
Corruption and Recovery-Efficient Locally
Decodable Codes

David Woodruff

IBM Almaden
dpwoodru@us.ibm.com

Abstract. A (q, δ, ε)-locally decodable code (LDC) C : {0, 1}n → {0, 1}m
is an encoding from n-bit strings to m-bit strings such that each bit xk
can be recovered with probability at least 1

2
+ ε from C(x) by a random-

ized algorithm that queries only q positions of C(x), even if up to δm
positions of C(x) are corrupted. If C is a linear map, then the LDC is lin-
ear. We give improved constructions of LDCs in terms of the corruption
parameter δ and recovery parameter ε. The key property of our LDCs is
that they are non-linear, whereas all previous LDCs were linear.
1. For any δ, ε ∈ [Ω(n−1/2), O(1)], we give a family of (2, δ, ε)-LDCs

with length m = poly(δ−1, ε−1) exp (max(δ, ε)δn). For linear (2, δ, ε)-
LDCs, Obata has shown that m ≥ exp (δn). Thus, for small enough
constants δ, ε, two-query non-linear LDCs are shorter than two-query
linear LDCs.

2. We improve the dependence on δ and ε of all constant-query LDCs
by providing general transformations to non-linear LDCs. Taking
Yekhanin’s linear (3, δ, 1/2− 6δ)-LDCs with m = exp

(
n1/t

)
for any

prime of the form 2t − 1, we obtain non-linear (3, δ, ε)-LDCs with

m = poly(δ−1, ε−1) exp
(
(max(δ, ε)δn)1/t

)
.

Now consider a (q, δ, ε)-LDC C with a decoder that has n matchings
M1, . . . ,Mn on the complete q-uniform hypergraph, whose vertices are
identified with the positions of C(x). On input k ∈ [n] and received word
y, the decoder chooses e = {a1, . . . , aq} ∈ Mk uniformly at random and
outputs

⊕q

j=1
yaj . All known LDCs and ours have such a decoder, which

we call a matching sum decoder. We show that if C is a two-query LDC
with such a decoder, then m ≥ exp (max(δ, ε)δn). Interestingly, our tech-
niques used here can further improve the dependence on δ of Yekhanin’s
three-query LDCs. Namely, if δ ≥ 1/12 then Yekhanin’s three-query
LDCs become trivial (have recovery probability less than half), whereas
we obtain three-query LDCs of length exp

(
n1/t

)
for any prime of the

form 2t − 1 with non-trivial recovery probability for any δ < 1/6.

1 Introduction

Classical error-correcting codes allow one to encode an n-bit message x
into a codeword C(x) such that even if a constant fraction of the bits
in C(x) are corrupted, x can still be recovered. It is well-known how to

construct codes C of length O(n) that can tolerate a constant fraction of
errors, even in such a way that allows decoding in linear time [1]. However,
if one is only interested in recovering a few bits of the message, then these
codes have the disadvantage that they require reading all (or most) of the
codeword. This motivates the following definition.

Definition 1. ([2]) Let δ, ε ∈ [0, 1], q an integer. We say C : {0, 1}n →
{0, 1}m is a (q, δ, ε)-locally decodable code (LDC for short) if there is a
probabilistic oracle machine A such that:

– In every invocation, A makes at most q queries.
– For every x ∈ {0, 1}n, every y ∈ {0, 1}m with ∆(y, C(x)) ≤ δm, and

every k ∈ [n], Pr[Ay(k) = xk] ≥ 1
2 + ε, where the probability is taken

over the internal coin tosses of A. An algorithm A satisfying the above
is called a (q, δ, ε)-local decoding algorithm for C (a decoder for short).

In the definition above, ∆(y, C(x)) denote the Hamming distance between
y and C(x), that is, the number of coordinates for which the strings differ.
For a (q, δ, ε)-LDC, we shall refer to q as the number of queries, δ as the
corruption parameter, ε as the recovery parameter, and m as the length.
An LDC is linear if C is a linear transformation over GF (2). Note that
recovery probability 1/2 (corresponding to ε = 0) is trivial since the
decoder can just flip a random coin.

There is a large body of work on locally decodable codes. Katz and
Trevisan [2] formally defined LDCs, proved that 1-query LDCs do not
exist, and proved super-linear lower bounds on the length of constant-
query LDCs. We refer the reader to the survey [3] and the references
therein.

All known constructions of LDCs with a constant number of queries
are super-polynomial in length, and not even known to be of subexpo-
nential length. Thus, understanding the asymptotics in the exponent of
the length of such codes is important, and could be useful in practice
for small values of n. A lot of work has been done to understand this
exponent for two-query linear LDCs [4–7]. Important practical applica-
tions of LDCs include private information retrieval and load-balancing in
the context of distributed storage. Depending on the parameters of the
particular application, δ and ε may be flexible, and our constructions will
be able to exploit this flexibility.

We state the known bounds relevant to this paper. The first two con-
cern LDCs for which q = 2, while the remaining pertain to q > 2.

Notation: exp(f(n)) denotes a function g(n) that is 2O(f(n)).

Theorem 1. ([8])1 Any (2, δ, ε)-LDC satisfies m ≥ exp(ε2δn).

For linear LDCs, a tight lower bound is known.

Theorem 2. ([6, 7]) Any linear (2, δ, ε)-LDC has m ≥ exp (δn/(1− 2ε)).
Moreover, there exists a linear (2, δ, ε)-LDC with m ≤ exp (δn/(1− 2ε)).

