
Instance-wise Points-to Analysis for Loop-based
Dependence Testing∗

Peng Wu † Paul Feautrier ‡ David Padua § Zehra Sura §

† IBM T.J. Watson Research Center ‡ A3 Project § Department of Computer Science
P.O.Box 218 INRIA Rocquencourt University of Illinois

Yorktown Heights, NY 10598 78153 Le Chesnay, France Urbana, IL 61801

pengwu@us.ibm.com paul.feautrier@inria.fr {padua,zsura}@cs.uiuc.edu

Keywords
pointer analysis, dependence analysis, heap analysis, Java,
pointer arrays

General Terms
languages, algorithms

Categories and Subject Descriptors
D.3.4 [Processors]: compilers, optimizations

ABSTRACT
We present a points-to analysis that aims at enabling loop-
based dependence analysis in the presence of Java references.
The analysis is based on an abstraction called element-wise

points-to (ewpt) mapping. An ewpt mapping summarizes, in
a compact representation, the relation between a pointer and
the heap object it points to, for every instance of the pointer
inside a loop and for every array element directly accessible
through this pointer. Such instance-wise and element-wise
information is especially important for loop-based depen-
dence analyses and for a language where multi-dimensional
arrays are implemented as arrays of pointers. We describe
an iterative algorithm to compute ewpt mappings. We also
present techniques to remove objects from ewpt mappings
for destructive updates.

The points-to algorithm was implemented and evaluated
on a set of benchmark programs. We demonstrate that ewpt

information can significantly improve the precision of de-
pendence analysis. In many cases, the dependence analysis
reports no false dependences due to array accesses.

∗This work was supported in part by NSF contracts CCR
00-81265 and CCR 01-21401.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’02, June 22-26, 2002, New York, New York, USA.
Copyright 2002 ACM 1-58113-483-5/02/0006 ...$5.00.

1. INTRODUCTION
If Java is to be used for high performance computing, we

must enable classical loop optimizations for it. Due to the
rigid exception semantics of Java and its pervasive use of
pointers, two problems need to be solved before loops can
be optimized: finding accurate loop-based dependences in
the presence of pointers and identifying large exception-free
regions.

In the presence of pointers, a loop-based dependence test
needs to relate pointers from different program points as well
as pointers from different loop iterations. However, existing
pointer information abstractions are either unable or not
precise enough to satisfy these two requirements. Let us
examine the two most commonly used pointer abstractions:
alias relation and store-based points-to set.

• Alias relation, often computed as alias pairs or access
paths, indicates whether two pointers may refer to the
same memory location at a given program point. The
limitation of alias pairs is that they only capture alias
relations among pointers at the same program execu-
tion point. Therefore, they are not suitable to rep-
resenting pointer information for dependence analyses
which require to relate pointers across different execu-
tion points [9].

• A store-based points-to set1 captures the set of mem-
ory locations [4] or anchors [9] that a pointer may
point to at any given static program point. Although
points-to sets can relate pointers from different pro-
gram points, when dealing with pointers inside loops,
they can not accurately capture the aliasing among
pointers from different iterations. The following code
fragment illustrates the scenario where points-to sets
are not adequate for loop-based dependence analysis:

1 for (i = 0; i < m; i++) {
2 p = q;
3 p.x = · · · ;
4 q = new Object();
5 }

In this example, there is no output-dependence over
statement 3 across different iterations of loop i. To

1Some pointer analyses use points-to sets to model the re-
lation between pointers and access paths. We refer to such
points-to relation as store-less points-to sets.

discover this, it is necessary to know that p at state-
ment 3 points to a different object on each iteration
of the loop. To the best of our knowledge, no exist-
ing pointer analysis is able to compute and represent
points-to information for each loop iteration instance
of a pointer.

p
0 6

4

0

Figure 1: 2-dimensional Java array

In Java, multi-dimensional arrays are implemented as
trees of one-dimensional arrays (see Fig. 1). This fea-
ture introduces new types of pointers whose points-to
sets must be captured precisely. Consider an access
p[i][j] in a double-nested i-j loop. In order to com-
pute the points-to set of p[i] for any value of i, one
needs to capture precise points-to sets for all elements
of p.

This paper presents an instance-wise points-to analysis to
summarizes precise points-to information for all instances
of a pointer inside a loop and for all elements of a pointer
array. The algorithm was implemented and evaluated on a
small set of benchmarks. The results demonstrate that our
points-to analysis can significantly improve the precision of
dependence analysis.

Contribution. In summary, the paper makes the following
contributions:

• It proposes the element-wise points-to mapping ab-
straction that summarizes points-to information for
pointer instances and array element pointers in a single
form. It also introduces a precise heap naming scheme
which include loop iteration vectors in the heap names.

• It proposes a store-based pointer analysis that is suit-
able for loop-based dependence tests and for analyzing
pointer arrays.

• It presents a technique to remove objects from ewpt

mappings for destructive updates. This technique can
help to identify redundant null-pointer checks on heap-
residing pointers.

Organization. The rest of the paper is organized as fol-
lows. Section 2 gives an overview of the analysis. Section
3 describes our assumptions on the use of some language
features and introduces basic notations. Section 4 presents
the transfer functions and Section 5 gives the iterative algo-
rithm. Section 6 describes how to remove objects from ewpt

mappings for destructive updates. Section 7 discusses the
applications of the analysis and experimental results. Sec-
tion 8 outlines some related work and Section 9 concludes.

2. OVERVIEW OF THE METHOD
In this method, heap objects are named by new statement

and iteration vectors that uniquely identify the statement
instance that allocates the heap object (i.e., instance-wise
properties). The method is based on the ewpt mapping ab-
straction. Treating all references uniformly as array refer-
ences of some dimensions, an ewpt mapping captures objects
pointed to by individual elements of an array as a mapping
(i.e., element-wise properties).

Consider the control-flow graph in Fig. 2 and program
point 4 in iteration i (denoted as 4(i)). The object pointed
to by an arbitrary array element a[x] at 4(i) can be repre-
sented by the following ewpt mapping,

PointsTo(a[x]) = {〈null, x > i〉, 〈Nt[x], x ≤ i〉},

where

• Nt[x] denotes the object allocated by statement t at
iteration x.

• 〈Nt[x], x ≤ i〉 represents a set that, for a given x, eval-
uates to Nt[x] when x ≤ i, and evaluates to an empty
set at other points.

• 〈null, x > i〉 represents a set that evaluates to the
null object when x > i, and evaluates to an empty
set at other points.

