Jean Bourgain, Jeff Kahn, et al.
Israel Journal of Mathematics
Let Δ(d, n) be the maximum diameter of the graph of a d-dimensional polyhedron P with n-facets. It was conjectured by Hirsch in 1957 that Δ(d, n) depends linearly on n and d. However, all known upper bounds for Δ(d, n) were exponential in d. We prove a quasi-polynomial bound Δ(d, n)≤n2 log d+3. Let P be a d-dimensional polyhedron with n facets, let φ{symbol} be a linear objective function which is bounded on P and let v be a vertex of P. We prove that in the graph of P there exists a monotone path leading from v to a vertex with maximal φ{symbol}-value whose length is at most {Mathematical expression}. © 1992 Springer-Verlag New York Inc.
Jean Bourgain, Jeff Kahn, et al.
Israel Journal of Mathematics
Noga Alon, Gil Kalai, et al.
FOCS 1992
Noga Alon, Gil Kalai, et al.
Theoretical Computer Science