The shortest LDCs for small values of q > 2 are due to Yekhanin [9],
while for large values one can obtain the shortest LDCs by using the
LDCs of Yekhanin together with a recursion technique of Beimel, Ishai,
Kushilevitz, and Raymond [10]. The following is what is known for q = 3.

Theorem 3. ([9]) For any δ ≤ 1/12 and any prime of the form 2t − 1,
there is a linear (3, δ, 1/2 − 6δ)-LDC with m = exp

(
n1/t

)
. Using the

largest known such prime, this is m = exp
(
n1/32582657

)
.

Notice that this theorem does not allow one to obtain shorter LDCs for
small δ and ε < 1/2− 6δ, as intuitively should be possible.

Results: We give improved constructions of constant-query LDCs in
terms of the corruption parameter δ and recovery parameter ε. A key
property of our LDCs is that they are the first non-linear LDCs. Our
main theorem is the following transformation.

Theorem 4. Given a family of (q, δ, 1/2 − βδ)-LDCs of length m(n),
where β > 0 is any constant, and δ < 1/(2β) is arbitrary (i.e., for a
given n, the same encoding function C is a (q, δ, 1/2− βδ)-LDC for any
δ < 1/(2β)), there is a family of non-linear (q,Θ(δ), ε)-LDCs of length
O(dr2)m(n′/r) for any δ, ε ∈ [Ω(n−1/2), O(1)], where d = max(1, O(ε/δ)),
r = O((ε+ δ)−2), and n′ = n/d.

As a corollary, for any δ, ε ∈ [Ω(n−1/2, O(1)], we give a (2, δ, ε)-LDC with
length m = poly(δ−1, ε−1) exp (max(δ, ε)δn). Thus, by Theorem 2, as soon
as δ and ε are small enough constants, this shows that 2-query non-linear
LDCs are shorter than 2-query linear LDCs. This is the first progress on
the question of Kerenidis and de Wolf [8] as to whether the dependence
on δ and ε could be improved. Another corollary is that for any prime
of the form 2t − 1 and any δ, ε ∈ [Ω(n−1/2), O(1)], there is a family of
non-linear (3, δ, ε)-LDCs with m = poly(δ−1, ε−1) exp

(
(max(δ, ε)δn)1/t

)
.

1 This bound can be strengthened to m ≥ exp
(
ε2δn/(1− 2ε)

)
using the techniques of

[6] in a relatively straightforward way. We do not explain the proof here, as our focus
is when ε is bounded away from 1/2, in which case the bounds are asymptotically
the same.

Next, we show that our bound for 2-query LDCs is tight, up to a
constant factor in the exponent, for a large family of LDCs including
all known ones as well as ours. Let C be a (q, δ, ε)-LDC with a decoder
that has n matchings M1, . . . ,Mn on the complete q-uniform hypergraph
whose vertices are identified with the positions of C(x). On input k ∈ [n]
and received word y, the decoder chooses a hyperedge e = {a1, . . . , aq} ∈
Mk uniformly at random and outputs

⊕q
j=1 yaj . We call such a decoder

a matching sum decoder, and show that if a 2-query LDC C has such a
decoder then m ≥ exp (max(δ, ε)δn). Thus, our upper bound is tight for
such LDCs. To prove that for any (2, δ, ε)-LDC, m ≥ exp (max(δ, ε)δn),
our result implies that it suffices to transform any LDC into one which
has a matching sum decoder, while preserving δ, ε, and m up to small
factors.

Finally, as an independent application of our techniques, we trans-
form the (3, δ, 1/2 − 6δ)-LDCs with m = exp(n1/t) of Theorem 3, into
(3, δ, 1/2 − 3δ − η)-LDCs with m = exp(n1/t), where η > 0 is an arbi-
trarily small constant. In particular, we extend the range of δ for which
the LDCs in Theorem 3 become non-trivial from δ ≤ 1/12 to δ < 1/6.
Moreover, there is no 3-query LDC with a matching sum decoder with
δ ≥ 1/6. Indeed, if the adversary corrupts exactly m/6 hyperedges of Mi,
the recovery probability can be at most 1/2.

Techniques: Our main idea for introducing non-linearity is the fol-
lowing. Suppose we take the message x = x1, . . . , xn and partition it into
n/r blocks B1, . . . , Bn/r, each containing r = Θ(ε−2) different xi. We then
compute zj = majority(xi | i ∈ Bj), and encode the bits z1, . . . , zn/r us-
ing a (q, δ, ε)-LDC C. To obtain xk if xk ∈ Bj , we use the decoder for
C to recover zj with probability at least 1/2 + ε. We should expect that
knowing zj is useful, since, using the properties of the majority function,
Prx[xk = zj] ≥ 1

2 + ε.
This suggests an approach: choose s1, . . . , sτ ∈ {0, 1}n for a certain

τ = O(r2), apply the above procedure to each of x⊕ s1, . . . , x⊕ sτ , then
take the concatenation. The s1, . . . , sτ are chosen randomly so that for
any x ∈ {0, 1}n and any index k in any block Bj , a 1

2 + ε fraction of the
different x⊕ si have the property that their k-th coordinate agrees with
the majority of the coordinates in Bj . The length of the encoding is now
τm, where m is the length required to encode n/r bits.