The points-to algorithm is an iterative fixed point algo-
rithm. For illustration purposes, we show next and in Ta-
ble 1 the step-by-step output of ewpt mappings when ap-
plying our algorithm to the example in Fig. 2. Program
points are labeled numerically along the control-flow edges
in Fig. 2.

Point 1, a = new Complex[n]. Variable a points to Ns which
represents the object allocated by s. When first allo-
cated, elements of Ns are initialized to null, hence,
a[x] points to null for 0 ≤ x < n.

We assume that array bounds conditions, such as 0 ≤
x < n, are implicit in ewpt mappings. For conciseness,
the rest of the paper uses null instead of 〈null, 0 ≤
x < n〉 in ewpt mappings.

Point 2, for (...), first iteration.

Point 3, b = new Complex(). Variable b points to Nt[i] that
is the object allocated by statement instance t(i).

Point 4, a[i] = b. This statement makes element a[i] point
to Nt[i], while other elements of a still point to null.
Hence,

PointsTo(a[x]) = null; 〈Nt[i], x = i〉

The ewpt mapping above is then converted to an equiv-
alent form

PointsTo(a[x]) = null; 〈Nt[x], x = i〉.

This transformation is necessary to preserve the pre-
cision of the algorithm during the next step (point 2,
second iteration).2

2The two representation, 〈Nt[i], x = i〉 and 〈Nt[x], x = i〉
will become 〈Nt[i

−], x = i−〉 and 〈Nt[x], x = i−〉, during
the next step. The latter representation (with minimum
occurrences of i) preserves better precision.

s: a = new Complex[n]

for (i=0; i<n; i++)

t: b = new Complex()

a[i] = b

· · ·

1

2

5

3

4

p

b

i

t

N

N

s

[i]

at program point 4 iteration i:

outer part

inner part

Figure 2: Constructing 1-dimensional array of Complex Objects

Point 2, for (...), second iteration. Since loop variable
i is incremented, occurrences of i in previous ewpt

mappings are replaced by i−, which denotes the value
of any iteration before i. This transformation is called
aging .

Point 3, b = new Complex(). Variable b points to Nt[i].
Note that, object Nt[i] allocated at the previous it-
eration of the loop became Nt[i

−] after aging.

Point 4, a[i] = b. The statement makes a[i] point to Nt[i],
and leaves other elements of the array unchanged. Hence,

PointsTo(a[x])

= null; 〈Nt[x], x = i
−〉; 〈Nt[x], x = i〉

= null; 〈Nt[x], x ∈ {i, i−}〉.

Point 2, 3, and 4, third iteration. The fixed point is reached.

Point 5. ewpt mappings at point 4 and 1 are merged. Oc-
currences of i are substituted by its last value (n− 1)
since i is not live after the loop. This transformation
is called binding .

This example reveals several important features of the
pointer analysis.

• Heap objects are named by allocation statement in-
stances. This naming scheme automatically encodes
instance-wise information into the points-to informa-
tion representation. In addition, using names such as
〈Nt[x], x ≤ i〉, ewpt mappings are able to precisely
represent the fact that an object is attached at a par-
ticular region of an array.

• Loop counters may occur in the ewpt mappings and are
handled by aging and binding. Aging may introduce
approximation but is needed for the convergence of the
algorithm. It is the widening operator of the iterative
algorithm.

• The analysis does not remove any heap names from
ewpt mappings for heap assignments (i.e., no destruc-
tive updates). As a result, null is always present in
PointsTo(a[x]). A technique to enable kills for destruc-
tive updates will be presented in Section 6.

3. BASIC DEFINITIONS
This section describes our assumptions on the use of some

language features and introduces basic notations.

3.1 Input Program Format
Without loss of generality, we assume that reference as-

signments of the source program comply to the forms given
in Fig. 3. More complicated accesses can be converted into
these forms by introducing temporaries. In fact, reference
accesses supported by Java byte-code comply with these
forms.

Stack Assignment

1. p = null
2. p = new Cls ()
3. p = new Cls[m_1] . . . [m_k] . . . []
4. p = q
5. p = q.a
6. p = q[e]

Heap Assignment
7. p.a = q
8. p[e] = q

Method Invocation
9. p = q.foo(· · ·);
10. q.bar(· · ·);

Figure 3: Reference assignments

Control statements are loops and conditionals. For while
loops, we create a loop counter before the analysis. These
conventions allow the use of notation s(~ı), for statement
instances, where s is a statement label and ~ı is the iteration
vector of s.

3.2 Location, Object and Reference
A location is a place in memory where a primitive data

type is stored. An object is an aggregation of locations and
is named by a new statement instance. More precisely,

• Given an allocation statement instance s(~ı), Ns[~ı] de-
notes the object created by s(~ı).

One complication comes from the allocation of multi-
dimensional arrays. In general, a statement s in form
of p = new Cls[m1]· · · [mk]· · · []n is equivalent to,

p = new Cls[m1][]· · · [];
for (i1 = 0; i1 < m1; i1++) {
p[i1] = new Cls[m2][]· · · [];
for (i2 = 0; i2 <m2; i2++) {

p[i1][i2] = new Cls[m3][]· · · [];
· · ·

Iter. PrgmPts PointsTo(a) PointsTo(b) PointsTo(a[x])
1 Ns null null

1 2 Ns null null

3 Ns Nt[i] null

4 Ns Nt[i] null; 〈Nt[i], x = i〉 ⇒ null; 〈Nt[x], x = i〉

2 2 Ns Nt[i
−] null; 〈Nt[x], x = i−〉

3 Ns Nt[i] null; 〈Nt[x], x = i−〉
4 Ns Nt[i] null; 〈Nt[x], x ∈ {i−, i}〉

3 2 Ns Nt[i
−] null; 〈Nt[x], x = i−〉

3 Ns Nt[i] null; 〈Nt[x], x = i−〉
4 Ns Nt[i] null; 〈Nt[x], x ∈ {i−, i}〉

5 Ns null; Nt[n− 1] null; 〈Nt[x], 0 ≤ x ≤ n− 1〉

Table 1: The step-by-step output of the analysis

To name these objects uniquely, for statement s, we
create pseudo names s`, ` ranging from 1 to k, to repre-
sent the allocation site of objects new Cls[m`][]· · · []

in the above loop. We “virtually” replace s by the
above loop by expanding the current iteration space
~ı by ` dimensions: Ns`

[~ı, ~x], where ~x is a vector of
length `, represents the object allocated by statement
instance s`(~ı, ~x) in the expanded iteration space.

• Ns[~ı].a denotes the location occupied by field a of ob-
ject Ns[~ı].

