Shulin Zhuang, Leili Zhang, et al.
Journal of Physical Chemistry B
Huntington's disease is a deadly neurodegenerative disease caused by the fibrilization of huntingtin (HTT) exon-1 protein mutants. Despite extensive efforts over the past decade, much remains unknown about the structures of (mutant) HTT exon-1 and their enigmatic roles in aggregation. Particularly, whether the first 17 residues in the N-terminal (HTT-N17) adopt a helical or a coiled structure remains unclear. Here, with the rigorous study of molecular dynamics simulations, we explored the most possible structures of HTT-N17 in both dodecylphosphocholine (DPC) micelles and aqueous solution, using three commonly applied force fields (OPLS-AA/L, CHARMM36, and AMBER99sb∗-ILDNP) to examine the underlying molecular mechanisms and rule out potential artifacts. We show that local environments are essential for determining the secondary structure of HTT-N17. This is evidenced by the insertion of five hydrophobic residues of HTT-N17 into the DPC micelle, which promotes the formation of an amphipathic helix, whereas such amphipathic helices unfold quickly in aqueous solution. A relatively low free-energy barrier (∼3 kcal/mol) for the secondary structure transformation was also observed for all three force fields from their respective folding-free-energy landscapes, which accounts for possible HTT-N17 conformational changes upon environmental shifts such as membrane binding and protein complex aggregation.
Shulin Zhuang, Leili Zhang, et al.
Journal of Physical Chemistry B
Liming Wang, Peiyu Quan, et al.
ACS Nano
Jeffrey K. Weber, Joseph A. Morrone, et al.
J. Comput. Aided Mol. Des.
Guangxin Duan, Lu Chen, et al.
Chemical Research in Toxicology