To illustrate how recovery works, suppose that C were the Hadamard
code. The decoder would choose a random i ∈ [τ] and decode the portion
of the encoding corresponding to the (corrupted) encoding of x⊕ si. One
could try to argue that with probability at least 1− 2δ, the chosen posi-

tions by the Hadamard decoder are correct, and given that these are cor-
rect, (x⊕si)k agrees with the majority of the coordinates in the associated
block with probability at least 1

2 +ε. If these events were independent, the
success probability would be ≥ (1−2δ)(1/2+ε)+2δ(1/2−ε) = 1/2+Ω(ε).

However, these events are very far from being independent! Indeed,
the adversary may first recover x from the encoding, and then for any
given k, determine exactly which (x ⊕ si)k agree with the majority of
the coordinates in the associated block, and corrupt only these positions.
This problem is unavoidable. However, we observe that we can instead
consider r = Θ(δ−2). Then, if δ = Ω(ε), we can show the decoder’s success
probability is at least 1/2 +Ω(ε). If, on the other hand, ε = Ω(δ), we can
first allow δ to grow to Θ(ε) via a technique similar to the upper bound
given in [6], reducing n to n′ = δn/ε. Then we can effectively perform the
above procedure with r = Θ(ε−2) and n′/r = Θ(ε2n′) = Θ(εδn).

To show that this technique is optimal for LDCs C with matching
sum decoders, we need to significantly generalize the quantum arguments
of [8]. A general matching sum decoder may have matchings Mi with
very different sizes and contain edges that are correct for a very different
number of x ∈ {0, 1}n. If we recklessly apply the techniques of [8], we
cannot hope to obtain an optimal dependence on δ and ε.

Given such a C, we first apply a transformation to obtain a slightly
longer LDC C ′ in which all matchings have the same size, and within a
matching, the average fraction of x for which an edge is correct, averaged
over edges, is the same for all matchings. We then apply another trans-
formation to obtain an LDC C ′′ which increases the length of the code
even further, but makes the matching sizes very large. Finally, we use
quantum information theory to lower bound the length of C ′′, generaliz-
ing the arguments of [8] to handle the case when the average fraction of
x for which an edge is correct, averaged over edges in a matching of C ′′,
is sufficiently large.

Finally, we use an idea underlying the transformation from C ′ to C ′′

in our lower bound argument to transform the LDCs of Theorem 3 into
LDCs with a better dependence on δ and ε, thereby obtaining a better
upper bound. The idea is to blow up the LDC by a constant factor in the
exponent, while increasing the sizes of the underlying matchings. Con-
structing the large matchings in the blown-up LDC is more complicated
than it was in our lower bound argument, due to the fact that we run into
issues of consistently grouping vertices of hypergraphs together which did
not arise when we were working with graphs.

Other Related Work: Other examples where non-linear codes were

shown to have superior parameters to linear codes include the construc-
tion of t-resilient functions [11, 12], where it is shown [13] that non-linear
Kerdock codes outperform linear codes in the construction of such func-
tions. See [14] for a study of non-linearity in the context of secret sharing.

2 Preliminaries

The following theorem is easy to prove using elementary Fourier analysis.
We defer the proof to the full version. Throughout, we shall let c be the
constant (2/π)3/4/4.

Theorem 5. Let r be an odd integer, and let f : {0, 1}r → {0, 1} be the
majority function, where f(x) = 1 iff there are more 1s than 0s in x.
Then for any k ∈ [r], Prx∈{0,1}r [f(x) = xk] > 1

2 + 2c
r1/2 .

We also need an approximate version of this theorem, which follows from
a simple application of the probabilistic method.

Lemma 1. Let r and f be as in Theorem 5. Then there are τ = O(r2)
strings µ1, µ2, . . . , µτ ∈ {0, 1}r so that for all x ∈ {0, 1}r and all k ∈ [r],
Pri∈[τ][f(x⊕ µi) = (x⊕ µi)k] ≥ 1

2 + c
r1/2 .

In our construction we will use the Hadamard code C : {0, 1}n → {0, 1}2n ,
defined as follows. Identify the 2n positions of the codeword with distinct
vectors v ∈ {0, 1}n, and set the vth position of C(x) to 〈v, x〉 mod 2. To
obtain xk from a vector y which differs from C(x) in at most a δ fraction
of positions, choose a random vector v, query positions yv and yv⊕ek , and
output yv ⊕ yv⊕ek . With probability at least 1 − 2δ, we have yv = 〈v, x〉
and yv⊕ek = 〈v ⊕ ek, x〉, and so yv ⊕ yv⊕ek = xk. It follows that for any
δ > 0, the Hadamard code is a (2, δ, 1/2− 2δ)-LDC with m = exp(n).

Finally, in our lower bound, we will need some concepts from quantum
information theory. We borrow notation from [8]. For more background
on quantum information theory, see [15].

A density matrix is a positive semi-definite (PSD) complex-valued
matrix with trace 1. A quantum measurement on a density matrix ρ is a
collection of PSD matrices {Pj} satisfying

∑
j P
†
j Pj = I, where I is the

identity matrix (A† is the conjugate-transpose of A). The set {Pj} defines
a probability distribution X on indices j given by Pr[X = j] =tr(P †j Pjρ).