A reference is a strongly typed pointer to an object. It
never points inside an object. The dimension of a reference
is the number of “[]” in its type declaration. The dimension
of a non-array reference is 0.

Consider a reference p of n dimensions. Reach(p) denotes
all objects that can be reached from p. Objects in Reach(p)
are further divided into two parts:

Skeleton part contains all objects pointed to by p with
less than n subscripts, i.e., p[x1]· · · [xk] where k < n
(see Fig. 2).

Outer part contains all objects that can be reached from
p with n subscripts, i.e., p[x1]· · · [xn].

Intuitively, the skeleton part of p captures the backbone of
the array referenced by p, whereas the outer part captures
the leaf objects. Objects in the skeleton part are necessarily
array objects.

3.3 Element-wise Points-to Mapping
Given a reference p of n dimensions, the following element-

wise points-to mappings are defined for p:

• We define mapping pk for 0 ≤ k < n. The domain of
pk is a set of k-tuples that contains all subscripts of p

of length k. The value of pk(~x), where ~x is a k-tuple,
is the set of all objects that p[~x] may point to. Due
to Java’s strong typing, these objects must have the
same type as p[~x], and they necessarily belong to the
skeleton part of p.

• If the last dimension of p is of reference type, we define
an additional mapping pn. For any n-tuple, ~x, the
value of pn(~x) is the set of all objects that may be
reached through p[~x]. These objects can be of any
type and dimension (since they may not be directly

pointed to by p[~x]), and they necessarily belong to the
outer part of p.

We call pk the ewpt mapping of p at level k. Consider
the sets computed in Table 1. There, PointsTo(a) is a0, and
PointsTo(a[x]) is a1.

4. TRANSFER FUNCTIONS
The points-to algorithm views every reference assignment

as a transfer function of ewpt mappings. For ease of under-
standing, this section presents the transfer functions without
specifying the representation of ewpt mappings and the im-
plementation of the operations used. A concrete implemen-
tation of the transfer functions will be presented in Section
5.

4.1 Stack Assignments
Let s be the current statement and i1, . . . , id be the coun-

ters of the loops surrounding s. Assume that p has ewpt

mappings from level 0 to level n. The transfer function of
each of the stack assignments is as follows:

• p = null: Since accesses attempted via a null pointer
generate an exception, p[x1] · · · [xk] refers to nothing,
i.e., it maps to the empty set. Hence,

p0() = {null} (1)

pk(x1, . . . , xk) =
�

, 1 ≤ k ≤ n.

• p = new Cls(): p is necessarily 0-dimensional. It has
only one ewpt mapping, p0. Hence,

p0() = {Ns[i1, . . . , id]}. (2)

• p = new Cls[m1]· · · [m`][]`+1· · · []n: This statement
first allocates a n-dimensional array, assigning it to p.
Then, it allocates (n − 1)-dimensional arrays, m1 of
them, and assign them to p[x1]. Repeating the same
process, until it allocates (n − ` + 1)-dimensional ar-
rays, and assigning them to p[x1, . . . , x`−1]. Elements
of these (n− ` + 1)-dimensional arrays (referenced by
p[x1, . . . , x`−1]) are initialized to null. Elements of

null arrays are � . Hence,

p0() = {Ns0 [i1, . . . , id]} (3)

pk(x1, . . . , xk) = {Nsk [i1, . . . , id, x1, . . . , xk]},

1 ≤ k ≤ `− 1

p`(x1, . . . , x`) = {null}

pk(x1, . . . , xk) = � , ` + 1 ≤ k ≤ n.

• p = q: p[x1]· · · [xk] points to the same objects as
q[x1]· · · [xk] does. Hence,

pk(x1, . . . , xk) = qk(x1, . . . , xk), 0 ≤ k ≤ n. (4)

• p = q.a: p[x1]· · · [xk] points to the same objects as
q.a[x1]· · · [xk] does. The legality of q.a implies that
q is of 0 dimension. Then, q0() contains all objects
that can be reached by q, including those pointed to
by q.a. This transfer function is conservative.

pk(x1, . . . , xk) = q0(), 0 ≤ k ≤ n. (5)

Since objects in pk(x1, . . . , xk) must have the same
type as p and must be of (n − k) dimensions, a re-
finement of the above transfer function is to assign to
pk those objects in q0 that are of (n − k) dimensions.

• p = q[e]: The type rules ensure that q has one more
dimension than p. Hence,

pk(x1, . . . , xk) =

qk+1(e, x1, . . . , xk), 0 ≤ k ≤ n. (6)

4.2 Heap Assignments
Since a heap location may be accessed through different

references, one heap assignment may change the ewpt map-
pings of several references at the same time. For example,
consider the assignment in Fig. 4. Since the location of p[e]
can be reached from both p and r, after p[e] = q, both p1

and r2 will change.

q

p

r

stack heap

p[e] = q

q

p

r

stack heap

ee

Figure 4: Heap assignments

Statement of the form p.a = q. Consider any reference
r that can reach the location of p.a. Suppose that r is of n
dimensions. Since p cannot possibly point to an array, if p.a
can be reached from r, it must be in the outer part of r (i.e.,
rn). It may seem at first that the reachability condition is
rn(x1, . . . , xn) ∩ p0() 6= � . However, if the intersection is
null, p.a cannot be reached by r because null.a is not a
valid location. Hence, the correct reachability condition is

rn(x1, . . . , xn) ∩ p0() 6⊆ {null}.

The assignment may also remove objects from rn; however,
there is not enough information to find them. Conserva-
tively, we add Reach(q) to all mappings that can reach the
location of p.a.

All in all, let r′n be rn after the assignment. The transfer
function is

r
′
n(x1, . . . , xn) =

rn(x1, . . . , xn) ∪ {〈Reach(q), Σ〉} (7)

where Σ is the system of constraints obtained by imposing
the condition

rn(x1, . . . , xn) ∩ p0() 6⊆ {null}.

For example, if Σ is computed by imposing the condition
Ns[x1, x2] ∩Ns[n, n] 6⊆ {null}, after simplification, we have
Σ ≡ {x1 = n, x2 = n}.

Statement of the form p[e] = q. Consider any reference
r that may reach the location of p[e]. Suppose that r is of n
dimensions, p is of m dimensions, then q must be of (m−1)
dimensions.

• If the location of p[e] belongs to the skeleton part of
r, p must point to one of the subarrays of r, call it
r[u1]· · · [uh].3 Then, the following condition must be
satisfied:

rh(u1, . . . , uh) ∩ p0() 6⊆ {null}.

