Adaptive Insertion Policies for High Performance Caching

Moinuddin K. Qureshit Aamer Jaleels

tECE Department
The University of Texas at Austin
{moin, patt;@hps.utexas.edu

ABSTRACT

The commonly used LRU replacement policy is susceptible to
thrashing for memory-intensive workloads that have a wuglset
greater than the available cache size. For such applicatitve
majority of lines traverse from the MRU position to the LRU-po
sition without receiving any cache hits, resulting in ing#ét use

of cache space. Cache performance can be improved if soge fra
tion of the working set is retained in the cache so that at g
fraction of the working set can contribute to cache hits.

We show that simple changes to timsertion policycan signif-
icantly reduce cache misses for memory-intensive worldoatle
propose thé.RU Insertion Policy (LIPWwhich placesthe incoming
line in the LRU position instead of the MRU position. LIP pro-
tects the cache from thrashing and results in close to optiita
rate for applications that have a cyclic reference patt&ve. also
propose théimodal Insertion Policy (BIPas an enhancement of
LIP that adapts to changes in the working set while maintgithe
thrashing protection of LIP. We finally propos®gnamic Insertion
Policy (DIP) to choose between BIP and the traditional LRU pol-
icy depending on which policy incurs fewer misses. The pseagb
insertion policies do not require any change to the existiache
structure, are trivial to implement, and have a storageirement
of less than two bytes. We show that DIP reduces the averadgd MP
of the baseline 1IMB 16-way L2 cache by 21%, bridging twoetkir
of the gap between LRU and OPT.

Categories and Subject Descriptors:
B.3.2 [Design Styles]: Cache memories

General Terms: Design, Performance.
Keywords: Replacement, Thrashing, Set Sampling, Set Dueling.

1. INTRODUCTION

The LRU replacement policy and its approximations have re-
mained as the de-facto standard for replacement policy iochgm
caches over the last several decades. While the LRU polisy ha
the advantage of good performance for high-locality woekls, it
can have a pathological behavior for memory-intensive Voartts
that have a working set greater than the available cache Biwre
have been numerous proposals to improve the performandedf L
however, many of these proposals incur a huge storage @erhe

Permission to make digital or hard copies of all or part o6 thiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage @vat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listguiges prior specific
permission and/or a fee.

ISCA'07,June 9-13, 2007, San Diego, California, USA.

Copyright 2007 ACM 978-1-59593-706-3/07/00085.00.

Yale N. Patt; Simon C. Steely Jr.g

Joel Emers

§Intel Corporation, VSSAD
Hudson, MA

{aamer.jaleel, simon.c.steely.jr, joel.emer;@intel.com

significant changes to the existing design, and poor pedaoa
for LRU-friendly workloads. Every added structure and oo
the existing design requires design effort, verificatioforf and
testing effort. Therefore, it is desirable that changesh® don-
ventional replacement policy require minimal changes ® dk-
isting design, require no additional hardware structuees] per-
form well for a wide variety of applications. This paper fees on
designing a cache replacement policy that performs welbfiih
LRU-friendly and LRU-averse workloads while requiring tigg

ble hardware overhead and changes.

We divide the problem of cache replacement into two paits:
tim selection policyandinsertion policy The victim selection pol-
icy decides which line gets evicted for storing an incomiimg|
whereas, the insertion policy decides where in the replaceist
the incoming line is placed. For example, the traditional LiR-
placement policy inserts the incoming line in the MRU pasifi
thus using the policy oMRU Insertion Inserting the line in the
MRU position gives the line a chance to obtain a hit while &t tr
verses all the way from the MRU position to the LRU position.
While this may be a good strategy for workloads whose working
set is smaller than the available cache size or for worklahds
have high temporal locality, such an insertion policy caitbeash-
ing for memory-intensive workloads that have a working setter
than the available cache size. We show that with the traditio
LRU policy, more than 60% of the lines installed in the L2 cacé
main unused between insertion and eviction. Thus, mosteiith
serted lines occupy cache space without ever contributimguthe
hits. When the working set is larger than the available caibe,
cache performance can be improved by retaining some fracfio
the working set long enough that at least that fraction ofibek-
ing set contributes to cache hits. However, the traditituidl pol-
icy offers no protection for retaining the cache lines lonidpan the
cache capacity.

We show that simple changes to the insertion policy can sig-
nificantly improve cache performance for memory-intensigek-
loads while requiring negligible hardware overhead. Weppse
the LRU Insertion Policy (LIPwhich placesall incoming lines in
the LRU position. These lines are promoted from the LRU parsit
to the MRU position only if they get referenced while in thellR
position. LIP prevents thrashing for workloads whose wogkset
is greater than the cache size and obtains near-optimatei for
workloads that have a cyclic access pattern. LIP can easiiynb
plemented by avoiding the recency update at insertion.

LIP may retain the lines in the non-LRU position of the regenc
stack even if they cease to contribute to cache hits. Sineedbkes
not have an aging mechanism, it may not respond to changes in
the working set of a given application. We propose Bimodal
Insertion Policy (BIP)which is similar to LIP, except that BIP in-
frequently (with a low probability) places the incomingdiim the
MRU position. We show that BIP adapts to changes in the wgrkin
set while retaining the thrashing protection of LIP.

For LRU-friendly workloads that favor the traditional poji of
MRU insertion, the changes to the insertion policy are deni-
tal to cache performance. We proposBynamic Insertion Policy
(DIP) to choose between the traditional LRU policy and BIP de-
pending on which policy incurs fewer misses. DIP requiredire
estimates of misses incurred by each of the competing pslidio
implement DIP without requiring significant hardware owesd,
we proposeSet Dueling The Set Dueling mechanism dedicates a
few sets of the cache to each of the two competing policiesiaed
the policy that performs better on tdedicated setfor the remain-
ing follower sets We analyze both analytical as well as empirical

to the available cache size. For example, if a workload feedjy
reuses a working set of 2 MB, and the available cache size B,1M
then the LRU policy will cause all the installed lines to haaor
temporal locality. In such a case, bypassing or early ewictll
the lines in the working set will not improve cache perforroan
The optimal policy in such cases is to retain some fractiothef
working set long-enough so that at least that fraction ofvtbek-
ing set provides cache hits. However, the traditional LRUicyo
offers no protection for retaining the cache lines longamtithe
cache capacity.

For workloads with a working set greater than the availabkhe

bounds for the number of dedicated sets and show that as few assize, cache performance can be significantly improved ittwhe

32 to 64 dedicated sets are sufficient for Set Dueling to chttos
best policy. An implementation of DIP using Set Dueling riegs!
no extra storage other than a single saturating countererfidrms
similar to LRU for LRU-friendly workloads.

Insertion policies come into effect only during cache nssse
therefore, changes to the insertion policy do not affectabeess

can retain some fraction of the working set. To achieve théssep-
arate the replacement policy into two parngctim selection policy
andinsertion policy The victim selection policy decides which
line gets evicted for storing an incoming line. The insertplicy
decides where in the replacement list the incoming line ésedi.
We propose simple changes to the insertion policy that Bagmitly

time of the cache. The proposed changes to the insertion pol-improve cache performance of memory-intensive workloatigev

icy are particularly attractive as they do not requamey changes

to the structure of an existing cache design, incur only dineg
gible amount of logic circuitry, and have a storage overhefad
less than two bytes. Our evaluations, with 16 memory-iritens

benchmarks, show that DIP reduces the average misses pér 100

instructions (MPKI) for a 1IMB 16-way LRU-managed L2 cache by
21.3%, bridging two-thirds of the gap between LRU and Bekdy
Optimal replacement (OPT) [1].