We use the notation AB to denote a bipartite quantum system, given
by some density matrix ρAB, and A and B to denote its subsystems.
More formally, the density matrix of ρA is trB(ρAB), where trB is a map
known as the partial trace over system B. For given vectors |a1〉 and

|a2〉 in the vector space of A, and |b1〉 and |b2〉 in the vector space of B,
trB(|a1〉〈a2| ⊗ |b1〉〈b2|)

def= |a1〉〈a2|tr(|b1〉〈b2|), and trB(ρAB) is then well-
defined by requiring trB to be a linear map.

S(A) is the von Neumann entropy of A, defined as
∑d
i=1 λi log2

1
λi

,
where the λi are the eigenvalues of A. S(A | B) = S(AB) − S(B) is the
conditional entropy of A given B, and S(A;B) = S(A)+S(B)−S(AB) =
S(A)− S(A | B) is the mutual information between A and B.

3 The Construction

Let C : {0, 1}n → {0, 1}m(n) come from a family of (q, δ, 1/2− βδ)-LDCs,
where β > 0 is any constant, and δ < 1/(2β) is arbitrary (i.e., for a given
n, the same function C is a (q, δ, 1/2− βδ)-LDC for any δ < 1/(2β)). For
example, for any δ < 1/4, the Hadamard code is a (2, δ, 1/2 − 2δ)-LDC,
while Yekhanin [9] constructed a (3, δ, 1/2− 6δ)-LDC for any δ < 1/12.

Setup: Assume that δ, ε ∈ [Ω(n−1/2), O(1)]. W.l.o.g., assume n is
a sufficiently large power of 3. Recall from Section 2 that we will use
c to denote the constant (2/π)3/4/4. Define the parameter r = (ε(1 +
2βc)/c+ 2βδ/c)−2 = Θ((ε+ δ)−2). Let τ = O(r2) be as in Lemma 1. We
define d = max(1, cε/δ). Let n′ = n/d. We defer the proof of the following
lemma to the full version. The lemma establishes certain integrality and
divisibility properties of the parameters that we are considering.

Lemma 2. Under the assumption that δ, ε ∈ [Ω(n−1/2), O(1)] and β =
Θ(1), by multiplying δ and ε by positive constant factors, we may assume
that the following two conditions hold simultaneously: (1) r and d are
integers, and (2) (rd) | n.

In the sequel we shall assume that for the given δ and ε, the two condi-
tions of Lemma 2 hold simultaneously. If in this case we can construct a
(q, δ, ε)-LDC with some length m′, it will follow that for any δ and ε we
can construct a (q,Θ(δ), Θ(ε))-LDC with length Θ(m′).

Proof strategy: We first construct an auxiliary function f : {0, 1}n′ →
{0, 1}`, where ` = τm(n′/r). The auxiliary function coincides with our
encoding function C ′ : {0, 1}n → {0, 1}m′(n) when d = 1. When d > 1,
then C ′ will consist of d applications of the auxiliary function, each on a
separate group of n′ coordinates of the message x. Recall that d > 1 iff
cε ≥ δ, and in this case we effectively allow δ to grow while reducing n
(see Section 1 for discussion). We will thus have m′(n) = dτm(n′/r). We
then describe algorithms Encode(x) and Decodey(k) associated with C ′.
Finally, we show that C ′ is a (q, δ, ε)-LDC with length m′(n). Note that

we have ensured r, d, and n′/r = n/(dr) are all integers.
An auxiliary function: Let µ1, . . . , µτ be the set of strings in {0, 1}r

guaranteed by Lemma 1. For each i ∈ [τ], let si be the concatena-
tion of n′/r copies of µi. For each j ∈ [n′/r], let Bj be the set Bj =
{(j − 1)r+ 1, (j − 1)r+ 2, . . . , jr}. The Bj partition the interval [1, n′]
into n′/r contiguous blocks each of size r. We now explain how to compute
the auxiliary function f(u) for u ∈ {0, 1}n′ . Compute w1 = u ⊕ s1, w2 =
u⊕s2, . . . , wτ = u⊕sτ . For each i ∈ [τ], compute zi ∈ {0, 1}n

′/r as follows:
∀j ∈ [n′/r], zi,j = majority(wi,k | k ∈ Bj). Then f(u) is defined to be,
f(u) = C(z1) ◦ C(z2) · · · ◦ C(zτ), where ◦ denotes string concatenation.
Observe that |f(u)| = τm(n′/r).

The LDC: We describe the algorithm Encode(x) associated with our
encoding C ′ : {0, 1}n → {0, 1}m′(n). We first partition x into d contigu-
ous substrings u1, . . . , ud, each of length n′. Then, Encode(x) = C ′(x) =
f(u1) ◦ f(u2) · · · ◦ f(ud). Observe that |C ′(x)| = m′(n) = dτm(n′/r).
Next we describe the algorithm Decodey(k). We think of y as being de-
composed into y = y1 ◦ y2 · · · ◦ yd, where each yh, h ∈ [d], is a block of
m′(n)/d = τm(n′/r) consecutive bits of y. Let h be such that xk occurs in
uh. Further, we think of yh as being decomposed into yh = v1 ◦ v2 · · · ◦ vτ ,
where each vi, i ∈ [τ], is a block of m(n′/r) consecutive bits of yh.

To decode, first choose a random integer i ∈ [τ]. Next, let j ∈ [n′/r]
be such that (k mod d) + 1 ∈ Bj . Simulate the decoding algorithm Avi(j)
associated with C. Suppose the output of Avi(j) is the bit b. If the kth bit
of si is 0, output b, else output 1− b. The following is our main theorem.