In this case, the effect of p[e] = q is to replace sub-
arrays of r[u1]· · · [uh][e] with subarrays of q. That
is to replace r[u1]· · · [uh][e][xh+2]· · · [xh+1+k] by
q[xh+2]· · · [xh+1+k]. All in all, for all k such that 1 +
h + k ≤ m,

r
′
1+h+k(x1, . . . , xh+1+k) = r1+h+k(x1, . . . , x1+h+k)

∪ {〈qk(xh+2, . . . , xh+1+k), Σ〉} (8)

where Σ is the system of contraints got by imposing
the condition

rh(x1, . . . , xh) ∩ p0() 6⊆ {null} ∧ xh+1 = e.

• If the location of p[e] belongs to the outer part of r,
Reach(q) is added to all rn(x1, . . . , xn) that can reach
the location of p[e], which is the same as the case of
p.a = q. Hence, the transfer function is (7).

4.3 Handling Loop Counters
There are two transformations to be applied on loop coun-

ters in ewpt mappings. The first one is aging, which is ap-
plied at every program point that follows a back-edge of a
loop. It reflects the fact that i has been advanced. Consider
a loop counter i. Aging would replace i in the mappings
by i − 1. However, this may generate an infinite number
of terms, such as i, i − 1, i − 1 − 1, etc., during the it-
erative process. To limit the number of forms that aging
may generate, we introduce a symbol i− that represents the
value of the loop counter in any iteration before i. Then,
during aging, occurrences of i in the mappings are replaced
by i−. This may introduce approximation in the algorithm.

3Since the dimension of this subarray (i.e., n − h) must be
the same as the dimension of p (i.e., m), we can further
determine h: h = n−m provided that n ≥ m.

A better scheme is to k-limit the number of forms that a
loop variable can be aged into. Readers can refer to [20] for
details.

The second transformation is binding, which is applied at
any program point that follows a loop exit edge. This is
to ensure that ewpt mappings at different program points
contain only variables that are in scope at those points. For
simplicity of presentation, loop counters are initialized to 0
and have a step of 1. Consider a loop variable i. If the
last iteration of i is n, during binding, occurrences of i in
the mappings are replaced by n, and occurrences of i− are
replaced by a range [0, n − 1]. In the case of unknown loop
bounds, i and i− are replaced by ∗ that represents any pos-
itive integer value.

4.4 Inter-procedural Analysis
We would like to extend our method to programs with

method invocations:

p = q.foo(· · ·);
q.bar(· · ·);

The second case covers both void methods and methods
returning a non-pointer type. We assume that virtual meth-
ods and overloaded methods have been resolved by a previ-
ous pass of the compiler. We also assume that each method
uses distinct local variables and distinct formal parameters.
All of this can be obtained by qualification.

In the iterative algorithm, whenever a method call is en-
countered, we jump to the first statement of the method
after executing a prelude; similarly, when encountering a
return statement, we execute a postlude and jump to the
statement following the invocation. In essence, the interpro-
cedural analysis is both context-sensitive and flow-sensitive.

• During the prelude stage, actual parameters in the
calling context are mapped to the formal parameters
in the callee context. This can be done by executing
“virtual” assignments:

formal = actual

Since the ewpt mappings of the actual parameters may
contain loop counters from the calling context, which is
not visible from the callee, we replace such loop coun-
ters in the ewpt mappings of formal parameters by
“*”.4

• The postlude of a method assigns the value returned
by the method, if any, to the left-hand side reference
in the invocation.

Since heap objects referenced by the caller may be passed
to the callee, any structural update to these objects needs
to be reflected to the caller. In other words, the transfer
functions of heap assignment (in Section 4.2) need to be
augmented to reflect the interprocedural context. This is
done by making the ewpt mappings of the callers visible to

4A more precise handling of method invocation would be to
virtually inline the callee into the calling context, i.e., vir-
tually inlining the callee’s iteration space into the caller’s.
However, such a scheme would fail in the presence of re-
cursive method calls. In fact, this gets down to a more
fundemental problem of devising a store-based analysis for
recursive programs.

the callee. For example, transfer functions (7) and (8) now
apply to ewpt mappings of all references from both the callee
method and methods of its calling chain.

In a really modular analysis, methods should be associ-
ated not to ewpt, but to ewpt transformers. The design of
such an analysis is left for future work.

5. THE ITERATIVE ALGORITHM
The iterative framework requires transfer functions and

a meet operation. The meet operation is set-union. The
transfer functions are described in Section 4. This section
gives a concrete implementation of these transfer functions
by defining the representation of ewpt mappings and pro-
viding the operations in the transfer functions based on this
representation.

5.1 Symbolic Name
The algorithm operates on tables called ewpt tables. Each

entry of an ewpt table contains a set of heap names in the
following format:

〈Ns[a1, . . . , ad], x1 = ad+1, · · · , xk = ad+k, ΣA, ΣB〉

• s is a statement and d is the nesting level of s;

• x1, . . . , xk are the parameters of any ewpt mapping at
level k where k is called the rank of the heap name;

• A = {a1, . . . , ad+k} is a set of (d+k) bound variables;

• B is another set of bound variables that can be re-
named at will. The size of B is bounded by 2d (see
the definition of Σ below).

• ΣA is a system of constraints over A with at most one
constraint per a ∈ A. Let e be a subscript expression in
the program and i be the counter of a loop surrounding
s. Constraints in ΣA take one of the following forms:

– a = e[i← b] where b ∈ B.

– a = e[i← u] where u is the last value of i.

– e[i ← 0] ≤ a ≤ e[i ← u − 1] with the same con-
ventions.

The notation e[x ← y] stands for substituting occur-
rences of x in e by y.

• ΣB is a system of constraints over B. For each b ∈ B,
the constraint is either of the form b ∈ i or b ∈ i− where
i is the counter of a loop surrounding s. Redundant
variables in B are removed: 1) when both b ∈ i and
c ∈ i belong to ΣB , b in ΣB is replaced by c, and b is
removed from B; 2) when b does not occur in ΣA, it is
removed from B. These rules ensure that B contains
no more than 2d variables.

The above representation is called the standard format.
Heap names in the standard format are called symbolic names.

