A spectral algorithm for learning hidden Markov models

Daniel Hsu Sham M. Kakade Tong Zhang
UCSD TTI-C Rutgers
Motivation

• Hidden Markov Models (HMMs) – popular model for sequential data (e.g. speech, bio-sequences, natural language)

- Hidden state process (Markovian)

- Observation sequence

• Hidden state sequence *not* observed; hence, *unsupervised learning*.

A spectral algorithm for learning hidden Markov models Nr. 2
Motivation

• Why HMMs?
 – Handle temporally-dependent data
 – Succinct “factored” representation when state space is low-dimensional
 (c.f. autoregressive model)

• Some uses of HMMs:
 – Monitor “belief state” of dynamical system
 – Infer latent variables from time series
 – Density estimation
Preliminaries: parameters of discrete HMMs

Sequences of hidden states \((h_1, h_2, \ldots)\) and observations \((x_1, x_2, \ldots)\).

- Hidden states \(\{1, 2, \ldots, m\}\);
 Observations \(\{1, 2, \ldots, n\}\)
- Conditional independences
- Initial state distribution \(\vec{\pi} \in \mathbb{R}^m\)
 \(\vec{\pi}_i = \Pr[h_1 = i]\)
- Transition matrix \(T \in \mathbb{R}^{m \times m}\)
 \(T_{ij} = \Pr[h_{t+1} = i| h_t = j]\)
- Observation matrix \(O \in \mathbb{R}^{n \times m}\)
 \(O_{ij} = \Pr[x_t = i| h_t = j]\)

\[
\Pr[x_{1:t}] = \sum_{h_1} \Pr[h_1] \cdot \sum_{h_2} \Pr[h_2| h_1] \Pr[x_1| h_1] \cdot \ldots \cdot \sum_{h_{t+1}} \Pr[h_{t+1}| h_t] \Pr[x_t| h_t]
\]
Preliminaries: learning discrete HMMs

- Popular heuristic: Expectation-Maximization (EM) *(a.k.a. Baum-Welch algorithm)*

- Computationally hard in general under cryptographic assumptions (Terwijn, '02)

- **This work**: Computationally efficient algorithm with learning guarantees for *invertible HMMs*:

 \[
 \text{Assume } T \in \mathbb{R}^{m \times m} \text{ and } O \in \mathbb{R}^{n \times m} \text{ have rank } m.
 \]

 (here, \(n \geq m \)).
Our contributions

• **Simple** and **efficient** algorithm for learning invertible HMMs.

• **Sample complexity bounds** for

 – Joint probability estimation (total variation distance):
 \[
 \sum_{x_{1:t}} | \Pr[x_{1:t}] - \hat{\Pr}[x_{1:t}] | \leq \epsilon
 \]
 (relevant for density estimation tasks)

 – Conditional probability estimation (KL distance):
 \[
 KL(\Pr[x_t|x_{1:t-1}]||\hat{\Pr}[x_t|x_{1:t-1}]) \leq \epsilon
 \]
 (relevant for next-symbol prediction / “belief states”)

• Connects **subspace identification** to **observation operators**.
Outline

1. Motivation and preliminaries
2. Discrete HMMs: key ideas
3. Observable representation for HMMs
4. Learning algorithm and guarantees
5. Conclusions and future work
1. Motivation and preliminaries
2. **Discrete HMMs: key ideas**
3. Observable representation for HMMs
4. Learning algorithm and guarantees
5. Conclusions and future work
Discrete HMMs: linear model

Let $\vec{h}_t \in \{\vec{e}_1, \ldots, \vec{e}_m\}$ and $\vec{x}_t \in \{\vec{e}_1, \ldots, \vec{e}_n\}$ (coord. vectors in \mathbb{R}^m and \mathbb{R}^n)

$$E[\vec{h}_{t+1} | \vec{h}_t] = T \vec{h}_t \quad \text{and} \quad E[\vec{x}_t | \vec{h}_t] = O \vec{h}_t$$

In expectation, dynamics and observation process are linear!

e.g. conditioned on $h_t = 2$ (i.e. $\vec{h}_t = \vec{e}_2$):

$$E[\vec{h}_{t+1} | \vec{h}_t] = \begin{bmatrix} 0.2 & 0.4 & 0.6 \\ 0.3 & 0.6 & 0.4 \\ 0.5 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.4 \\ 0.6 \\ 0 \end{bmatrix}$$

Upshot: Can borrow "subspace identification" techniques from linear systems theory.
Discrete HMMs: linear model

Exploiting linearity

- Subspace identification for general linear models
 - Use SVD to discover subspace containing relevant states, then learn effective transition and observation matrices (Ljung, ’87).
 - Analysis typically assumes additive noise (independent of state), e.g. Gaussian noise (Kalman filter); not applicable to HMMs.