2. MOTIVATION

A miss in the L2 cache (last-level cache in our studies)sthi
processor for hundreds of cycles, therefore, our study ¢siged
on reducing L2 misses by managing the L2 cache efficientle Th
access stream visible to the L2 cache has filtered temparalityp
due to the hits in the first-level cache. The loss of tempaelity
causes a significant percentage of L2 cache lines to remaiean
We refer to cache lines that are not referenced betweentimser
and eviction azero reuse linesFigure 1 shows that for the base-
line 1IMB 16-way LRU-managed L2 cachmepre than half the lines
installed in the cache are never reused before gettingedidthus,
the traditional LRU policy results in inefficient use of cactpace
as most of the lines installed occupy cache space withoutibat
ing to cache hits.

=
o
o

Zero Reuse Lines (%)

Figure 1: Zero Reuse Lines for 1MB 16-way L2 cache

Zero reuse lines occur because of two reasons. First, tke lin
has no temporal locality which means that the line is never re
referenced. It is not beneficial to insert such lines in thehea
Second, the line is re-referenced at a distance greatettibarache
size, which causes the LRU policy to evict the line beforeeitsg
reused. Several studies have investigated bypassin@B]I&][19]
and early eviction [21][20] of lines with poor temporal |dicy
However, temporal locality exploited by the cache is a fiorcof
both the replacement policy and the size of the working dative

requiring negligible overhead. We present our methodologfpre
discussing the solution.

3. EXPERIMENTAL METHODOLOGY
3.1 Configuration

We use a trace-driven cache simulator for all the experiggnt
the paper, except for the IPC results shown in Section 6.3d&Ve
fer the description of our execution driven simulator tottbection.
Table 1 shows the parameters of the first level instructipratd
data (D) caches that we used to generate the traces for comdsec
level cache. The L1 cache parameters were kept constarit éor a
periments. The baseline L2 cache is 1MB 16-way set asseeiati
All caches in the baseline use a 64B line-size. We do not eafor
inclusion in our memory model. Throughout this papgeRU de-
notes the traditional LRU policy which inserts all incomilirges in
the MRU position. Unless stated otherwise, all caches wseRU
policy for replacement decisions.

Table 1: Cache Configuration
L1 I-Cache 16kB; 64B linesize; 2-way with LRU repl.
L1 D-Cache | 16kB; 64B linesize; 2-way with LRU repl.

[Baseline L2 | 1 MB,; 64B linesize; 16-way with LRU repl. |

3.2 Benchmarks

The SPEC CPU2000 benchmarks used in our study were com-
piled for the Alpha ISA with- f ast optimizations and profiling
feedback enabled. For each SPEC benchmark, we use a represen
tative sample of 250M instructions obtained with a tool tiet
developed using the SimPoint [12] methodology. Since caehe
placement does not affect the number of compulsory missesHs
marks that have a high percentage of compulsory misses are un
likely to benefit from improvements in cache replacemergoal
rithms. Therefore, we show detailed results only for benatks
for which approximately 50% or fewer misses are compulsoBses:

In addition to the SPEC benchmarks, we also used the heailtibe
mark from the Olden suite as it represents a workload in wttieh
working set increases with time. We ran the health benchrmark
completion. Table 2 shows the fast-forward interval (FFViDg
number of L2 misses per 1000 instructions (MPKI), and the per
centage of misses that are compulsory misses for each bamnkhm

For the 11 SPEC benchmarks excluded from our studies, the pro
posed technique (DIP) changes MPKI4y0.01.

Table 2: Benchmark summary (B = Billion)
[Name | FFWD [MPKI | Compulsory Misses
art 18.25B 38.7 0.5%

mcf 14.75B 136 1.8%

twolf 30.75B | 3.48 2.9%

vpr 60B 2.16 4.3%
facerec | 111.75B| 3.66 4.8%

ammp 4.75B 2.83 5.0%

galgel 14B 5.34 5.9%
equake | 26.25B | 184 14.2%

bzip2 2.25B 2.4 14.8%
parser 66.25B | 1.57 20.0%
sixtrack 8.5B 0.42 20.7%

apsi 3.25B | 0.32 21.4%

lucas 2.5B 16.2 41.6%

mgrid 3.5B 7.73 46.6%

swim 3.5B 23.0 50.4%
[health] 0B | 61.7 | 0.73% |

4. STATIC INSERTION POLICIES

The traditional LRU replacement policy inserts all incogiimes
in the MRU position. Inserting the line in the MRU positiorves
the line a chance to obtain a hit while it traverses all the frasn
the MRU position to the LRU position. While this may be a good
strategy for workloads whose working set is smaller tharetye!-
able cache size or for workloads that have high temporallHoca
ity, such an insertion policy causes thrashing for mematgisive
workloads that have a working set greater than the availcdtbe
size. When the working set is greater than the availableecaize,
cache performance can be improved by retaining some fracfio
the working set long enough that at least that fraction ofibek-
ing set results in a cache hits.

For such workloads, we propose thRU Insertion Policy (LIP)
which placesall incoming lines in the LRU position. These lines
are promoted from the LRU position to the MRU position only if
they are reused while in the LRU position. LIP prevents thiag
for workloads that reuse a working set greater than the alviail
cache size. To our knowledge this is the first study to ingesé
the insertion ofdemandines in the LRU position. Earlier studies
[2] have proposed to insert prefetched lines in the LRU jporsito
reduce the pollution caused by inaccurate prefetching. évew
they were targeting the problem of extraneous referencesrgéed
by the prefetcher while our study is targeted towards thaldin
mental locality problem in memory reference streams. Whiirt
proposal, demand lines are still inserted in the MRU positieak-
ing the cache susceptible to thrashing by demand refereias
proposal, LIP, protects the cache from thrashing by insg#il in-
coming lines in the LRU position. Our work can be combinechwit
Lin et al.'s work to protect the cache from both thrashing a4 as
prefetcher pollution.

LIP may retain the lines in the non-LRU position of the regenc
stack even if they cease to be re-referenced. Since LIP dates n

4.1 Analysis with Cyclic Reference Model

To analyze workloads that cause thrashing with the LRU pol-
icy, we use a theoretical model of cyclic references. A smil
model has been used earlier by McFarling [10] for modeling-co
flict misses in a direct-mapped instruction cache. d,adenote the
address of a cache line. Lgt; - - - ar) denote a temporal sequence
of referencesii, ao, ...,ar. A temporal sequence that repeats for
N times is represented 48, - - - ar)”.

Let there be an access pattern in whieh - - - ar)" is followed
by (b1 - - - br)Y. We analyze the behavior of this pattern for a
fully associative cache that contains space for stoff(d< < T°)
lines. We assume that the parametar BIP is small, and that both
sequences in the access pattern repeat many tives$ 7" and
N >> K/e). Table 3 compares the hit-rate of LRU, OPT, LIP,
and BIP for this access pattern.

Table 3: Hit Rate for LRU, OPT, LIP, and BIP

| | (a1 ---ar)V | (by - - b)Y
LRU 0 0
OPT (K -1)/T (K-1)/T
LIP (K -1)/T 0
BIP (K—1—¢€¢-[T—-K)/T |=*(K—-1—€¢-[T-K)])/T
~(K-1)/T ~(K—-1)/T

As the cache size is less thdh LRU causes thrashing and re-
sults in zero hits for both sequences. The optimal policg ietain
any (K — 1) lines out of the T lines of the cyclic reference so that
those(K — 1) lines receive hits. After the cache is warmed up, Be-
lady’s OPT retaing X' — 1) blocks out of thel” blocks, achieving
a hit-rate of(K — 1) /T for both sequences. LIP behaves similar to
OPT for the first sequence. However, LIP never allows any etém
of the second sequence to enter the non-LRU position of ttieeca
thus, causing zero hits for the second sequence.

