Hang-Yip Liu, Steffen Schulze, et al.
Proceedings of SPIE - The International Society for Optical Engineering
This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any time. We develop simple, systematic, and efficient techniques for making linked data structures persistent. We use our techniques to devise persistent forms of binary search trees with logarithmic access, insertion, and deletion times and O(1) space bounds for insertion and deletion. © 1989.
Hang-Yip Liu, Steffen Schulze, et al.
Proceedings of SPIE - The International Society for Optical Engineering
James Lee Hafner
Journal of Number Theory
Frank R. Libsch, Takatoshi Tsujimura
Active Matrix Liquid Crystal Displays Technology and Applications 1997
Leo Liberti, James Ostrowski
Journal of Global Optimization