¬E1] Pr[¬F] Pr[G1]|Pbr|−1δ(p ∈ Pbr)

+ Pr[¬E1] Pr[¬F] Pr[¬G1] Pr[f(q, P) = p | ¬E1¬F¬G1]± 2−Ω(k).

On the other hand, since Pr[F] = 1−
(n−|Pcr|

B

)(
n
B

)−1, we have

Pr[X = p] = Pr[E1]|Pr|−1δ(p ∈ Pr)+Pr[¬E1] Pr[F]|Pcr|−1+Pr[¬E1] Pr[¬F]|Pbr|−1δ(p ∈ Pbr),

so that

|Pr[f(q, P) = p]−Pr[X = p]| ≤ Pr[¬E1] Pr[¬F] Pr[¬G1] Pr[f(q, P) = p | ¬E1¬F¬G1]+2−Ω(k).

If |Pbr| < B, Pr[¬E1] = 2−Ω(k). If |Pcr| ≥ n2/3, Pr[¬F] = 2−Ω(k). Otherwise B ≤ |Pbr| ≤

|Pcr| ≤ n2/3, and as shown for correctness, Pr[¬G1] = 2−Ω(k), which shows |Pr[f(q, P) =

p]− Pr[X = p]| = 2−Ω(k).

108

Bibliography

[1] A. Akella, A. Bharambe, M. Reiter, and S. Seshan. Detecting ddos attacks on isp

networks, 2003.

[2] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating

the frequency moments. In STOC, pages 20–29, 1996.

[3] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992.

[4] Alexandr Andoni, Piotr Indyk, and Mihai Patrascu. On the optimality of the dimen-

sionality reduction method. In FOCS, pages 449–458, 2006.

[5] Z. Bar-Yossef. The complexity of massive data set computations, 2002.

[6] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statis-

tics approach to data stream and communication complexity. In FOCS, pages 209–218,

2002.

[7] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. Information theory

methods in communication complexity. In IEEE Conference on Computational Com-

plexity, pages 93–102, 2002.

[8] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An easy ω(n) lower

bound for a gap hamming distance problem, 2004.

[9] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting

distinct elements in a data stream. In RANDOM, pages 1–10, 2002.

[10] Amos Beimel, Renen Hallak, and Kobbi Nissim. Private approximation of clustering

and vertex cover. In TCC, pages 383–403, 2007.

109

[11] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers computation in

private information retrieval: Pir with preprocessing. In CRYPTO, pages 55–73, 2000.

[12] J. D. C. Benaloh. Verifiable secret-ballot elections., 1987.

[13] Krishna Bharat and Andrei Z. Broder. A technique for measuring the relative size and

overlap of public web search engines. Computer Networks, 30(1-7):379–388, 1998.

[14] Lakshminath Bhuvanagiri and Sumit Ganguly. Estimating entropy over data streams.

In ESA, pages 148–159, 2006.

[15] Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha. Sim-

pler algorithm for estimating frequency moments of data streams. In SODA, pages

708–713, 2006.

[16] Christian Cachin, Jan Camenisch, Joe Kilian, and Joy Müller. One-round secure com-

putation and secure autonomous mobile agents. In ICALP, pages 512–523, 2000.

[17] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private informa-

tion retrieval with polylogarithmic communication. In EUROCRYPT, pages 402–414,

1999.

[18] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally compos-

able two-party and multi-party secure computation. In STOC, pages 494–503, 2002.

[19] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal algo-

rithm for computing the entropy of a stream. In SODA, pages 328–335, 2007.

[20] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on

the multi-party communication complexity of set disjointness. In IEEE Conference on

Computational Complexity, pages 107–117, 2003.

[21] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in

data streams. In ICALP, pages 693–703, 2002.

[22] Chmielewski and Hoepman. Fuzzy private matching. In Manuscript, 2006.

[23] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords, 1997.

110

[24] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information

retrieval. In FOCS, pages 41–50, 1995.

[25] Don Coppersmith and Ravi Kumar. An improved data stream algorithm for frequency

moments. In SODA, pages 151–156, 2004.

[26] Graham Cormode and S. Muthukrishnan. Summarizing and mining skewed data

streams. In SDM, 2005.

[27] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-

Interscience, New York, NY, USA, 1991.

[28] W. Du and M. Atallah. Protocols for secure remote database access with approximate

matching, 2000.