In each iteration, BIP inserts approximately(7" — K) lines in
the MRU position which means a hit-rate(d —1—e-[T'— K1) /T".

As the value ok is small, BIP obtains a hit-rate of approximately
(K — 1)/T, which is similar to the hit-rate of LIP. However, BIP
probabilistically allows the lines of any sequence to etttetMRU
position. Therefore, when the sequence changes from thddirs
the second, all the lines in the cache belong to the secone:seq
after K /e misses. For large N, the transition time from the first
sequence to the second sequence is small, and the hit-rBi@ of
is approximately equal toX — 1)/T. Thus, for small values o,
BIP can respond to changes in the working set while retaitiieg
thrashing protection of LIP.

4.2 Case Studies of Thrashing Workloads

We analyze LIP and BIP in detail using three memory-intensiv
benchmarks: mcf, art, and health. These benchmarks ineur th
highest MPKI for the SPEC INT, SPEC FP, and Olden benchmark
suite respectively. The LRU policy results in thrashingreswork-

have an aging mechanism, it may not respond to changes in theing set of these benchmarks is greater than the baseline Hetigc

working set of the given application. We propose Bimodal In-
sertion Policy (BIP)which is similar to LIP, except that it infre-
quently (with a low probability) places some incoming lirat
the MRU position. BIP is regulated by a parameb@modal throt-
tle parameter(e), which controls the percentage of incoming lines
that are placed in the MRU position. Both the traditional LptJ-

icy and LIP can be viewed as a special case of BIP with1 and

For all experiments in this section a valueeof 1/32 is used.

4.2.1 The mcf benchmark:

Figure 2 shows the code structure from thepl i ci t . ¢ file of
the mcf benchmark with the three load instructions that espon-
sible for 84% of the total L2 misses for the baseline cache.

The kernel of mcf can be approximated as linked-list traadsrs

e = 0 respectively. In Section 4.1 we show that for small values of of a data structure whose size is approximately 3.5MB. Edur

¢, BIP can adapt to changes in the working set while retairtieg t
thrashing protection of LIP.

shows the MPKI for mcf when the cache size is varied under the
LRU policy. The MPKI reduces only marginally till 3.5MB and

while (arcin) Causes 84% of all L2 misses
{ .)) (28% by each instruction)
tai | =arcin—>tail;
i f (tail->time + arcin—>org_cost > |atest)
arcin= (arc_t *) tail->mark;
continue;
arcin= (arc_t *) tail->mark
}

Figure 2: Miss-causing instructions from the mcf benchmark

then the first'’knee” of the MPKI curve occurs. LRU results in
thrashing for the baseline 1IMB cache and almost all the ieder
lines are evicted before they can be reused. Both LIP andd&#r
around 1MB out of the 3.5MB working set resulting in hits far a
least that fraction of the working set. For the baseline 1NMBhe,
LRU incurs an MPKI of 136, both LIP and BIP incur an MPKI of
115 (17% reduction over LRU), and OPT incurs an MPKI of 101
(26% reduction over LRU). Thus, both LIP and BIP bridge two-
thirds of the gap between LRU and OPT without extra storage.

g 150

. o 60
2 140y S ss
S ~_ mcf[] B
2 120 S
% 110) £ 4
£ 100 [£
8 90 : \ 8 35
8 B — i S 20
P i o2 1\
: =
D 50 : ! @ 20
L 41— S~ 2 \
0 : o~ 7]
B 30 N @ 19 y
0 20{— 0
7] : \ [-
z o D
01 2 3 456 7 8 0 025 0.5 0.75 1.0 1.251.50 1.75 2.0

Cache Size in MB Cache Size in MB

Figure 3: MPKI vs. cache size for mcf and art

4.2.2 The art benchmark:

Figure 4 shows the code snippet from theanner . c file of
the art benchmark containing the two load instructions #natre-
sponsible for 80% of all the misses for the baseline cache fif$t
load instruction traverses an array of tyjpg_| ayer . The class of
f 1.1 ayer defines it as aeur on containing seven elements of
typedoubl e and one element of type pointerdmubl e. Thus,
the size of each each object of typbé&_| ayer is 64B. For ref-1
input sethunf 1s=10000, therefore, the total size of the array of
f1.layer is64B 10K = 640K B. The second load instruction
traverses a two dimensional array of tygpeubl e. The total size
of this array is equal t8 B * 11 x« 10K = 880K B. Thus, the size
of the working set of the kernel of art is approximately 1.5MB

Figure 3 shows the MPKI of art for varying cache size under
LRU replacement. LRU is oblivious to tH&nee” around 1.5MB
and causes thrashing for the baseline 1MB cache. Both LIBHhd
prevent thrashing by retaining a significant fraction of ehaking
set in the cache. For the baseline 1MB cache, LRU incurs anIMPK
of 38.7, LIP incurs an MPKI of 23.6 (39% reduction over LRU),
BIP incurs an MPKI of 18 (54% reduction over LRU), and OPT
incurs an MPKI of 12.8 (67% reduction over LRU). Both LIP and
BIP are closer to OPT. The accessto atvang[ti] [t]] brings
in cache lines that are not used in later iterations. LIPimetthese
lines in the cache while BIP can evict these lines. Hencaifsig
cantly better MPKI with BIP compared to LIP.

nunf 1s
nunf 2s

for (tj=spot;tj<nunf2s;tj++)

{ Y(tjl.y = 0;

| wi dt h*| hei ght;
nunbj ect s+1;

/I = 100*100 for ref input set
/I = 10+1 for ref input set

[Causes 41% of all L2 misses)

if('Y[tj].reset)
for (ti=0;ti<nunfls;ti++)
Y(tj]l.y += f1_layer[ti].P bus[tf[tj] ;

} ‘\{Causes 39% of all L2 misses)

Figure 4: Miss-causing instructions from the art benchmark

4.2.3 The health benchmark:

Figure 5 shows a code snippet from teal t h. c file. It con-
tains the pointer de-referencing load instruction thatesponsible
for more than 70% of the misses for the baseline cache.

while (list !'= NULL) {

p = list=>patient ;

list = list—>forward; \

[Causes 71% of all L2 misses]

}

Figure 5: Miss-causing instruction from the health benchmak

The health benchmark can be approximated as a micro kernel
that performs linked list traversals with frequent insems and dele-
tions. The size of the linked-list data structure increabgsami-
cally with program execution. Thus, the memory referencessh
can be approximated as a cyclic reference sequence for \tligch
period increases with time. To show the dynamic change in the
size of the working set, we split the benchmark execution fatr
parts (of approximately 50M instructions each). Figure évehthe
MPKI of each of the four phases of execution of health as thbeca
size is varied under the LRU policy.

100 3

g —

£ 60 KRR

S 50 LN

- 40\ 5 %+O-5OM ||

g % |\~ 50M-100M

o 30 " —+ 100M-150M]

2 20 : —=— 150M-198M/—|

g% hY -
N A

0 N
0 0510 15 2.0 25 3.0 35 40
Cache Size in MB

Figure 6: MPKI vs. cache size for health

During the first phase, the size of the working set is less than
the baseline 1MB cache so LRU works well. However, in the othe
three phases, the size of the working set is greater than WARBh
causes thrashing with LRU. For the full execution of hedltRl
incurs an MPKI of 61.7, LIP incurs an MPKI of 38 (38.5% reduc-
tion over LRU), BIP incurs an MPKI of 39.5 (36% reduction over
LRU), and OPT incurs an MPKI of 34 (45% reduction over LRU).

