S. Cohen, T.O. Sedgwick, et al.
MRS Proceedings 1983
A mechanism for the modification of porous ultra low-k (ULK) and extreme ultra low-k (EULK) SiCOH-based materials is proposed. This is achieved by correlating film damage on a patterned structure measured by angular resolved x-ray photoelectron spectroscopy (ARXPS) with corresponding changes in reactive species radical density and ion current in the plasma measured by optical emission spectroscopy (OES), rare gas actinometry, and modeling. Line-to-line electrical leakage and capacitance data of nested line structures exposed to downstream ash plasmas suggest that other etching steps during back-end-of-the-line (BEOL) dual damascene processing are also critical for the overall modification induced to these materials. © 2007 Elsevier B.V. All rights reserved.
S. Cohen, T.O. Sedgwick, et al.
MRS Proceedings 1983
Corneliu Constantinescu
SPIE Optical Engineering + Applications 2009
Andreas C. Cangellaris, Karen M. Coperich, et al.
EMC 2001
T. Schneider, E. Stoll
Physical Review B