[29] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J. Strauss, and

Rebecca N. Wright. Secure multiparty computation of approximations. ACM Trans-

actions on Algorithms, 2(3):435–472, 2006.

[30] W. Feller. An Introduction to Probability Theory and its Applications. John Wiley,

1968.

[31] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base

applications. Journal of Computer and System Sciences, 31(2):182–209, 1985.

[32] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and

set intersection. In EUROCRYPT, pages 1–19, 2004.

[33] Sumit Ganguly. Estimating frequency moments of data streams using random linear

combinations. In APPROX-RANDOM, pages 369–380, 2004.

[34] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy

in private information retrieval schemes. In STOC, pages 151–160, 1998.

[35] Oded Goldreich. Secure multi-party computation. Working Draft, 2000.

[36] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or

a completeness theorem for protocols with honest majority. In STOC, pages 218–229,

1987.

111

[37] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,

28(2):270–299, 1984.

[38] I.J. Good. Surprise indexes and p-values. J. of Statistical Computation and Simulation,

32:90–92, 1989.

[39] Shai Halevi, Robert Krauthgamer, Eyal Kushilevitz, and Kobbi Nissim. Private ap-

proximation of np-hard functions. In STOC, pages 550–559, 2001.

[40] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-

random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,

1999.

[41] Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity

based cryptography (extended abstract). In FOCS, pages 230–235, 1989.

[42] P. Indyk. High-dimensional computational geometry, 2000.

[43] Piotr Indyk. A small approximately min-wise independent family of hash functions. J.

Algorithms, 38(1):84–90, 2001.

[44] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data

stream computation. J. ACM, 53(3):307–323, 2006.

[45] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing

the curse of dimensionality. In STOC, pages 604–613, 1998.

[46] Piotr Indyk and David P. Woodruff. Tight lower bounds for the distinct elements

problem. In FOCS, pages 283–, 2003.

[47] Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments

of data streams. In STOC, pages 202–208, 2005.

[48] Piotr Indyk and David P. Woodruff. Polylogarithmic private approximations and effi-

cient matching. In TCC, pages 245–264, 2006.

[49] W. Johnson and J. Lindenstrauss. Extensions of lipschitz maps into a hilbert space.

Contemporary Mathematics, 26:189–206, 1984.

112

[50] Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication com-

plexity of set intersection. SIAM J. Discrete Math., 5(4):545–557, 1992.

[51] Ilan Kremer, Noam Nisan, and Dana Ron. Errata for: ”on randomized one-round

communication complexity”. Computational Complexity, 10(4):314–315, 2001.

[52] R. Kumar. Story of distinct elements, 2006.

[53] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,

1997.

[54] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approximate

nearest neighbor in high dimensional spaces. In STOC, pages 614–623, 1998.

[55] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. Lecture Notes in

Computer Science, 1880:36–??, 2000.

[56] V.D. Milman and G. Schechtman. Asymptotic theory of finite dimensional normed

spaces. Lecture Notes in Mathematics, 1200, 1986.

[57] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Univ. Press, 1995.

[58] S. Muthukrishnan. Data streams: algorithms and applications, 2003.

[59] David Naccache and Jacques Stern. A new public-key cryptosystem. In EUROCRYPT,

pages 27–36, 1997.

[60] Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function

evaluation. In STOC, pages 590–599, 2001.

[61] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In STOC,

pages 245–254, 1999.

[62] Ilan Newman. Private vs. common random bits in communication complexity. Inf.

Process. Lett., 39(2):67–71, 1991.

[63] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.

In EUROCRYPT, pages 223–238, 1999.

[64] Alexander A. Razborov. On the distributional complexity of disjointness. Theor.

Comput. Sci., 106(2):385–390, 1992.

113

[65] Michael E. Saks and Xiaodong Sun. Space lower bounds for distance approximation

in the data stream model. In STOC, pages 360–369, 2002.

[66] Strauss and Zheng. Private approximate heavy hitters. In Manuscript, 2007.

[67] J. H. van Lint. An Introduction to Coding Theory. New York: Springer-Verlag, 1992.

[68] David P. Woodruff. Optimal space lower bounds for all frequency moments. In SODA,

pages 167–175, 2004.

[69] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing

(preliminary report). In STOC, pages 209–213, 1979.

[70] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In

FOCS, pages 160–164, 1982.

[71] Andrew Chi-Chih Yao. Lower bounds by probabilistic arguments (extended abstract).

In FOCS, pages 420–428, 1983.

114