4.3 Case Study of LRU-Friendly Workload

For workloads that cause thrashing with LRU, both LIP and BIP
reduce cache misses significantly. However, some workloads
herently favor the traditional policy of inserting the imomng line
at the MRU position. In such cases, changing the insertidicypo
can hurt cache performance. An example of such a worklodukis t
swim benchmark from the SPEC FP suite. Swim performs matrix
multiplies in its kernel. The firstknee” of the matrix multiplica-
tion occurs at} MB while the secondknee” occurs at a cache
size greater than 64 MB. Figure 7 shows the MPKI for swim as the
cache size is increased froﬁnMB to 64 MB under LRU policy.

g1 o

PERENMNW®WDDSMA

SuUlo uUTo U1 O Ul O

Misses Per 1000 Instruction

Cache Size in MB
Figure 7: MPKI vs. cache size for swim (x-axis in log scale)

There is a huge reduction in MPKI as the cache size is inctease
from 1 MB to 2 MB. However, subsequent increase in cache size
till 64 MB does not have a significant impact on MPKI. For the
baseline cache, the MPKI with both LRU and OPT are similar in-
dicating that there is no scope for reducing misses over R L
policy. In fact, changes to the insertion policy can onlyueel the
hits obtained from the middle of the LRU stack for the baselin
MB cache. Therefore, both LIP and BIP increase MPKI signifi-
cantly over the LRU policy. For the baseline cache, LRU iscm
MPKI of 23, LIP incurs an MPKI of 46.5, BIP incurs an MPKI of
44.3, and OPT incurs an MPKI of 22.8.

4.4 Results

Figure 8 shows the reduction in MPKI with the two proposed
insertion policies, LIP and BIP, over the baseline LRU replaent
policy. For BIP, we show results far = 1/64, ¢ = 1/32, and
e = 1/16 which mean every 64th, 32nd, or 16th miss is inserted in
the MRU position respectivefy.

The thrashing protection of LIP and BIP reduces MPKI by 10%
or more for nine out of the sixteen benchmarks. BIP has better
MPKI reduction than LIP for art and ammp because it can adapt
to changes in the working set of the application. For mostiapp
cations that benefit from BIP, the amount of benefit is notisgas
to the value ok. For benchmarks equake, parser, bzip2 and swim
both LIP and BIP increase the MPKI considerably. This ocbers
cause these workloads either have an LRU friendly accessrpat
or the knee of the MPKI curve is less than the cache size amed the
is no significant benefit from increasing the cache size. k®iir-

2In our studies, we restrict the value ofto 1/power-of-two. To
implement BIP, a pseudo-random number generator is redjuire
If there is no pseudo-random number available then an et f
running counter can be used to implement a 1-ou@’bfpolicy

(n = log2(1/€)). The n-bit counter is incremented on every cache
miss. BIP inserts the incoming line in the MRU position orly i
the value of this n-bit counter is zero. We experimented Wwiith
gnu c rand function as well as the 1-out2f-policy and found the
results to be similar. Throughout the paper, we report tealte for
BIP using the 1-out-of" policy assuming that a pseudo-random
number generator is not available on chip.

70 -BIP (e=1/16

/
< 402
2 304¥
= 201 ’
N 104 ’
£ 9 /
c -10 /
S 20 /
S -30 v
3 -40 =BIP (e=1/64 g
Q
x 0 =BIP (e=1/32 g
— 7
g /
v
/|

S R . : O
NP) S RE & SN

Figure 8: Comparison of Static Insertion Policies

sertion policy to be useful for a wide variety of workloads need

a mechanism that can select between the traditional LRLEyoli
and BIP depending on which incurs fewer misses. The nexsect
describes a cost-effective run-time mechanism to choosecea
LRU and BIP. For the remainder of the paper we use a value of
e = 1/32 for all experiments with BIP.

5. DYNAMIC INSERTION POLICY

For some applications BIP has fewer misses than LRU and for
some LRU has fewer misses than BIP. We want a mechanism that
can choose the insertion policy that has the fewest missehdo
application. We propose a mechanism that dynamically estis
the number of misses incurred by the two competing insepia
cies and selects the policy that incurs the fewest missescalle
this mechanisnDynamic Insertion Policy (DIR)A straightforward
method of implementing DIP is to implement both LRU and BIP
in two extra tag directories (data lines are not requiredstineate
the misses incurred by an insertion policy) and keep trackioth
of the two policies is doing better. The main tag directorythu
cache can then use the policy that incurs the fewest missese S
this implementation of DIP gathers information globally &l the
sets, and enforces a uniform policy for all the sets, we t&lP-
Global.

5.1 The DIP-Global Mechanism

Figure 9 demonstrates the working of DIP-Global for a cache
containing sixteen sets. Let MTD be the main tag directorthef
cache. The two competing policies, LRU and BIP, are each im-
plemented in a separate Auxiliary Tag Directory (ATD). ALIRU
uses the traditional LRU policy and ATD-BIP uses BIP. BotHDAT
LRU and ATD-BIP have the same associativity as the MTD. The
access stream visible to MTD is also applied to both ATD-LRU
and ATD-BIP. A saturating counter, which we cBlblicy Selector
(PSEL) keeps track of which of the two ATDs incurs fewer misses.
All operations on PSEL are done using saturating arithmefic
miss in ATD-LRU increments PSEL and a miss in ATD-BIP decre-
ments PSEL. The Most Significant Bit (MSB) of PSEL is an indi-
cator of which of the two policies incurs fewer misses. If M6B
PSEL is 1, MTD uses BIP, otherwise MTD uses LRU.

5.2 Implementing DIP via Set Dueling

The DIP-Global mechanism requires a substantial hardwame o
head of two extra tag directories. The hardware overheadwfc
paring two policies can be significantly reduced by usingQlye
namic Set Sampling (DS8pncept proposed in [13]. The key in-
sight in DSS is that the cache behavior can be approximattdd wi
a high probability by sampling few sets in the cache. ThusSDS

ATD-LRU MTD ATD-BIP

Set 0
Set 1
Set 2
Set 3
Set 4
Set 5
Set 6
Set 7
Set 8
Set 9
Set 10
Set 11
Set 12
Set 13
Set 14
Set 15

Set 0
Set 1
Set 2
Set 3
Set 4
Set 5
Set 6
Set 7
Set 8
Set 9
Set 10
Set 11
Set 12
Set 13

Set 0
Set 1
Set 2
Set 3
Set 4
Set 5
Set 6
Set 7
Set 8
Set 9
Set 10
Set 11
Set 12
Set 13
Set 14 Set 14
Set 15 Set 15

Miss in ATD-LRU @ Miss in ATD-BIP
L@ . =

ecides Policy
for All Sets in MTD

Figure 9: DIP-Global

can significantly reduce the number of ATD entries in DIP4alb
from thousand(s) of sets to about 32 sets.

Although DSS significantly reduces the storage requirednn i
plementing the ATD (to around 2kB), it still requires buitdi the
separate ATD structure. Thus, implementing DIP will stiitur
the design, verification, and testing overhead of buildimg $ep-
arate ATD structure. We propo$&et Dueling which obviates the
need for a separate ATD structure. The Set Dueling mechanism
dedicates few sets of the cache to each of the two competiirg po
cies. The policy that incurs fewer misses on tealicated setis
used for the remaininépllower sets An implementation of DIP
that uses Set Dueling is call&P-SD.

