Conference paper
Distilling common randomness from bipartite quantum states
Igor Devetak, Andreas Winter
ISIT 2003
Let A=(aij) be a real symmetric matrix of order n. We characterize all nonnegative vectors x=(x1,...,xn) and y=(y1,...,yn) such that any real symmetric matrix B=(bij), with bij=aij, i≠jhas its eigenvalues in the union of the intervals [bij-yi, bij+ xi]. Moreover, given such a set of intervals, we derive better bounds for the eigenvalues of B using the 2n quantities {bii-y, bii+xi}, i=1,..., n. © 1981.
Igor Devetak, Andreas Winter
ISIT 2003
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum
Arnon Amir, Michael Lindenbaum
IEEE Transactions on Pattern Analysis and Machine Intelligence
Moutaz Fakhry, Yuri Granik, et al.
SPIE Photomask Technology + EUV Lithography 2011