Theorem 6. Given a family of (q, δ, 1/2 − βδ)-LDCs of length m(n),
where β > 0 is any constant, and δ < 1/(2β) is arbitrary (i.e., for a
given n, the same encoding function C is a (q, δ, 1/2− βδ)-LDC for any
δ < 1/(2β)), there is a family of non-linear (q,Θ(δ), ε)-LDCs of length
O(dr2)m(n′/r) for any δ, ε ∈ [Ω(n−1/2), O(1)], where d = max(1, O(ε/δ)),
r = O((ε+ δ)−2), and n′ = n/d.

Proof. We show that C ′ is a (q, δ, ε)-LDC with length m′(n) = dτm(n′/r).
First, observe that Decodey(k) always makes at most q queries since

the decoder A of C always makes at most q queries. Also, we have already
observed that |C ′(x)| = m′(n) = dτm(n′/r). Now, let x ∈ {0, 1}n and
k ∈ [n] be arbitrary. Let h be such that xk occurs in uh.

First, consider the case that cε < δ, so that h = d = 1. Suppose k
occurs in the set Bj . By Theorem 5 and the definition of r, for at least
a 1

2 + c
r1/2 = 1

2 + (1 + 2βc)ε + 2βδ fraction of the τ different zi, we have
zi,j = yi,k = xk⊕si,k. Since i is chosen at random by Decodey(k), we have

Pri[zi,j = xk ⊕ si,k] > 1
2 + (1 + 2βc)ε+ 2βδ. In case that zi,j = xk ⊕ si,k,

we say i is good. Let E be the event that the i chosen by the decoder is
good, and let G be the number of good i. We think of the received word
y = y1 (recall that d = 1) as being decomposed into y = v1◦v2 · · ·◦vτ . The
adversary can corrupt a set of at most δm′(n) positions in C ′(x). Suppose
the adversary corrupts δim′(n) positions in C(zi), that is, ∆(C(zi), vi) ≤
δim

′(n). So we have the constraint 0 ≤ 1
τ

∑
i δi ≤ δ.

Conditioned on E , the decoder recovers zi,j with probability at least
1
G

∑
good i (1− βδi) = 1− β

G

∑
good i δi ≥ 1− τβδ

G ≥ 1− 2βδ, where we
have used thatG ≥ τ/2. In this case the decoder recovers xk by adding si,k
to zi,j modulo 2. Thus, the decoding probability is at least Pr[E]− 2βδ ≥
1
2 + (1 + 2βc)ε + 2βδ − 2βδ > 1

2 + ε. Now consider the case that cε ≥ δ,
so that d may be greater than 1. The number of errors in the substring
f(uh) of C ′(x) is at most δm′(n) = δdτm(n′/r) = δ(cε/δ)τm(n′/r) =
cε|f(uh)|, so there is at most a cε fraction of errors in the substring f(uh).
Again supposing that (k mod d) + 1 ∈ Bj , by Theorem 5 we deduce that
Pri[zi,j = xk ⊕ si,k] > 1

2 + (1 + 2βc)ε + 2βδ. We define a good i and the
event E as before. We also decompose yh into yh = v1 ◦ v2 · · · ◦ vτ . By
an argument analogous to the case d = 1, the decoding probability is at
least Pr[E]− 2βcε > 1

2 + (1 + 2βc)ε+ 2βδ − 2βcε > 1
2 + ε, as needed.

We defer the proofs of the next two corollaries to the full version, which
follow by plugging in Hadamard’s and Yekhanin’s codes into Theorem 6.

Corollary 1. For any δ, ε ∈ [Ω(n−1/2), O(1)], there is a (2, δ, ε)-LDC of
length m = poly(δ−1, ε−1) exp (max(δ, ε)δn).

Corollary 2. For any δ, ε ∈ [Ω(n−1/2), O(1)] and any prime of the form
2t−1, there is a (3, δ, ε)-LDC with m = poly(δ−1, ε−1) exp

(
(max(δ, ε)δn)1/t

)
.

4 The Lower Bound

Consider a (q, δ, ε)-LDC C with length m which has a decoder that has
n matchings M1, . . . ,Mn of edges on the complete q-uniform hypergraph,
whose vertices are identified with positions of the codeword. On input
i ∈ [n] and received word y, the decoder chooses e = {a1, . . . , aq} ∈ Mi

uniformly at random and outputs
⊕q

j=1 yaj . All known LDCs, including
our non-linear LDCs, satisfy this property. In this case we say that C has
a matching sum decoder.

Any linear (2, δ, ε)-LDC C can be transformed into an LDC with
slightly worse parameters, but with the same encoding function and a

matching sum decoder. Indeed, identify the m positions of the encoding
of C with linear forms v, where C(x)v = 〈x, v〉. Obata [6] has shown that
such LDCs have matchings Mi of edges {u, v} with u ⊕ v = ei, where
|Mi| ≥ βδm for a constant β > 0. By replacing δ with δ′ = βδ/3, the
decoder can query a uniformly random edge in Mi and output the correct
answer with probability at least (βδm− βδm/3)/(βδm) ≥ 2/3. One can
extend this to linear LDCs with q > 2 by generalizing Obata’s argument.

Theorem 7. Any (2, δ, ε)-LDC C with a matching sum decoder satisfies
m ≥ exp (max(δ, ε)δn).