MTD

Set 0
Set 1
Set 2
Set 3
Set 4
Set 5
Set 6
Set 7
Set 8
Set 9
Set 10
Set 11
Set 12
Set 13
Set 14
Set 15

LEGEND

D Sets dedicated to LRU

D Sets dedicated to BIP

L

Follower Sets.
Policy decided by PSEL

Decides Policy for
Follower Sets

Miss in a Set
Dedicated to BIP

Miss in a Set
Dedicated to LRU

Figure 10: DIP via Set Dueling

Figure 10 demonstrates the working of DIP-SD on a cache con-
taining sixteen sets. Sets 0, 5, 10, and 15 are dedicatee tdRbl
policy, and Sets 3, 6, 9, and 12 are dedicated to the BIP policy
The remaining sets are follower sets. A miss incurred in #ts s
dedicated to LRU increments PSEL, whereas, a miss incurred i
the sets dedicated to BIP decrements PSEL. If the MSB of PSEL
is 0, the follower sets use the LRU policy; otherwise thedaitr
sets use BIP. Note that Set Dueling does not require any atepar
storage structure other than a single saturating counter.

DIP-SD compares the number of misses across different@ets f
two competing policies. However, the number of misses irezlr
by even a single policy varies across different sets in trehea
A natural question is how does the per-set variation in nsisse
the component policies affect the dynamic selection of SetlD
ing? Also, how many dedicated sets are required for DIP-SD to
approximate DIP-Global with a high probability? In Appexdi,
we derive analytical boundgor DIP-SD as a function of both the
number of dedicated sets and the per-set variation in misfsthe
component policies. The analytical model shows that as &82a
64 dedicated sets are sufficient for Set Dueling to seleatdst
LIP and BIP with a high probability. In Section 5.4 we compare
the misses incurred by DIP-SD and DIP-Global.

5.3 Dedicated Set Selection Policy

The dedicated set for each of the competing policies can-be se
lected statically at design time or dynamically at runtinte.this
section we describe our method of selecting the dedicatsd lset
N be the number of sets in the cache and K be the number of sets
dedicated to each policy (in our studies we restrict the remalh
dedicated sets to powers of 2). We logically divide the caote
K equally-sized regions each containifg K sets. Each such re-
gion is called aconstituency13]. One set is dedicated from each
constituency to each of the competing policies. Two bitecisted
with each set can then identify the set as either a followkosa
dedicated set to one of two competing policies.

We employ a dedicated set selection policy that obviatesdiee
for marking the leader set in each constituency on a perassh
We call this policy thecomplement-selegiolicy. For a cache with
N sets, the set index consistsiofi (V) bits out of which the most
significantlog2 (K) bits identify the constituency and the remain-
ing log2 (N/ K) bits identify theoffsetfrom the first set in the con-
stituency. The complement-select policy dedicates to LRtha
sets for which the constituency identifying bits are eqoahte off-
set bits. Similarly, it dedicates to BIP all the sets for whibe
complement of the offset equals the constituency idemiifybits.
Thus for the baseline cache with 1024 sets, if 32 sets are dede
icated to both LRU and BIP, then complement-select dedicste
0 and every 33rd set to LRU, and Set 31 and every 31st set to BIP.
The sets dedicated to LRU can be identified using a five bit com-
parator for the bits [4:0] to bits [9:5] of the set index. Sianly, the
sets dedicated to BIP can be identified using another fiveohit-c
parator that compares the complement of bits [4:0] of thénskstx
to bits [9:5] of the set index. Unless stated otherwise, tfauwlt
implementation of DIP is DIP-SD with 32 dedicated sets usirgy
complement-select poliéyand a 10-bit PSEL counter.

%In [13] a Bernoulli model is used to derive the bounds for DSS.
However, as they used an ATD, they were comparing the twe poli
cies by implementing both policies for a few sampled setseifTh
analytical model does not consider the per-set variatiomigses
incurred by the component policies. However, in our casePse
eling compares the component policies by implementing tbem
different sets in the cache. Therefore, the analytical mfmeSet
Dueling must take into account the per-set variation in ggs8-
curred by the component policies. Therefore, the boundisetbr

in [13] are not directly applicable to Set Dueling.

“We also experimented with a rand-dynamic policy which ran-
domly dedicates one set from each constituency to each of the
two policies LRU and BIP. We invoke rand-dynamic once every
5M retired instructions. The MPKI with both rand-dynamicdan
complement-select are similar. However, rand-dynamiarsithe
hardware overhead of bits for identifying the dedicatea sétich

are not required for complement-select.

SFor experiments of DIP-SD in which 64 sets are dedicateddh ea
policy, we use a 11-bit PSEL counter.

-40 = DIP-GLOBAL
-50 = DIP-SD (n=32)

(%) Reduction in L2 MPKI
X)
o

70 = DIP-SD (n=64)
-80 S \N <& X N S S N
& & Qs TR FIF &S P SIS P
R SRS $ & & & FE S
Figure 11: Comparison of Insertion Policies
1024 1024 SRRy
5.4 Results DO 1111141 T 656
Figure 11 shows reduction in MPKI with BIP, DIP-Global, and 768 768
DIP-SD with 32 and 64 dedicated sets. The bar labeledan 640 640
is the reduction in arithmetic mean MPKI| measured over al th ; 22
sixteen benchmarks. DIP-Global retains the MPKI reductbn 25; 25;
BIP while eliminating the significant MPKI increase of BIP on 128 128
benchmarks equake, parser, mgrid, and swim. With DIP-G|oloa 0 S 0 S
benchmark incurs an MPKI increase of more than 2% over LRU. o0 1?]9]&50 00 20 o0 Hoe"am?] 200 20
However, DIP-Global requires a significant hardware ovadhef
about 128kB. DIP-SD obviates this hardware overhead while o 1024 1024,
taining an MPKI reduction similar to DIP-Global for all benc 896 896 5 ; i\
marks, except twolf. As the number of dedicated sets ineeas 768 768
from 32 to 64, the probability of selecting the best policgreases, 640 640
therefore DIP-SD with 64 dedicated sets behaves similarli> D o1 oz
Global for twolf. However, having a large number of dedichte 2e6 26
sets also means that a higher fractiory V) of sets always use 128 128 t
BIP, even if BIP increases MPKI. This causes the MPKI of swim 0 fommmm 10’0':_: — IR R oo SN
to increase by 5% with 64 dedicated sets. For ammp, DIP reduce swim ammp

MPKI by 20% even though BIP increases MPKI. This happens be-

cause in one phase LRU has fewer misses and in the other phas¢igure 12: PSEL value during benchmark execution (horizon-
BIP has fewer misses. With DIP, the cache uses the policy bestta| axis denotes the number of instruction in Millions)

suited to each phase and hence a better MPKI than each of the

component policies. We discuss the dynamic adaptation BfibI

more detail in Section 5.5. On average, DIP-Global redugesa the baseline cache and LRU causes thrashing. As BIP woukl hav
age MPKI by 22.3%, DIP-SD (with 32 dedicated set) reduces ave fewer misses than LRU, the PSEL value reaches toward pesitiv
age MPKI by 21.3%, and DIP-SD (with 64 dedicated set) reduces saturation and DIP selects BIP. For the LRU friendly benatma

average MPKI by 20.3%. swim, the PSEL value is almost always towards negative agou;
. . . so DIP selects LRU. Ammp has two phases of execution: in tbie fir
3.5 Adaptatlon of DIP to Appllcatlon phase LRU is better and in the second phase BIP is better.Mith