5.2 Transfer Functions
There is a one-to-one correspondence between any ewpt

mapping pk and ewpt[p,k]. That is symbolic names in ewpt[p,k]
represents the value of pk(x1, . . . , xk). For instance, the fol-
lowing table entry

ewpt[p,1] = {null; 〈Ns[a1], x1 = a1, a1 ≤ n〉}

represents the mapping

p1(x) = {null; 〈Ns[x], x ≤ n〉}.

p = null ewpt[p,0] ← {null}
1 ≤ k ≤ n : ewpt[p,k]← �

p = new Cls() ewpt[p,0] ← 〈Ns[a1, . . . , ad], a1 = b1, . . . , ad = bd, b1 ∈ i1, . . . , bd ∈ id〉
p = new Cls[m1]· · · ewpt[p,0] ← 〈Ns[a1, . . . , ad], a1 = b1, . . . , ad = bd, b1 ∈ i1, . . . , bd ∈ id〉

[m`][]`+1· · · []n 1 ≤ k ≤ `− 1 : ewpt[p,k]← 〈Nsk [a1, . . . , ad, x1, . . . , xk], a1 = b1, . . . , ad = bd, b1 ∈ i1, . . . , bd ∈ id〉
ewpt[p,`]← {null}
` + 1 ≤ k ≤ n : ewpt[p,k]← �

p = q 0 ≤ k ≤ n : ewpt[p,k]← ewpt[q,k]
p = q.a 0 ≤ k ≤ n : ewpt[p,k]← ewpt[q,0]
p = q[e] 0 ≤ k ≤ n : ewpt[p,k]← ewpt[q,k+1](e)
p.a = q ∀r, n = rank(r) :

ewpt[r,n]← ewpt[r,n] t 〈Reach(q), ewpt[r,n] ∩ ewpt[p,0] 6⊆ {null}〉
p[e] = q ∀r, n = rank(r),m = rank(p), if h = n −m ≥ 0:

ewpt[r,h+1+k]← ewpt[r,h+1+k] t 〈ewpt[q,k](xh+2, . . . , xh+1+k),
ewpt[r,h] ∩ ewpt[p,0] 6⊆ {null}, xh = e〉

ewpt[r,n]← ewpt[r,n] t 〈Reach(q), ewpt[r,n] ∩ ewpt[p,0] 6⊆ {null}〉

Table 2: Transfer functions of ewpt tables

Derived directly from (1) - (8), Table 2 gives the trans-
fer functions based on the ewpt table representation where
s denotes the current statement and i1, . . . , id denote the
counters of the loops that surround s. Table 2 also uses
several operations applied to sets of symbolic names. These
operations are defined below. All but the first one are de-
fined on symbolic names, but can be extended to sets in the
usual way.

Let Ak be a set of symbolic names and νk be a symbolic
name. Both are of rank k.

νk(e) binds a subscript expression, e, to the first parameter
of νk, x1. The resulting symbolic name is of rank (k−
1). Given νk = 〈Ns[a1, . . . , ad], Σk〉, this operation
eliminates x1 from νk by adding the constraint x1 = e
to Σk. The computation is performed in three steps:

1. If the system is unfeasible, it returns � .

2. Else, from the new constraint x1 = e, we deduce
ad+1 = e[i ← b]. This constraint is added to ΣA

iff ad+1 was not constrained in νk. If it was con-
strained, then there are two constraints for ad+1,
which is forbidden in the standard format. There-
fore, we chose to ignore one of them. This is in
fact a widening operation. Since the new con-
straint always defines a singleton set while the
old one may define a range, we chose to replace
the old constraint with the new one.

3. Finally, the parameters of νk are shifted: [x2 ←
x1, · · · , xk ← xk−1]. This substitution will gener-
ate a symbolic name of rank (k − 1).

To give an example, suppose

ν1 = 〈Ns[a, b], x1 = a, x2 = b, a ≤ i, b ≤ j},

then,

ν1(i + 1) = �
ν1(i− 1) = 〈Ns[a, b], x1 = b, a = i− 1, b ≤ j〉.

This operation is also used to compute the points-to set
of an array element from ewpt mappings, for instance,
to compute read-sets/write-sets of a reference access
for dependence analysis.

νk(xm+1, . . . , xm+1+k) substitutes xi by xi+m in νk for any
1 ≤ i ≤ k. The resulting symbolic name is of rank
(k + h + 1). For instance, given

v1 = 〈Ns[a], x1 = a, a = i〉,

then,

v1(x2) = 〈Ns[a], x2 = a, a = i〉.

Ak t νk adds νk to set Ak. The resulting set is simplified by
removing common names. Furthermore, if a symbolic
name subsumes another, the latter is removed from
the resulting set. For instance, given

ν1 = 〈Ns[c], x1 = c, c < i〉

A1 = {〈Ns[a], x1 = a, a ≤ i〉},

then,

A1 t ν1 = {〈Ns[d], x1 = d, d ≤ i〉}.

In this example, the resulting set represents the same
mapping as A1 (after intermediate variables are re-
named).

νk ∩ µ0 6⊆ {null} solves a system of constraints over x1, . . . , xk:
νk(x1, . . . , xk) ∩ µ0 6⊆ {null}. Consider

νk = 〈Ns[a1, . . . , ad], Σk〉

µ0 = 〈Nt[a1, . . . , ad], T0〉.

The operation returns false when s 6= t, i.e., objects in
νk and µ0 are created by different statements. Oth-
erwise, it returns Σ′ = Σk ∪ T0. Again, Σ′ needs to
be simplified: unfeasible constraints are represented
by false; and if some variable in A has more than one
constraints, the most precise one is kept and the others
are discarded.

Consider the following example,

ν2(x1, x2) = 〈Ns[a1, a2], x1 = a1,

x2 = a2, a1 ≤ i, a2 < j〉

µ0() = 〈Ns[c1, c2], c1 = i, c1 = j〉

µ
′
0() = 〈Ns[c1, c2], c1 = i, c2 = ∗〉.

then,

ν2 ∩ µ0 6⊆ {null} ⇒ false

ν2 ∩ µ
′
0 6⊆ {null} ⇒ {x1 = a1, x2 < a2,

a1 = i, a2 < j}.

Reach(q) computes all objects that can be reached from
reference variable q. It can be computed as the union
of all ewpt entries of q, removing constraints over the
parameters of those symbolic names.

Finally, the handling of loop counters is explained. Consider
a loop counter i with an upper bound u. Aging is performed
by replacing i by i− in all symbolic names. Binding is per-
formed as follows,

• For each b ∈ i in B, b in ΣA is replaced by u;

• Consider any b with a constraint b ∈ i− in B. If b

occurs in any constraint a = e in ΣA, then a = e is
replaced by e[b← 0] ≤ a ≤ e[b← u− 1].

It can be checked that operations on symbolic names pre-
serve the standard format. Hence, the number of symbolic
names in a given program is finite. This is the key for the
convergence proof of the algorithm. Due to space limita-
tions, this proof is omitted. It can be found in full in [20].

5.3 Cost Analysis
A rough estimate of the complexity of the analysis is the

product of the following factors:

• the number of program points;

• the number of ewpt mappings at each point;

• the number of iterations to reach a fixed point;

• the number of symbolic names in each mapping.

