I.K. Pour, D.J. Krajnovich, et al.
SPIE Optical Materials for High Average Power Lasers 1992
Photon-stimulated desorption due to internal vibrational excitation of adsorbed molecules is a resonant phenomenon and has recently attracted considerable experimental and theoretical attention. n this paper, a brief review of prior studies is given. New results on NH3, ND3 and Xe in neatly adsorbed and co-adsorbed states excited by a tunable infrared laser and photodesorbed from Cu(100), NaCl and Ag films are presented to elucidate desorption mechanisms. Both single-photon and multiphoton excitation processes are examined and the velocity distributions of desorbed particles are analyzed. Various energy transfer and relaxation processes related to desorption are evaluated and a model for infrared photodesorption with particular emphasis on assessing the quantum and thermally-assisted effects is also discussed. © 1985.
I.K. Pour, D.J. Krajnovich, et al.
SPIE Optical Materials for High Average Power Lasers 1992
Frank R. Libsch, Takatoshi Tsujimura
Active Matrix Liquid Crystal Displays Technology and Applications 1997
J.V. Harzer, B. Hillebrands, et al.
Journal of Magnetism and Magnetic Materials
S. Cohen, J.C. Liu, et al.
MRS Spring Meeting 1999