DIP can adapt to different applications as well as diffepetses the policy best suited to each phase is selected; therdddRehas
of the same application. DIP uses the PSEL counter to sedect b better MPKI than either of the component policies standalon
tween the component policies. For a 10-bit PSEL counterjweva
of 512 or more indicates that DIP uses BIP, otherwise DIP uses
LRU. Figure 12 shows the value of the 10-bit PSEL counter over 6. ANALYSIS
the course of execution for the benchmarks mcf, art, hestim, . .
and ammp. We sample the value of the PSEL counter once every®-1 Varying the Cache Size

1M instructions. The horizontal axis denotes the numbenstfiic- We vary the cache size from 1 MB to 8 MB and keep the asso-
tions retired (in millions) and the vertical axis represettite value ciativity constant at 16-way. Figure 13 shows the MPKI ofthot
of the PSEL counter. LRU and DIP for four cache sizes: 1MB, 2MB, 4MB, and 8MB.
For mcf, the DIP mechanism almost always uses BIP. For health The MPKI values are shown relative to the baseline 1IMB LRU-
the working set during the initial part of the program exéouffits managed cache. The bar labetedjrepresents the arithmetic mean
in the baseline cache and either policy works well. Howesgthe MPKI measured over all the sixteen benchmarks. As mcf has hig

dataset increases during program execution, it exceedsizbeof MPKI, the average without mcgvgNomcfis also shown.

S

D

T o 80 = (a) IMB-LRU
o g 70 = (b) 1MB-DIP
S o 60 = (c) 2MB-LRU
2 2 50 = (d) 2MB-DIP
g g 40 = (e) 4AMB-LRU
%S 30 s (f) 4MB-DIP
8:) = 20 = (g) 8BMB-LRU
Z 10 = (h) 8MB-DIP
o 0

=

Figure 13: Comparison of LRU and DIP for different cache size

DIP reduces MPKI more than doubling the size of the baseline 6.3 Impact on System Performance

IMB cache for benchmarks mcf, facerec, and health. DIP con- g evaluate the effect of DIP on the overall processor perfor
tinues to reduce misses for most benchmarks that benefitifiom mance, we use an in-house execution-driven simulator based
creased capacity. The working set of some benchmarks, . V the Alpha ISA. The relevant parameters of our model are gimen
and twolf, fits in a 2MB cache. Therefore, neither LRU nor DIP - Taple 5. The processor we model is a four-wide machine with ou
reduces MPKI when the cache size is increased. Overall, D{P s f-grder execution. Store misses do not block the instoactin-
nificantly reduces average MPKI over LRU for cache sizes up to gow unless the 128-entry store buffer is full. The baseliystem

4MB. contains a 1MB 16-way L2 cache which uses LRU replacement.
6.2 Bypassing Instead of Inserting at LRU Write-backs from L1 to L2 do not update the replacement imi@+
) tionin L2.

DIP uses BIP which inserts most of the incoming lines in the
LRU position. If such a line is accessed in the LRU positianlyo

then is it updated to the MRU position. Another reasonabgge Table 4: Baseline system configuration
point is to bypass the incoming line instead of insertingnithie Machine width | 4 instructions/cycle, 4 functional units
LRU position. A DIP policy that employs BIP which bypasses th Inst. window size | 32 instructions
incoming line when the incoming line is to be placed in the LRU Branch predictor mﬁb“,Z;ﬁﬁ},enmrgn%ﬁﬁr:igtk'ggtswmliaﬁs
position is calledIP-Bypass Figure 14 shows the MPKI reduc- [Tinst. cache 16kg, 648 Iinepsize, g—way wi)t/h TRU repl
tion of DIP and DIP-Bypass over the baseline LRU policy. LT daia cache T6KB, 64B lnesize, 2-way, 2 Cycie hit

60 L2 unified cache | 1MB, 64B linesize, 16-way, 6 cycle hit
< —DiP _ 128-entry store buffer.
2 50, _ DIP-Bypas% Main memory 32 banks, 270 cycle bank access
N 0. Off-chip bus Proc. to bus speed ratio 4:1; 8B/bus-cycle
=
< 30 Figure 15 shows the performance improvement measured in in-
‘§ 201 structions per cycle (IPC) between the baseline system la@d t
3 same system with DIP. The bar labelgtheanis the geometric
E;lo— mean of the individual IPC improvements seen by each bendhma
& ol The system with DIP outperforms the baseline by an average of

A Q 9.3%. DIP increases the IPC of benchmarks art, mcf, facaret,
&%\@%‘Q\«@Q‘bﬁ&v@\ 'Z\rlg‘}@’@j@érz}\'j‘_ 5 éé@@%‘@/ health by more than 15%.
TEFRKFEL LS PP R NG 50
Figure 14: Effect of Bypassing on DIP (The number associated %’40
with benchmark shows the percentage of misses bypassed). é 30
[}

For all benchmarks, except art, facerec, and sixtrack, @ r 520,
duces MPKI more than DIP-Bypass. This happens because DIPE‘
promotes the line installed in the LRU position to the MRU po- o 101
sition if the line is reused, thus increasing the usefuldiire the £ |

non-LRU positions. On the other hand, DIP-Bypass has the ad- S @0 QSN & Fn 0.9, &
vantage of power savings as it avoids the operation of iimggthe '5‘\6‘0&0 AQ:,DQQ’,&(\%&%&%@ Q®Z$®&io°%$\§i®@§z

line in the cache. The percentage of misses that are bypagsed
DIP-Bypass are shown in Figure 14 by a number associated with
each benchmark name. Thus, the proposed insertion potiaies Figure 15: IPC improvement with DIP
be used to reduce misses, cache power or both.

6.4 Hardware Overhead and Design Changes

The proposed insertion policies (LIP, BIP, and DIP) requieg-
ligible hardware overhead and design changes. LIP ins#rits-a
coming lines in the LRU position, which can easily be implateel
by not performing the update to the MRU position that occurs o
cache insertiofi. BIP is similar to LIP, except that it infrequently
inserts an incoming line into the MRU position. To controéth
rate of MRU insertion in BIP, we use a five-bit counter (BIPQTR
BIPCTR is incremented on every cache miss. BIP inserts the in
coming line in the MRU position only if the BIPCTR is zero. ®u
BIP incurs a storage overhead of 5 bits. DIP requires stofage
the 10-bit saturating counter (PSEL). The complementesglel-
icy avoids extra storage for identifying the dedicated.sets

Setindex[9:0] Tag DataBus

~PSEL[MSB]
00 EXISTING
o1 CACHE MODULE
BIPCTR ==0 1 10 —| Update recency at insert
N/A 1

—— dedicated_BIP_set
(SetIndex[9:5] == ~SetIndex[4:0])

dedicated_LRU_set
(Setindex[9:5] == Setindex[4:0])

Figure 16: Hardware changes for implementing DIP

Figure 16 shows the design changes incurred in implementing
DIP. The implementation requires a total storage overhdatbo
bits (5-bit BIPCTR + 10-bit PSEL) and negligible logic ovedd.

A particularly attractive aspect of DIP is that it does najuize ex-
tra bits in the tag-store entry, thus avoiding changes texigting
structure of the cache. The absence of extra structuresvasns
that DIP does not incur power and complexity overheads. A3 DI
does not add any logic to the cache access path, the accessftim
the cache remains unaffected.

7. RELATED WORK

Cache replacement studies have received much attentiom fro
both industry and academia. We summarize the work that most
closely relates to the techniques proposed in this papmduish-
ing our work where appropriate.