Proof. For each i ∈ [n], let the matching Mi of the matching sum decoder
satisfy |Mi| = cim. We may assume, by relabeling indices, that c1 ≤ c2 ≤
· · · ≤ cn. Let c̄ =

∑
i ci/n be the average of the ci. For each edge e =

{a, b} ∈Mi, let pi,e be the probability that C(x)a⊕C(x)b equals xi for a
uniformly chosen x ∈ {0, 1}n. The probability, over a random x ∈ {0, 1}n,
that the decoder outputs xi if there are no errors is ψi =

∑
e∈Mi

pi,e/|Mi|,
which is at least 1/2+ε. But ψi is also at least 1/2+δ/ci. Indeed, otherwise
there is a fixed x for which it is less than 1/2 + δ/ci. For this x, say e =
{a, b} is good if C(x)a⊕C(x)b = xi. Then

∑
good e∈Mi

1/|Mi| < 1/2+δ/ci.
By flipping the value of exactly one endpoint of δm good e ∈ Mi, this
probability drops to 1/2, a contradiction.

We first transform the LDC C to another code C ′. Identify the coordi-
nates of x with indices 0, 1, . . . , n−1. For j = 0, . . . , n−1, let πj be the j-th
cyclic shift of 0, . . . , n−1, so for x = (x0, . . . , xn−1) ∈ {0, 1}n, we have that
πj(x) = (xj , xj+1, . . . , xj−1). We define C ′(x) = C(π0(x)) ◦C(π1(x)) · · · ◦
C(πn−1(x)). Then m′ = |C ′(x)| = n|C(x)|. For j, k ∈ {0, 1, . . . , n− 1}, let
Mj,k be the matching Mk in the code C(πj(x)). Define the n matchings
M ′0, . . . ,M

′
n−1 with M ′i = ∪n−1

j=0Mj,i−j .
We need another transformation from C ′ to a code C ′′. For each

i ∈ {0, . . . , n−1}, impose a total ordering on the edges in M ′i by ordering
the edges e1, . . . , e|M ′i | so that pi,e1 ≥ pi,e2 · · · ≥ pi,e|M′

i
|
. Put t = b1/(2c̄)c,

and let C ′′ be the code with entries indexed by ordered multisets S of [m′]
of size t, where C ′′S(x) =

⊕
v∈S C

′(x)v. Thus, m′′ = |C ′′(x)| = (m′)t. Con-
sider a random entry S = {v1, . . . , vt} of C ′′. Fix an i ∈ {0, 1, . . . n − 1}.
Say S hits i if S ∩

(
∪e∈M ′ie

)
6= ∅. Now, | ∪e∈M ′i e| = 2|M ′i | = 2c̄m′,

so, Pr[S hits i] ≥ 1 − (1− 2c̄)t ≥ 1 − e−2c̄t ≥ 1 − e−1 > 1/2. Thus,
at least a 1/2 fraction of entries of C ′′ hit i. We can group these en-
tries into a matching M ′′i of edges of [m′′] with |M ′′i | ≥ m′′/4 as follows.
Consider an S that hits i and let e = {a, b} be the smallest edge of

M ′i for which S ∩ {a, b} 6= ∅, under the total ordering of edges in M ′i
introduced above. Since S is ordered, we may look at the smallest posi-
tion j containing an entry of e. Suppose, w.l.o.g., that Sj = a. Consider
the ordered multiset T formed by replacing the j-th entry of S with b.
Then, C ′′S(x) ⊕ C ′′T (x) =

⊕
v∈S C

′(x)v ⊕
⊕

v∈T C
′(x)v = 2

⊕
v/∈eC

′(x)v ⊕
(C ′(x)a ⊕ C ′(x)b) = C ′(x)a⊕C ′(x)b. Given T , the smallest edge hit by T
is e, and this also occurs in position j. So the matching M ′′i is well-defined
and of size at least m′′/4.

We will also need a more refined statement about the edges in M ′′i . For
a random entry S of C ′′, say S hits i by time j if S∩

(
∪j`=1 ∪e∈M`,i−` e

)
6= ∅.

Let σj =
∑j
`=1 c`. Now, | ∪j`=1 ∪e∈M`,i−`e| = 2σjm = 2σjm′/n. Thus,

Pr[S hits i by time j] ≥ 1−
(

1− 2σj
n

)t
≥ 1−e−

2σjt

n ≥ 1−e−
σj
nc̄ ≥

σj
nc̄

1 + σj
nc̄

,

where the last inequality is 1− e−x > x/(x+ 1), which holds for x > −1.
Now, σj/(nc̄) = σj/

∑n
`=1 c` ≤ 1, so Pr[S hits i by time j] ≥ σj/(2nc̄).

For {S, T} ∈M ′′i , let p′′i,{S,T} be the probability over a random x that
C ′′(x)S ⊕ C ′′(x)T = xi. Then p′′i,{S,T} = pi,e, where e is the smallest edge
of M ′i hit by S and T . We define ψ′′i = 1

|M ′′i |
∑
{S,T}∈M ′′i

p′′i,{S,T}, which is
the probability that the matching sum decoder associated with C ′′ with
matchings M ′′i outputs xi correctly for a random x, given that there are
no errors in the received word. Let φi,j be the probability that the smallest
edge e ∈M ′i hit by a randomly chosen edge in M ′′i is in Mj,i−j . Due to our
choice of total ordering (namely, within a given Mj,i−j , edges with larger
pj,e value are at least as likely to occur as those with smaller pj,e for a
randomly chosen edge in M ′′i , conditioned on the edge being in Mj,i−j),
ψ′′i ≥

∑
j φi,jψj ≥

∑
j φi,j

(
1
2 + max(ε, δ/cj)

)
= 1

2 +
∑
j φi,j max(ε, δ/cj).