The second factor can be easily computed. Let di be the
dimension of the i-th reference in the program. The number
of ewpt mappings is

Ne =
�

i

(di + 1).

To estimate the iteration count, let us consider aging first.
Since each loop counter i in the ewpt mappings is aged to
i− at the end of a loop body, it may take up to 2 itera-
tions to reach a fixed point plus one more iteration to test
it. The iteration count also depends on how fast modifica-
tions can be propagated. While forward modifications are
propagated instantly, it may need several iterations to do
backward propagations. Consider the following example:

0 for(i=0; i<n; i++) {
1 p = q;
2 q = r;
3 r = new Cls();
4 }

3 iterations are needed until the effect of statement 3 is
propagated back to p. An upper bound of the number of
iterations in a m-nested loop would be m times the number
of pointer assignments in the loop body.

We have already proved in [20] that the number of sym-
bolic names is finite. Although likely to be an overestimate,
this gives an upper bound on the number of symbolic names

in an ewpt mapping. In practice, we can limit the size of
symbolic names in an ewpt mapping to reduce the cost of
the analysis.

One may wonder about the complexity of the operations
on symbolic names. The complexity of these operations can
be treated as a constant, although they may be quite ex-
pensive in practice. It is worth to mention, however, that
symbolic names in ewpt mappings at level 0 are essentially
points-to sets. Operations on them are inexpensive set union
and intersection. They become expensive only when ewpt

mappings at a level greater than 0 (for true array element
accesses) are involved.

6. ADDITIONAL KILLING
This section presents a technique to remove objects from

ewpt mappings in heap assignments. There are two reasons
why the iterative algorithm performs no kill on heap assign-
ments:

• To kill on heap assignment, one needs must-alias infor-
mation, whereas ewpt mappings capture may-points-to

information.

• To kill an object from a particular array element may
involve restricting the constraint part of symbolic names.
Then, aging that replaces a set by its super-set (i.e.,
replacing i− 1 by i−) is not safe any more.

The additional killing is performed after the iterative al-
gorithm is terminated. As opposed to widening, this is the
narrowing part of the points-to analysis. The technique is
based on proving the solidity of objects. An object is solid if
all its reference fields are not null. Here, we focus on how to
remove null from ewpt mappings. However, the technique
can be easily extended to a general killing scheme. Consider
the example in Fig. 2. At program point 5, the following
ewpt mappings are computed,

a0() = Ns

a1(x) = {null; 〈Nt[x], 0 ≤ x < n〉}.

Since a points to Ns, a[x] and Ns.[x] ought to point to the
same objects. Hence, if object Ns is solid, a[x], for any
possible x, must not be null. This means that null can
be removed from a1. In general, if an ewpt mapping, pk,
contains only solid objects, null can be removed from pk+1.

The solidity of an object can be proved in two steps:

Step One Pointer assignments in the program are converted
to pseudo assignments. For every statement in form
of l = r, the following pseudo assignment (←) is con-
structed,

Location(l)← PointsTo(r),

where Location(l) and PointsTo(r) are computed us-
ing the ewpt mappings from the previous iterative al-
gorithm. A pseudo assignment is a must-assignment if
its left-hand-side is a singleton non-null location.

For example, the following pseudo code is generated
from the code in Fig. 2,

a ← Ns;
for (i = 0; i<n; i++) {
b ← Nt[i];
Ns.[i]← Nt[i];

}

Step Two To prove that an object is solid, one considers all
pseudo statements that assign to a field of the object.
A must-assignment generates a non-null field if the
right-hand-side (rhs) of the assignment contains no
null. An assignment whose rhs contains null kills a
non-null field. For array elements, the Gen and Kill
sets are summarized as intervals over loops. Finally,
if every field of an object does not point to null, the
object is solid.

7. APPLICATIONS AND RESULTS
The transfer functions were implemented in Java and javac

was augmented to drive the fixed point computation. We
evaluate the analysis and demonstrate that ewpt mappings
can be used to improve dependence test, loop parallelization,
and exception optimization.

7.1 The Benchmarks
The experimental results are reported based on running

the analysis over eight Java programs, as given in Table 3.
All benchmark programs use either multi-dimensional arrays
or one dimensional object arrays. Six of them are numerical
codes that would benefit from classical loop optimizations.
Program listtbl is an artificial example that constructs an
array of linked lists in a loop, and is included in the bench-
mark because it shows an interesting pattern of reference
assignments.

The inter-procedural scheme of the analysis was not im-
plemented; instead, we inlined method calls and commented
out system calls that had no side-effects in the programs.
Table 3 gives lengths of the programs before and after inlin-
ing.5

7.2 Cost and Precision
The points-to analysis is applied to the seven benchmark

programs. Analysis time is measured on an Ultra SPARC5
with a 270MHz processor, using java from SUN JDK1.2.2
with jit enabled. Table 4 summarizes the measurement for
each program: “Prgm Pts” gives the number of program
points where ewpt mappings were computed; “time” gives
the actual analysis time; and “ewpt/javac” gives the per-
centage of the analysis time in a plain javac compilation.

Program Prgm Pts Analysis Time
time (ms) ewpt/javac

listtbl 10 9 0.1%
cmatmul 25 162 2.1%
shallow 73 259 3.4%
cholesky 19 195 2.6%

sor 18 184 2.5%
lufact 40 168 2.9%
moldyn 53 77 1.0%
euler 299 2440 25%

Table 4: Analysis cost

Overall, the analysis time of the first seven programs is
fairly small (0.1%- 3.4% of a plain javac compilation). The
analysis time of euler (25% of javac compilation) is much

5lufact is smaller after inlining because of some dead code
elimination done during inlining.

higher because euler involves switching the four sub-arrays
of a 2-dimensional array ug. As a result, the ewpt map-
pings of ug contains 18 symbolic names, whereas, in other
benchmarks, most ewpt mappings contain about 2 symbolic
names. This suggests that a reasonable k-limiting on the size
of ewpt mappings can help reduce analysis cost on irregular
assignment patterns.

To measure the precision, we checked the output ewpt

mappings obtained. For array references, the ewpt map-
pings were fairly precise. In particular, the mappings of
ug in euler capture correct points-to information due to
the switching of elements. Furthermore, using the “killing”
technique, the analysis is able to remove all of redundant
null from the mappings of array elements.

7.3 Dependence Analysis
Three versions of dependence tests were implemented us-

ing different pointer information. All of them use the Omega
library [15] to determine the dependences.