7.1 Alternative Cache Replacement Policies
The problem of thrashing can be mitigated with replacement

schemes that are resistant to thrashing. If the working sano

application is only slightly greater than the available l@msize,

7.2 Hybrid Replacement

For workloads that cause thrashing with LRU, both randoiseda
and frequency-based replacement schemes have fewer rtiases
LRU. However, these schemes significantly increase theamifss
LRU-friendly workloads. Recent studies have investigdtghrid
replacement schemes that dynamically select from two oremor
competing replacement policies. Examples of hybrid remiaent
schemes includ&ling-Based Adaptive Replacement (SBAR)
[13] and Adaptive Cache (AC)18]. The problem with hybrid
replacement is that it may require tracking separate repiant
information for each of the competing policies. For examjifie
the two policies are LRU and LFU (Least Frequently Used)nthe
each tag-entry in the baseline cache needs to be appendeflevit
quency countersX 5-bits each) which must be updated on each
access. Also, the dynamic selection requires extra stresi2kB
for SBAR and 34kB for AC) which consume hardware and power.
Table 5 compares SBAR-based hybrid replacefeetween LRU
and the following schemesMRU-Replreplaces the MRU line,
NMRU-mid[4] replaces a line randomly from the less recent half
of the recency stackRandis random replacemenRLRU-Skew
(RMRU-Skew]4] is a skewed random policy that uses alinearly in-
creasing (decreasing) replacement probability for reg@ositions
ranging from MRU to LRU, and_.FU is the least frequently used
policy implemented using five-bit saturating counters [1&}IP
outperforms the best performing hybrid-replacement wbbgiat-
ing the design changes, hardware overhead, power overhadd,
complexity of hybrid replacement. In fact, DIP bridges ttinird
of the gap between LRU and OPT while requiring less than two
bytes of extra storage.

Table 5: Comparison of replacement policies

Replacement Policy %Reduction in | Hardware

MPKI over LRU [Overhead
SBAR (LRU + MRU-Repl) 8.8 2 kB
SBAR (LRU + NMRU-mid) 5.1 2 kB
SBAR (LRU + Rand) 8.9 2 kB
SBAR (LRU + RLRU-Skew) 6.6 2 kB
SBAR (LRU + RMRU-Skew) 11.3 2kB
SBAR (LRU + LFU) 14.7 12 kB
DIP 21.3 2B

| Belady's OPT [322 [NA]

7.3 Related Work in Paging Domain

We also analyze some of the related replacement studies from
the paging domain. Early Eviction LRU (EELRU) [17] track®th
hits obtained from each recency position for a larger sizaghe. If
there are significantly more hits from the recency posititamger

then even a naive scheme such as random replacement can havéhan the cache size, EELRU changes the eviction point ofeke r

fewer misses than LRU. For the baseline cache random replace
ment reduces MPKI for the thrashing workloads: art by 34%f mc
by 1.6%, facerec by 14.4%, and health by 16.9%, whereas, DIP
reduces MPKI for art by 54%, mcf by 17%, facerec by 36% and
health by 35%. Thus, the effectiveness of random replaceaten
reducing misses significantly reduces as the size of theingdet
increases. In [4], an analytical model that captures anth>he
difference in performance of various cache replacemeritigslis
studied. Several studies [15][5][14] have looked at inoigdre-
guency (reuse count) information for improving cache reptaent.

SLIP, BIP, and DIP do not rely on true LRU which makes them
amenable to the LRU approximations widely used in current on
chip caches.

ident pages. For the studies reported in [17], EELRU trackéd
times as many pages as in physical memory. We analyzed EELRU
for our workloads with 2.5 times the tag-store entries. EBLiR-
duces the average MPKI by 13.8% compared to DIP which reduces
average MPKI by 21.3%.

A recent proposal, Adaptive Replacement Cache (ARC) [11],
maintains two listsrecency lisandfrequency list The recency list
contains pages that were touched only once while residémeas
the frequency list contains pages that were touched at teécst.
ARC dynamically tunes the number of pages devoted to eatch lis
We simulated ARC for our workloads and found that ARC reduces
average MPKI by 5.64% and requires 64kB storage.

"The MPKI reduction provided by SBAR and AC are similar [18].

7.4 Cache Bypassing and Early Eviction

Several studies have investigated cache bypassing aydgar
tion. McFarling[10] proposed dynamic exclusion to reduceftict
misses in a direct-mapped instruction cache. Gonzalez €&l
proposed using Bcality prediction tablgo bypass access patterns
that are likely to pollute the cache. Johnson [6] used reasaters
with amacro address tabl® bypass lines with low reuse. Several
proposals [19] [21][20] exist for bypassing or early evictiof lines
brought by instructions with low locality. Another area ekearch
has been to predict the last touch to a cache line [8] [9]. rAfie
predicted last touch, the line can either be turned off [fj@used
to store prefetched data [8].

However,locality, livenessandlast touchare a function of both
the replacement policy and the available cache size. Fanpbea
if a cyclic reference pattern with a working set size sligigteater
than the available cache size is applied to a LRU-managetkcac
all the inserted lines will have poor locality, will be deasl soon
as they are installed, and will have their last touch at iiser The
solution in such a case is neither to bypass all the linesmevitt
them early, but to retain some fraction of the working setts it
provides cache hits. DIP retains some fraction of the waylsat
for longer than LRU, thus obtaining hits for at least those4.

8. CONCLUSIONS AND FUTURE WORK

The commonly used LRU replacement policy performs poorly
for memory-intensive workloads that reuse a working setitge
than the available cache size. The LRU policy inserts a lmg: a
evicts it before it is likely to be reused causing a majorifythee
lines in the cache to have zero reuse. In such cases, rej@oime
fraction of the working set would provide hits for at leasatfrac-
tion of the working set. This paper separates the probleneof r
placement into two partsvictim selection policyand insertion
policy. Victim selection deals with which line gets evicted to albt
the incoming line. The insertion policy deals with where ba te-
placement stack the incoming line is placed when instaliirig
the cache. We show that simple changes to the insertionypcdic
significantly improve the cache performance of memoryrisiee
workloads, and make the following contributions:

1. We propose the LRU Insertion Policy (LIP) which inserts al
the incoming lines in the LRU position. We show that LIP
can protect against thrashing and yields close to optintal hi
rate for applications with a cyclic reference pattern.

2. We propose the Bimodal Insertion Policy (BIP) as an en-

hancement to LIP that allows for aging and adapting to change[l31

in the working set of an application. BIP infrequently irtser
an incoming line in the MRU position, which allows it to
respond to changes in the working set while retaining the
thrashing protection of LIP.

3. We propose a Dynamic Insertion Policy (DIP) that dynami-

cally chooses between BIP and traditional LRU replacement.

DIP uses BIP for workloads that benefit from BIP while re-
taining traditional LRU for workloads that are LRU-frieryd|
and incur increased misses with BIP.

4. We propose Set Dueling to implement cost-effective dyinam
selection between competing policies. Set Dueling deelécat

We show that DIP reduces the average MPKI of a 1MB 16-way
L2 cache by 21%, while incurring less than two bytes of sterag
overhead and almost no change to the existing cache steuctur

Although this study evaluated the cache performance of work
loads on a uni-processor system, it provides insights thateas-
ily be extended to shared caches in a multi-core system. 8et D
eling can be also be applied for cost-effective impleméoradf
optimizations such as choosing between different cacheagen
ment policies, dynamically tuning prefetchers, or detegtphase
changes. Exploring these extensions is a part of our futamn.w

9. ACKNOWLEDGMENTS

Thanks to Archna Monga for discussions on random sampling.
The feedback from Andy Glew and William Hasenplaugh greatly
helped in improving the quality of this work. We thank Veynu
Narasiman and Aater Suleman for their comments and feedback
The studies at UT were supported by gifts from IBM, Intel, dmel
Cockrell Foundation.