- This work: Use subspace identification, then learn alternative HMM parameterization.
Discrete HMMs: observation operators

For $x \in \{1, \ldots, n\}$: define

$$A_x \triangleq \begin{bmatrix} T \\ \end{bmatrix} \begin{bmatrix} O_{x,1} & \cdots & 0 \\ 0 & \cdots & O_{x,m} \end{bmatrix} \in \mathbb{R}^{m \times m}$$

$$[A_x]_{i,j} = \Pr[h_{t+1} = i \land x_t = x | h_t = j].$$

The $\{A_x\}$ are observation operators (Schützenberger, ’61; Jaeger, ’00).
Discrete HMMs: observation operators

Using observation operators

Matrix multiplication handles “local” marginalization of hidden variables: e.g.

\[
\Pr[x_1, x_2] = \sum_{h_1} \Pr[h_1] \cdot \sum_{h_2} \Pr[h_2| h_1] \Pr[x_1| h_1] \cdot \sum_{h_3} \Pr[h_3| h_2] \Pr[x_2| h_2] \\
= \vec{1}_m^\top A_{x_2} A_{x_1} \vec{\pi}
\]

where \(\vec{1}_m \in \mathbb{R}^m \) is the all-ones vector.

Upshot: The \(\{A_x\} \) contain the same information as \(T \) and \(O \).
Discrete HMMs: observation operators

Learning observation operators

• Previous methods face the problem of discovering and extracting the relationship between hidden states and observations (Jaeger, '00).
 – Various techniques proposed (e.g. James and Singh, '04; Wiewiora, '05).
 – Formal guarantees were unclear.

• This work: Combine subspace identification with observation operators to yield observable HMM representation that is efficiently learnable.
Outline

1. Motivation and preliminaries
2. Discrete HMMs: key ideas
3. Observable representation for HMMs
4. Learning algorithm and guarantees
5. Conclusions and future work
Observable representation for HMMs

Key rank condition: require \(T \in \mathbb{R}^{m \times m} \) and \(O \in \mathbb{R}^{n \times m} \) to have rank \(m \) (rules out pathological cases from hardness reductions)

Define \(P_1 \in \mathbb{R}^n \), \(P_{2,1} \in \mathbb{R}^{n \times n} \), \(P_{3,x,1} \in \mathbb{R}^{n \times n} \) for \(x = 1, \ldots, n \) by

\[
[P_1]_i = \Pr[x_1 = i] \\
[P_{2,1}]_{i,j} = \Pr[x_2 = i, x_1 = j] \\
[P_{3,x,1}]_{i,j} = \Pr[x_3 = i, x_2 = x, x_1 = j]
\]

(probabilities of singletons, doubles, and triples).

Claim: Can recover equivalent HMM parameters from \(P_1 \), \(P_{2,1} \), \(\{P_{3,x,1}\} \), and these quantities can be estimated from data.
Observable representation for HMMs

“Thin” SVD: $P_{2,1} = U \Sigma V^\top$ where $U = [\vec{u}_1 | \ldots | \vec{u}_m] \in \mathbb{R}^{n \times m}$

Guaranteed m non-zero singular values by rank condition.

New parameters (based on U) implicitly transform hidden states

$$\vec{h}_t \mapsto (U^\top O) \vec{h}_t = U^\top \mathbb{E}[\vec{x}_t | \vec{h}_t]$$

(i.e. change to coordinate representation of $\mathbb{E}[\vec{x}_t | \vec{h}_t]$ w.r.t. $\{\vec{u}_1, \ldots, \vec{u}_m\}$).
Observable representation for HMMs

For each $x = 1, \ldots, n$,

$$B_x \triangleq (U^T P_{3,x,1}) (U^T P_{2,1})^+ = (U^T O) A_x (U^T O)^{-1}. \quad (X^+ \text{ is pseudoinv. of } X)$$

(algebra)

The B_x operate in the coord. system defined by $\{\vec{u}_1, \ldots, \vec{u}_m\}$ (columns of U).

$$\Pr[x_{1:t}] = \vec{1}_{m}^T A_{x_t} \cdots A_{x_1} \vec{\pi} = \vec{1}_{m}^T (U^T O)^{-1} B_{x_t} \cdots B_{x_1} (U^T O) \vec{\pi}$$

Upshot: Suffices to learn $\{B_x\}$ instead of $\{A_x\}$.

