Throughout $\kappa \geq \lambda \geq \omega$, κ regular; α, β, γ are ordinals. Definitions. 1. Write α uniquely as $\gamma \alpha_1 + \alpha_2$, $\alpha_2 < \gamma$. Then $r_\gamma (\alpha)$ and $c_\gamma (\alpha)$ are defined to be α_2 and cofinality $(\gamma \alpha_1)$, respectively. Further, $\alpha \sim \beta \mod \gamma$, if (1) $r_\gamma (\alpha) = r_\gamma (\beta)$, and (2) $\alpha < \gamma$ iff $\beta < \gamma$. 2. $\mathbb{U} \equiv \mathbb{B}$ means that \mathbb{U} and \mathbb{B} agree on $L_{\kappa,\lambda}$-sentences.

Theorem. 1. If λ is a successor or ω, $\kappa = \lambda$, then $< \alpha; \gamma$; $t > \equiv_{\kappa, \lambda} \beta$, $\epsilon > \equiv_{\kappa, \lambda} \beta$, $\epsilon >$ iff (1) $\alpha \sim \beta \mod \kappa$, and (2) $\omega_{\kappa, \lambda} (\alpha)$ and $\omega_{\kappa, \lambda} (\beta)$ are equal, or both at least λ. 2. If λ is regular, $\kappa > \lambda$, then $< \alpha; \gamma$; $t > \equiv_{\kappa, \lambda} \beta$, $\epsilon >$ iff (1) $\alpha \sim \beta \mod \kappa$, and (2) $\omega_{\kappa, \lambda} (\alpha)$ and $\omega_{\kappa, \lambda} (\beta)$ are equal, or both at least λ. 3. If λ is weakly inaccessible, $\kappa = \lambda$, then $< \alpha; \gamma$; $t > \equiv_{\kappa, \lambda} \beta$, $\epsilon >$ iff (1) $\alpha \sim \beta \mod \kappa$, and (2) $\omega_{\kappa, \lambda} (\alpha)$ and $\omega_{\kappa, \lambda} (\beta)$ are equal, or both at least λ. 4. If λ is singular, $\kappa = \lambda^+$, then $< \alpha; \gamma$; $t > \equiv_{\kappa, \lambda} \beta$, $\epsilon >$ iff (1) $\alpha \sim \beta \mod \kappa$, and (2) $\omega_{\kappa, \lambda} (\alpha)$ and $\omega_{\kappa, \lambda} (\beta)$ are equal, or both at least λ^+. 5. If λ is singular, $\kappa > \lambda^+$, then $< \alpha; \gamma$; $t > \equiv_{\kappa, \lambda} \beta$, $\epsilon >$ iff (1) $\alpha \sim \beta \mod \kappa$, and (2) $\omega_{\kappa, \lambda} (\alpha)$ and $\omega_{\kappa, \lambda} (\beta)$ are equal, or both at least λ^+. The theorem yields a complete characterization of ordinals in $L_{\kappa, \lambda}$ (using only < and =), from which follows Corollary. Assume $\kappa > \lambda$, or κ is weakly inaccessible; $\kappa = \lambda$. Let Σ be a set of $L_{\kappa, \lambda}$-sentences involving only < and =, \exists every subset of Σ having less than κ sentences has a well-ordered model. Then Σ has a well-ordered model. (Received January 7, 1974.)