Satoshi Hada
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Gauss periods yield (self-dual) normal bases in finite fields, and these normal bases can be used to implement arithmetic efficiently. It is shown that for a small prime power q and infinitely many integersn , multiplication in a normal basis of Fqn over Fq can be computed with O(n logn loglog n), division with O(n log2n loglog n) operations in Fq, and exponentiation of an arbitrary element in Fqn withO (n2loglog n) operations in Fq. We also prove that using a polynomial basis exponentiation in F 2 n can be done with the same number of operations in F 2 for all n. The previous best estimates were O(n2) for multiplication in a normal basis, andO (n2log n loglog n) for exponentiation in a polynomial basis. © 2000 Academic Press.
Satoshi Hada
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Guo-Jun Qi, Charu Aggarwal, et al.
IEEE TPAMI
Trang H. Tran, Lam Nguyen, et al.
INFORMS 2022
W.F. Cody, H.M. Gladney, et al.
SPIE Medical Imaging 1994