• type collects read- and write-sets as sets of types. Two
accesses are reported dependent if their types are com-
patible and at least one of them is a write. Two array
accesses a[x] and b[y] are dependent if a and b are
of compatible types, and if x and y may denote the
same offset. The latter condition is determined by the
Omega library.

• flat assumes no aliasing between different array ele-
ments (i.e., arrays are flat FORTRAN-like arrays) and
no aliasing between arrays of different names. For non-
array references, it uses a type-based analysis as in the
previous test. Note that, flat is based on an unsafe
assumption about array aliasing, hence it gives a lower
bound of the number of array-induced dependences in
the program.

• ewpt computes read- and write-sets as sets of heap
locations from ewpt mappings. Details can be found
in [20]. Dependence testing on heap locations is the
same as that on FORTRAN arrays.

Table 5 gives the statistics collected for the three im-
plementations. Only dependences due to conflicts of heap
locations were reported, and at most one dependence was
reported between any pair of statements. Note that ewpt

reports fewer dependences than flat. This is because al-
though flat assumes perfect information about arrays, it
is quite conservative about non-array objects; whereas ewpt
has information on both types of objects.

It is worth mentioning that using conventional points-to
analyses in place of type would not improve the dependence
test significantly, due to their lack of ability to disambiguate
different elements of an array.

Table 5 also shows the number of parallel loops detected
by ewpt and type. The actual number of parallel loops is
given in real. We assume that conflicts due to stack lo-
cations can be handled by techniques such as scalar priva-
tization. Overall, ewpt is able to detect all actual parallel
loops, whereas parallel loops detected by type are mostly
initialization loops.

7.4 Exception Analysis
A Java virtual machine automatically performs two run-

time checks – the null-pointer and the array bounds check –

Program Description Lines (inlined) Source
listtbl constructing an array of linked lists 15 -
cmatmul complex matrix multiplication 47 -
cholesky cholesky factorization of a matrix 38 IBM
shallow complex shallow-water simulation 197 (218) IBM
sor successive over-relaxation routine 40 Java Grande

lufact LU factorization routine 287 (153) Java Grande
moldyn molecular dynamics simulation 234 Java Grande
euler computational fluid dynamics 915 (2028) Java Grande

Table 3: The benchmarks

Program Dependences Parallel Loops
type flat ewpt type ewpt real

listtbl 5 3 2 0 1 1
cmatmul 8 3 3 3 7 7
cholesky 10 4 4 5 6 6
shallow 1092 152 152 6 17 17
sor 6 5 5 3 4 4

lufact 72 45 45 9 11 11
moldyn 2 0 0 17 19 19
euler 12559 2489 2489 36 55 55

Table 5: Dependences and parallel loops

Program bound-check null-check safe loop
ewpt type ewpt type ewpt real

listtbl 0 2 0 3 2 2
cmatmul 0 13 0 13 7 7
cholesky 0 19 0 19 8 8
shallow 0 278 0 278 20 20

sor 0 17 0 17 7 7
lufact 22 57 0 57 6 15
moldyn 2 2 0 8 22 24
euler 12 507 0 705 57 60

Table 6: Redundant checks and safe loops

for each indirect load. Restricted by the exception seman-
tics of Java, an instruction cannot be moved across a point
where exceptions may occur. Therefore, it is important for
high-level optimizers to identify regions that are free of ex-
ceptions. One particular problem is to eliminate redundant
null-pointer checks for pointers residing in array cells (e.g.,
p[i]).6 Since ewpt mappings can tell whether an access is
null, or is out-of-bounds, they can be exploited to improve
Java exception analysis. For instance, if mapping p1 con-
tains no null, the compiler can prove that access to p[i]

can not throw any null-pointer exception.
Table 6 gives the number of array bounds and null-pointer

checks identified as redundant as well as the number of
exception-free loops (safe loops). Some redundant array
bounds checks are undetected because our implementation
is not able to compare symbolic expressions. On the other
hand, all null-pointer checks in the benchmarks have been
identified as redundant due to the analysis’ ability to remove
null from ewpt mappings.

6Pointers stored on the heap are heap-residing pointers;
those stored on the stack are stack-residing pointers.

8. RELATED WORK
We compare our work with research in three areas: anal-

yses of heap-directed pointers, dependence analyses in the
presence of pointers, and Java exception analysis.

Pointer Analysis. There are two approaches to compute
properties for heap-directed pointers. The first one is re-
ferred to as store-based because heap locations are named
statically, using either the pointer type [7, 18, 2], or the al-
location site [19]. Our points-to analysis is store-based, but
it uses a more precise naming scheme. We name objects by
their allocation statement instances. In many cases, naming
heap objects using allocation sites is a good cost/precision
trade-off. However, for loop-based dependence tests it is im-
portant to distinguish different objects created by the same
allocation site. Furthermore, our points-to analysis is able to
compute points-to information for individual array elements
that most others cannot.

Another store-based approach is Rugina et. al. [16]. The
bulk of this paper is concerned with the determination of
access regions in arrays. The usual region analysis is gener-
alized to cases in which bounds must be expressed as poly-
nomials in the parameters. Our aim here is quite different.
We focus on the way pointers refer to dynamically allocated
arrays. We cannot expect addresses created by new state-
ments to be representable by polynomials. Conversely, when
an array is allocated, our analysis can only build polyhedral
regions, and Rugina et. al. work is more general than ours.

As opposed to the store-based approach, a store-less anal-
ysis directly computes alias properties without naming heap
objects. These properties could be alias pair information
[6, 8, 3] or shape information [12, 17, 9]. The shape of a
pointer tells us whether a pointer refers to a list, a tree,
etc. It is the “store-less” counterpart of the element-wise
information that our analysis captures. Although the work
by Deutsch [6] is store-less, our work shares one common
feature with his. Both analyses try to summarize properties
of unbounded objects in one symbolic form. His work uses
symbolic access paths, whereas ours uses ewpt mappings (or
symbolic names).

Dependence Testing with Pointers. Dependence tests
that are based on store-less pointer analyses [11, 10, 13] rep-
resent read/write sets as sets of access paths. Access paths
from different program points cannot be compared as they
do not have any associated points-to information. Therefore,
these dependence tests are applicable only to loops with no
pointer assignments.

Like our points-to analysis, Ghiya and Hendren [9] also
address pointer analysis in the context of dependence test-

ing. Their analysis aims to enhance store-less schemes so
that they can be used for dependence tests. Our scheme
aims to improve the precision of store-based analyses for
iteration-based dependence tests. They are able to handle
pointers to flat arrays, but not array elements of pointer
types since their points-to analysis is not element-wise. In
addition, they cannot handle dependences in a loop with
pointer assignments as their scheme is not instance-wise.