10. REFERENCES

[1] L. A. Belady. A study of replacement algorithms for a vial-storage
computer. INBM Systems journapages 78-101, 1966.

[2] W.fen Lin et al. Reducing dram latencies with an integcatnemory
hierarchy design. IHPCA-7, pages 301-312, 2001.

[3] A. Gonzalez, C. Aliagas, and M. Valero. A data cache withitiple

caching strategies tuned to different types of localityG8-9 1995.

F. Guo and Y. Solihin. An analytical model for cache rey@ment

policy performanceSIGMETRICS Perform. Eval. Rev.

34(1):228-239, 2006.

E. G. Hallnor and S. K. Reinhardt. A fully associative

software-managed cache designl$CA-27 2000.

[6] T.L.JohnsonRun-time adaptive cache managem@&HtD thesis,
University of lllinois, Urbana, IL, May 1998.

[7] S. Kaxiras et al. Cache decay: exploiting generatioedidvior to
reduce cache leakage powerI8CA-28 2001.

[8] A.Lai, C. Fide, and B. Falsafi. Dead-block prediction &adieblock
correlating prefetchers. IF8CA-28 2001.

[9] W.Linand S. Reinhardt. Predicting last-touch refersander

optimal replacement. lfiechnical Report CSE-TR-447-02,

University of Michigan2002.

S. McFarling. Cache replacement with dynamic exclosla

ISCA-19 pages 191-200, 1992.

N. Megiddo and D. S. Modha. ARC: A self-tuning, low ovedd

replacement cache. Proceeding of the 2nd USENIX Conference on

File and Storage Technologiez003.

E. Perelman et al. Using simpoint for accurate and effici

simulation.SIGMETRICS Perform. Eval. Re81(1):318-319, 2003.

M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A cafee

MLP-aware cache replacement.|BCA-33 2006.

M. K. Qureshi, D. Thompson, and Y. N. Patt. The V-Way Gach

Demand Based Associativity via Global ReplacementSIBA-32

pages 544-555, 2005.

J. T. Robinson and M. V. Devarakonda. Data cache managem

using frequency-based replacementSIGMETRICS '901990.

S. RossA First Course in ProbabilityPearson Prentice Hall, 2006.

Y. Smaragdakis et al. The EELRU adaptive replacemegariéhm.

Performance Evaluatiqr53(2):93-123, 2003.

[18] R. Subramanian et al. Adaptive caches: Effective stgpf cache

behavior to workloads. IIMICRO-39 2006.

G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun.cdlified

approach to data cache managemeniMI@RO-28 1995.

(4]

(5]

(20]

(11]

(12]

[14]

(18]

[16]
[17]

[29]

a small percentage of sets in the cache to each of the two [20] Z. Wang et al. Using the compiler to improve cache repfaent

decisions. IPACT, page 199, 2002.
[21] W. A. Wong and J.-L. Baer. Modified LRU policies for impring
second-level cache behavior. HPCA-G 2000.

component policies and chooses the policy that has fewer
misses on the dedicated set for the remaining follower sets.
Set Dueling does not require any additional storage, except
for a single saturating counter.

Appendix A: Analytical Model for Set Dueling

Let there beV sets in the cache. Let Set Dueling be used to choose
between two policie®1 and P2. When policy P1 is implemented
on all the sets in the cache, the average number of missestger s
w1 with standard deviation; . Similarly, when policy P2 is imple-
mented on all the sets in the cache, the average number oésniss
per set isuo with standard deviatiom». Let A denote the dif-
ference in average missgs: — u2| ando denote the combined

standard deviatioR/o? + o2.

Let n sets be randomly selected from the cache to estimate the
misses with policy P1 and another groupro$ets be randomly se-
lected to estimate the misses with policy P2. We assumelikeat t
number of dedicated sets is sufficiently large such that by the
central limit theorenj16] the sampling distribution can be approx-
imated as a Gaussian distribution. We also assumentigsuffi-
ciently small compared to the total number of sets in the e&oh
so that removing the sets does not significantly change the mean
and standard deviation of the remainiy — n) sets. To derive
the bounds for Set Dueling we use the following well-estdigd
results [16] for sampling distribution: If the distribution of two
independent random variables have the meansnd i, and the
standard deviatiom, andoy, then the distribution of their sum (or
difference) has the mean, + us (or po — s) and the standard

deviation\/o2 + o}.

Let sum1 be the total number of misses for thesets dedicated
to policy P1. Then, by central limit theoremaym1 can be ap-
proximated as a Gaussian random variable with mean.: and
standard deviatiofrs,.1, given by:

Msuml = T - U1 (1)
Osuml — \/ZU%:\/E'UM (2)

Similarly, let sum?2 be the total number of misses for thesets
dedicated to policy P2. Thesym2 can also be approximated as a
Gaussian random variable with mean, > and standard deviation
osum2, given by:

©)
“

Msum2 = 1+ (U2

Osum2 = ZU%:\/E'O'Q,

The PSEL counter tracks the differencesivn1 andsum2 and
selects the policy that has fewer misses on the sampledistg.
be the difference in value of the two sums, le= suml — sum?2.
Becauseuml andsum?2 are Gaussian random variabléss also
a Gaussian random variable with meapand standard deviation
o given by:

1o = Psuml — Msum2 =N p1 —n - plo =n - (p1 — p2) (5)
g9 = \/a-guml + 0’2um2 = \/n) 0'% + n:- U% (6)
= Vayfoitei=vao, ™

where o = /0% + o2

Let policy P2 have fewer misses than policy P1, . > .
Then, for Set Dueling to select the best poligy; 0. If P(Best) is
the probability that Set Dueling selects the best poliayntR(Best)
can be written as:

P(Best) = P(6 > 0) = p(L=#e) o (0= 1o),

(8)
o9)
—n - (p1 — p2)
P(Best) = P(Z > —————=~ 9
(Best) = P(e, ©
where Z = % is the standard Gaussian variable
n - (p — p2)
P(Best) =1—-P(Z > ———= 10
(Best) (z> ") o)

as P(Z > —2)=1—P(Z > 2)

P(Best) =1-P(Z > \/ﬁ-%), where A = |p1—pal|, p1 > po
(11)

P(Best)=1—P(Z>+/n-r), where r=— (12)

Zis the standard Gaussian variable for which the val(g > z)
can be obtained using standard statistical tables. Equafacan
be used to compute P(Best) for any two policies. For exanifple,
for policy P1,u1 = 100 andoy = 12 and for policy P2us = 94
andos = 16. Then,A = 6, 0 = 20 andr = 0.3. For n=32,
P(Best) =1—P(Z>+/32-03)=1—- P(Z > 1.7) = 96%.

>
S 1.00 prvey "
8. 0.95 /t". xxx)r‘x‘
8 0.90 X‘A o=

: o
Q (A]
2 085 -
— -”l
o 0.80 .
£ A
g 0.75 /
T 070 e =05
Bl
% 0.60 —=—r=0.2\—
S o055
e
a 050

0 8 16 24 32 40 48 56 64

Number of dedicated sets (n)
Figure 17: Analytical Bounds for Set Dueling

Figure 17 shows the variation in P(Best) as the number of-dedi
cated sets is changed for different values ofitineetric. Ther met-
ric is a function of workload, cache organization, and thatiee
difference between the two policies. For most of the benchsma
studied, the r-metric for the two policies LRU and BIP is mtran
0.2 indicating that 32-64 sampled sets are sufficient foDseting
to select the best policy with a high probability. Thus, Setlhg
can be implemented by dedicating about 32 to 64 sets to each of
the two policies, LRU and BIP, and using the winning policy (o
the dedicated sets) for the remaining sets.

