Riduan Khaddam-Aljameh, Michele Martemucci, et al.
IEEE TCAS-II
Machine learning has emerged as the dominant tool for implementing complex cognitive tasks that require supervised, unsupervised, and reinforcement learning. While the resulting machines have demonstrated in some cases even superhuman performance, their energy consumption has often proved to be prohibitive in the absence of costly supercomputers. Most state-of-the-art machine-learning solutions are based on memoryless models of neurons. This is unlike the neurons in the human brain that encode and process information using temporal information in spike events. The different computing principles underlying biological neurons and how they combine together to efficiently process information is believed to be a key factor behind their superior efficiency compared to current machine-learning systems.
Riduan Khaddam-Aljameh, Michele Martemucci, et al.
IEEE TCAS-II
Bipin Rajendran, Rohit S. Shenoy, et al.
IEEE Transactions on Electron Devices
Benedikt Kersting, Vladimir Ovuka, et al.
Scientific Reports
Naveen Shamsudhin, Nino Laeubli, et al.
PLoS ONE