A spectral algorithm for learning hidden Markov models Nr. 17
Outline

1. Motivation and preliminaries
2. Discrete HMMs: key ideas
3. Observable representation for HMMs
4. Learning algorithm and guarantees
5. Conclusions and future work
Learning algorithm

The algorithm

1. Look at triples of observations \((x_1, x_2, x_3)\) in data; estimate frequencies \(\hat{P}_1, \hat{P}_{2,1}, \text{ and } \{\hat{P}_{3,x,1}\}\)

2. Compute SVD of \(\hat{P}_{2,1}\) to get matrix of top \(m\) singular vectors \(\hat{U}\) ("subspace identification")

3. Compute \(\hat{B}_x \triangleq (\hat{U}^\top \hat{P}_{3,x,1})(\hat{U}^\top \hat{P}_{2,1})^+\) for each \(x\) ("observation operators")

4. Compute \(\hat{b}_1 \triangleq \hat{U}^\top \hat{P}_1\) and \(\hat{b}_\infty \triangleq (\hat{P}_{2,1}^\top \hat{U})^+ \hat{P}_1\)
Learning algorithm

• Joint probability calculations:

\[
\hat{\text{Pr}}[x_1, \ldots, x_t] \triangleq \hat{b}_\infty^\top \hat{B}_x \ldots \hat{B}_x \hat{b}_1.
\]

• Conditional probabilities: Given \(x_{1:t-1}\),

\[
\hat{\text{Pr}}[x_t|x_{1:t-1}] \triangleq \hat{b}_\infty^\top \hat{B}_x \hat{b}_t
\]

where

\[
\hat{b}_t \triangleq \frac{\hat{B}_x \hat{b}_1 \ldots \hat{B}_x \hat{b}_1}{\hat{b}_\infty^\top \hat{B}_x \hat{b}_1} \approx (U^\top O) \mathbb{E}[\tilde{h}_t|x_{1:t-1}].
\]

“Belief states” \(\hat{b}_t\) linearly related to conditional hidden states. (\(b_t\) live in hypercube \([-1, +1]^m\) instead simplex \(\Delta^m\))
Sample complexity bound

Joint probability accuracy: with probability $\geq 1 - \delta$,

$$O \left(\frac{t^2}{\epsilon^2} \cdot \left(\frac{m}{\sigma_m(O)^2 \sigma_m(P_{2,1})^4} + \frac{m \cdot n_0}{\sigma_m(O)^2 \sigma_m(P_{2,1})^2} \right) \cdot \log \frac{1}{\delta} \right)$$

observation triples sampled from the HMM suffices to guarantee

$$\sum_{x_1, \ldots, x_t} | \Pr[x_1, \ldots, x_t] - \hat{\Pr}[x_1, \ldots, x_t] | \leq \epsilon.$$

- m: number of states
- n_0: number of observations that account for most of the probability mass
- $\sigma_m(M)$: mth largest singular value of matrix M

Also have a sample complexity bound for conditional probability accuracy.
Conclusions and future work

Summary:
- Simple and efficient learning algorithm for invertible HMMs (sample complexity bounds, streaming implementation, etc.)
- Observable representation lets us avoid estimating T and O (n.b. could recover these if we really wanted, but less stable).
- SVD subspace captures dynamics of observable representation.
- Salvages old ideas and techniques from automata and control theory.

Future work:
- Improve efficiency, stability
- General linear dynamical models
- Behavior of EM under the rank condition?
Thanks!
Sample complexity bound

Conditional probability accuracy: with probability $\geq 1 - \delta$,

$$\text{poly}(1/\epsilon, 1/\alpha, 1/\gamma, 1/\sigma_m(O), 1/\sigma_m(P_{2,1})) \cdot (m^2 + mn_0) \cdot \log \frac{1}{\delta}$$

observation triples sampled from the HMM suffices to guarantee

$$KL(\Pr[x_t|x_{1:t-1}]||\hat{Pr}[x_t|x_{1:t-1}]) \leq \epsilon$$

for all t and all history sequences $x_{1:t-1}$.

- n_0: number of observations that account for $1 - \epsilon$ of total probability mass, where $\epsilon = \sigma_m(O)\sigma_m(P_{2,1})\epsilon/(4\sqrt{m})$
- $\gamma = \inf_{\vec{v},\Vert\vec{v}\Vert_1=1}\Vert O\vec{v}\Vert_1$ “value of observation” (Even-Dar et al, '07)
- $\alpha = \min_{x,i,j}[A_x]_{ij} \text{ (stochasticity requirement)}$
Computer simulations

- Simple "cycle" HMM: $m = 9$ states, $n = 180$ observations
- Train using 20000 sequences of length 100 (generated by true model)
- Results (average log-loss on 2000 test sequences of length 100):

<table>
<thead>
<tr>
<th>Method</th>
<th>Average Log-Loss (nats per symbol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True model</td>
<td>4.79</td>
</tr>
<tr>
<td>EM, initialized with true model</td>
<td>4.79</td>
</tr>
<tr>
<td>EM, random initializations</td>
<td>5.15</td>
</tr>
<tr>
<td>Our algorithm</td>
<td>4.88</td>
</tr>
<tr>
<td>Our algorithm, followed by EM</td>
<td>4.81</td>
</tr>
</tbody>
</table>