Observe that
∑j
`=1 φi,` ≥ σj/(2nc̄), and since the expression max(ε, δ/cj)

is non-increasing with j, the above lower bound on ψ′′i can be further
lower bounded by setting

∑j
`=1 φi,` = σj/(2nc̄) for all j. Then φi,j is set

to cj/(2nc̄) for all j, and we have ψ′′i ≥ 1/2 + max(ε, δ/c̄)/2.
Let r̄ = max(ε, δ/c̄)/2. We use quantum information theory to lower

bound m′′. For each j ∈ [m′′], replace the j-th entry of C ′′(x) with
(−1)C

′′(x)j . We can represent C ′′(x) as a vector in a state space of logm′′

qubits |j〉. The vector space it lies in has dimension m′′, and its standard
basis consists of all vectors |b〉, where b ∈ {0, 1}logm′′ (we can assume
m′′ is a power of 2). Define ρx = 1

m′′C(x)†C(x). It is easy to verify that
ρx is a density matrix. Consider the n + logm′′ qubit quantum system

XW : 1
2n
∑
x |x〉〈x| ⊗ ρx. We use X to denote the first system, Xi for

its qubits, and W for the second subsystem. By Theorem 11.8.4 of [15],
S(XW) = S(X) + 1

2n
∑
x S(ρx) ≥ S(X) = n. Since W has logm′′ qubits,

S(W) ≤ logm′′, hence S(X : W) = S(X) + S(W) − S(XW) ≤ S(W) ≤
logm′′. Using a chain rule for relative entropy and a highly non-trivial in-
equality known as the strong subadditivity of the von Neumann entropy,
we get S(X | W) =

∑n
i=1 S(Xi | X1, . . . , Xi−1,W) ≤

∑n
i=1 S(Xi | W).

In the full version, we show that S(Xi | W) ≤ H(1
2 + r̄

2). That theorem
is a generalization of the analogous theorem of [8], as here we just have
matchings M ′′i for which the average probability that the sum of end-
points of an edge in M ′′i is at least 1

2 + r̄, whereas in [8] this was a worst
case probability. Putting everything together, n −

∑n
i=1H

(
1
2 + r̄

2

)
≤

S(X) −
∑n
i=1 S(Xi | W) ≤ S(X) − S(X | W) = S(X : W) ≤ logm′′.

Now, H(1
2 + r̄

2) = 1 − Ω(r̄2), and so logm′′ = Ω(nr̄2). But logm′′ =
O(t) logm′ = O(t) log nm = O(t logm) = O

(
1
c̄ logm

)
. Thus, m ≥

exp
(
nc̄r̄2

)
. If δ ≥ ε, then δ/c̄ ≥ ε, and so r̄ ≥ δ/c̄. Thus, c̄r̄2 ≥ δ2/c̄ ≥ δ2.

Otherwise, ε > δ, and so c̄r̄2 ≥ max(c̄ε2, δ2/c̄), which is minimized if
c̄ = δ/ε and equals εδ. Thus, m ≥ exp (max(δ, ε)δn).

5 A Better Upper Bound for Large δ

We improve the dependence on δ of 3-query LDCs, while only increasing
m by a constant factor in the exponent. The proof uses a similar technique
to that used for constructing the auxiliary code C ′′ in the previous section.

Theorem 8. For any δ > 0 and any constant η > 0, there is a linear
(3, δ, 1/2− 3δ − η)-LDC with m = exp

(
n1/t

)
for any prime 2t − 1.

Proof. Let γ > 0 be a constant to be determined, which will depend on
η. Let C be the linear (3, δ, 1/2 − 6δ)-LDC with m = exp

(
n1/t

)
con-

structed in [9]. The LDC C has a matching sum decoder by definition
[9]. We identify the positions of C with linear forms v1, . . . , vm. We first
increase the length of C - for each j ∈ [m], we append to C both a du-
plicate copy of vj , denoted aj , and a copy of the zero function, denoted
bj . Thus, aj computes 〈vj , x〉 and bj computes 〈0, x〉 = 0. Notice that the
resulting code C ′ is a (3, δ/3, 1/2 − 6δ)-LDC with length m′ = 3m, and
that C ′ has a matching Z of m triples {vj , aj , bj} with vj ⊕ aj ⊕ bj = 0.
For each triple {vj , aj , bj}, we think of it as a directed cycle with edges
(vj , aj), (aj , bj), (bj , vj). For any δ > 0, the LDC C also has n match-
ings M1, . . . ,Mn of triples of v1, . . . , vm so that for all i ∈ [n] and all

e = {va, vb, vc} ∈Mi, we have va ⊕ vb ⊕ vc = ei, where ei is the i-th unit
vector. We prove the following property of C in the full version.

Lemma 3. For all i ∈ [n], |Mi| ≥ m/18.