Chambers et al. [2] address dependence analysis for Java
in the presence of exceptions, multi-threading, and dynamic
class loading. They use a type-based points-to analysis.
They do not focus on getting precise information for loop
iterations or array elements.

Overall, no previous work can decide that the following
loop carries no dependence over statement 3.

1 for (i = 0; i<n; i++) {
2 p = new ...;
3 p.a = ...;
4 }

The fact that p points to a new object at each iteration
cannot be abstracted by either shape or alias information.
Our analysis can do this because of the instance-wise naming
of objects.

Exception Analysis. Bodik, Gupta, and Sarkar [1] pro-
posed a method to eliminate exception checks based on par-
tial redundancy elimination. Lacking precise pointer in-
formation, their method only remove partially redundant
checks for heap-residing references. Our points-to analy-
sis, on the other hand, is able to directly remove redundant
checks based on ewpt mappings.

Moreira, Gupta, and Midkiff [14] exploited exception-free
regions for numerical Java programs. However, they did not
address the techniques to identify such regions.

9. CONCLUSION AND FUTURE WORK
This paper presents an iterative algorithm that computes

points-to information for instances of references and ele-
ments of reference arrays as ewpt mapping. Such pointer in-
formation can be used to enable a precise loop-based depen-
dence test in the presence of Java references. We also pro-
pose a technique to perform kills on ewpt mappings for heap
assignments. This technique can help identify redundant
null-pointer checks for heap-residing pointers. We obtain
promising results with a reasonable cost when using ewpt

information on dependence analysis and exception analysis.
This work can be extended in many directions. The in-

terprocedural algorithm is neither efficient nor precise. One
possible solution is that when an ewpt mapping is likely to
be changed, instead of carrying it around, abstract it into
boolean properties such as the injectivity of the mapping (or
combness as coined in [5]), which are much more lightweight
and reach convergence faster. The challenge, then, is how to
combine a store-based scheme with a store-less abstraction
to improve the precision of the inter-procedural analysis.
Consider the following example:

· · ·

for (..i..)
s: bar(a[i]);
· · ·

bar(Cls[] f) {
for (..j..)

t: f[j] = new Cls();
}

A precise naming scheme needs to distinguish instances
of t from different invocations of bar() (i.e., different in-
stances of s). One method is to nest the iteration space

of t inside that of s, i.e., s, t(i, j), then name the object
allocated by t(j) in the calling context of s(i) as Ns,t[i, j].
The challenge then is to devise such a store-based naming
scheme for recursive programs.

We would also like to explore other application of the
analysis such as heap optimizations. Since ewpt mappings
capture precise links between references, objects and alloca-
tion sites, it is possible to use them for garbage collection,
object layout optimization (e.g., flattening arrays), and ob-
ject privatization.

10. REFERENCES
[1] Rastislav Bodik, Ragiv Gupta, and Vivek Sarkar.

ABCD: Eliminating array bounds checks on demand.
In ACM Symp. on Programming Language Design and

Implementation, June 2000.

[2] C. Chambers, I. Pechtchanski, V. Sarkar, M. Serrano,
and H. Srinivasan. Dependence analysis for Java. In
Workshop on Languages and Compilers for Parallel

Computing, August 1999.

[3] Ben-Chung Cheng and Wen mei Hwu. Modular
interprocedural pointer analysis using access paths:
design, implementation, and evaluation. In ACM

Symp. on Programming Language Design and

Implementation, pages 57–69, June 2000.

[4] Jong-Deok Choi, Michael Burke, and Paul Carini.
Efficient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In ACM

Symp. on Principles of Programming Languages,
pages 232–245, 1993.

[5] Albert Cohen, Peng Wu, and David Padua. Pointer
analysis for monotonic container traversals. Technical
Report CSRD 1586, University of Illinois at
Urbana-Champaign, January 2001.

[6] Alain Deutsch. Interprocedural may-alias analysis for
pointers: Beyond k-limiting. In ACM Symp. on

Programming Language Design and Implementation,
June 1994.

[7] A. Diwan, K.S. McKinley, and E.B. Moss. Type-based
alias analysis. In ACM Symp. on Programming

Language Design and Implementation, June 1998.

[8] Rakesh Ghiya and Laurie J. Hendren. Connection
analysis: A practical interprocedural heap analysis for
C. In Workshop on Languages and Compilers for

Parallel Computing. Springer-Verlag, 1995.

[9] Rakesh Ghiya and Laurie J. Hendren. Putting pointer
analysis to work. In ACM Symp. on Principles of

Programming Languages, January 1998.

[10] Laurie J. Hendren and Alexandru Nicolau.
Parallelizing programs with recursive data structures.
In IEEE Trans. on Parallel and Distributed

Computing, January 1990.

[11] Joseph Hummel, Laurie J. Hendren, and Alex Nicolau.
A general data dependence test for dynamic,
pointer-based data structures. In ACM Symp. on

Programming Language Design and Implementation,
June 1994.

[12] Joseph Hummel, Laurie J. Hendren, and Alex Nicolau.
A language for conveying the alising properties of
dynamic, pointer-based data structures. In
Inthernational Parallel Processing Symposium, pages
208–216, April 1994.

[13] J. Larus and P. Hilfinger. Detecting conflicts between
structure accesses. In ACM Symp. on Programming

Language Design and Implementation, Atlanta, GA,
June 1988.

[14] J. E. Moreira, S. P. Midkiff, and M. Gupta. From flop
to megaflops: Java for technical computing. ACM

Trans. on Programming Languages and Systems,
22(2):265–295, March 2000.

[15] William Pugh. The Omega test: A fast and practical
integer programming algorithm for dependence
analysis. In Supercomputing, 1991.

[16] Radu Rugina and Martin Rinart. Symbolic bound
analysis of pointers, array indices and accessed
memory regions. In PLDI’2000. ACM, 2000.

[17] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape
analysis problems in languages with destructive
updating. In ACM Symp. on Principles of

Programming Languages, January 1996.

[18] B. Steensgaard. Points-to analysis in almost linear
time. In ACM Symp. on Principles of Programming

Languages, January 1996.

[19] R. Wilson and M. Lam. Efficient context-sensitive
pointer analysis for C programs. In ACM Symp. on

Programming Language Design and Implementation,
June 1995.

[20] Peng Wu. Analyses of pointers, induction variables,
and container objects for dependence testing.
Technical Report UIUCDCS-R-2001-2209, University
of Illinois at Urbana-Champaign, May 2001. Ph.D
Thesis.