Now, for each i ∈ [n] and for each triple {a, b, c} ∈ Mi, we think of the
triple as a directed cycle with edges (a, b), (b, c), (c, a) for some arbitrary
ordering of a, b, and c. Define the parameter p = d18 ln 1/(3γ)e. We form
a new linear code C ′′ indexed by all ordered multisets S ⊂ [m′] of size p.
Let m′′ = |C ′′(x)| = (m′)p. We set the entry C ′′S(x) equal to

⊕
v∈S C

′
v(x).

For i ∈ [n], arbitrarily impose a total order � on the triples in Mi. For a
particular ordered multiset S1, we say that S1 hits Mi if there is a triple
e ∈ Mi for which e ∩ S1 6= ∅. Then, Pr[S1 hits Mi] ≥ 1 −

(
1− 3|Mi|

m′

)p
≥

1−
(
1− 1

18

)p
≥ 1−e−

p
18 ≥ 1−3γ. For any S1 that hits Mi, let {a, b, c} be

the smallest triple hit, under the total ordering �. Since S1 is ordered, we
may choose the smallest of the p positions in S1 which is in {a, b, c}. Let j
be this position. Suppose the j-th position contains the linear form a, and
that (a, b), (b, c), and (c, a) are the edges of the directed cycle associated
with {a, b, c}. Consider the triple {S1, S2, S3} formed as follows.

Triple-Generation(S1):

1. Set the j-th position of S2 to b, and the j-th position of S3 to c.
2. For all positions k 6= j, do the following,

(a) If v` is in the k-th position of S1, then put a` in the k-th position
of S2 and b` in the k-th position of S3.

(b) If a` is in the k-th position of S1, then put b` in the k-th position
of S2 and v` in the k-th position of S3.

(c) If b` is in the k-th position of S1, then put v` in the k-th position
of S2 and a` in the k-th position of S3.

3. Output {S1, S2, S3}.

Since vj ⊕ aj ⊕ bj = 0 for all j, we have,
(⊕

v∈S1
v
)
⊕
(⊕

v∈S2
v
)
⊕(⊕

v∈S3
v
)

= a ⊕ b ⊕ c = ei. The elaborate way of generating S2 and
S3 was done to ensure that, had we computed Triple-Generation(S2) or
Triple-Generation(S3), we would also have obtained {S1, S2, S3} as the
output. This is true since, independently for each coordinate, we walk
along a directed cycle of length 3. Thus, we may partition the ordered
sets that hit Mi into a matching M ′′i of m′′/3 − γm′′ triples {S1, S2, S3}
containing linear forms that sum to ei.

Consider the following decoder for C ′′: on input i ∈ [n] with oracle
access to y, choose a triple {S1, S2, S3} ∈ M ′′i uniformly at random and
output yS1 ⊕ yS2 ⊕ yS3 . If the adversary corrupts at most δm′′ positions
of C ′′, then at most δm′′ triples in M ′′i have been corrupted, and so the

recovery probability of the decoder is at least |M
′′
i |−δm

′′

|M ′′i |
=

m′′
3
−γm′′−δm′′
m′′
3
−γm′′

=

1− 3δ
1−3γ ≥ 1− 3δ − η, where the final inequality follows for a sufficiently

small constant γ > 0. So C ′′ is a (3, δ, 1/2− 3δ − η)-LDC. The length of
C ′′ is m′′ = (3m)p = mO(1) = exp

(
n1/t

)
. This completes the proof.

Acknowledgment: The author thanks T.S. Jayram and the anonymous
referees for many helpful comments.

References

1. Sipser, M., Spielman, D.A.: Expander codes. IEEE Trans. Inform. Theory, 42:1710-
1722 (1996)

2. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-
correcting codes. In: STOC. (2000)

3. Trevisan, L.: Some applications of coding theory in computational complexity.
Quaderni di Matematica 13:347-424 (2004)

4. Dvir, Z., Shpilka, A.: Locally decodable codes with two queries and polynomial
identity testing for depth 3 circuits. SIAM J. Comput. 36(5) (2007) 1404–1434

5. Goldreich, O., Karloff, H.J., Schulman, L.J., Trevisan, L.: Lower bounds for linear
locally decodable codes and private information retrieval. Computational Com-
plexity 15(3) (2006) 263–296

6. Obata, K.: Optimal lower bounds for 2-query locally decodable linear codes. In:
RANDOM. (2002) 39–50

7. Shiowattana, D., Lokam, S.V.: An optimal lower bound for 2-query locally decod-
able linear codes. Inf. Process. Lett. 97(6) (2006) 244–250

8. Kerenidis, I., de Wolf, R.: Exponential lower bound for 2-query locally decodable
codes via a quantum argument. J. Comput. Syst. Sci. 69(3) (2004) 395–420

9. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
J. ACM 55(1) (2008)

10. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.F.: Breaking the O(n
1

2k−1)
barrier for information-theoretic private information retrieval. In: FOCS. (2002)

11. Chor, B., Goldreich, O., Hästad, J., Friedman, J., Rudich, S., Smolensky, R.: The
bit extraction problem of t-resilient functions. In: FOCS. (1985) 396–407

12. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public dis-
cussion. SIAM J. Comput 17(2) (1988) 210–229

13. Stinson, D.R., Massey, J.L.: An infinite class of counterexamples to a conjecture
concerning nonlinear resilient functions. J. Cryptology 8(3) (1995) 167–173

14. Beimel, A., Ishai, Y.: On the power of nonlinear secrect-sharing. In: IEEE Con-
ference on Computational Complexity. (2001) 188–202

15. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Cam-
bridge University Press (2000)

