Exploring a Path towards Memory-Storage Convergence

Daniel Waddington (daniel.waddington@ibm.com)
Research Staff Member

IBM Research Almaden
Disclaimer

© IBM Corporation 2019

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

• CREATING ANY WARRANTY OR REPRESENTATION FROM IBM (OR ITS AFFILIATES OR ITS OR THEIR SUPPLIERS AND/OR LICENSORS); OR
• ALTERING THE TERMS AND CONDITIONS OF THE APPLICABLE LICENSE AGREEMENT GOVERNING THE USE OF IBM SOFTWARE.

IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice at IBM’s sole discretion. Information regarding potential future products is intended to outline our general product direction and it should not be relied on in making a purchasing decision. The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any material, code or functionality. Information about potential future products may not be incorporated into any contract. The development, release, and timing of any future features or functionality described for our products remains at our sole discretion.
Memory/Storage Tiers

<table>
<thead>
<tr>
<th>Durable</th>
<th>Programmable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud / Database</td>
<td>CPU L1 Cache</td>
</tr>
<tr>
<td>HPC/Enterprise Network-</td>
<td></td>
</tr>
<tr>
<td>Attached Storage</td>
<td></td>
</tr>
<tr>
<td>600 MB/s</td>
<td></td>
</tr>
<tr>
<td>100 Gbps (12.5 GB/s)</td>
<td></td>
</tr>
<tr>
<td>> 10ms</td>
<td>> 10 TB/s</td>
</tr>
<tr>
<td>10-20 µsec</td>
<td>1ns</td>
</tr>
<tr>
<td>Local NVMe Storage Array</td>
<td></td>
</tr>
<tr>
<td>50 GB/s</td>
<td></td>
</tr>
<tr>
<td>< 10 µsec</td>
<td></td>
</tr>
<tr>
<td>Local NVMe (Intel Cascade</td>
<td></td>
</tr>
<tr>
<td>Lake)</td>
<td></td>
</tr>
<tr>
<td>200 GB/s</td>
<td></td>
</tr>
<tr>
<td>< 0.1 µsec</td>
<td></td>
</tr>
</tbody>
</table>

*random read aggregate

Global Storage Systems Research/ DOC ID / Nov, 2019 / © 2019 IBM Corporation
A New Breed of Storage Class Memory

Intel/Micron 3D-Xpoint is the first-in-breed “Storage Class Memory” designed for the enterprise storage domain

3DXP is based on a lattice-arranged Phase-Change-Memory (PCM)

Intel product offerings (under Optane trademark) in NVMe SSD and NVDIMM space

Intel Optane DC Persistent Memory Modules offers DIMM modules that is attached to the memory-bus

~3x Slower than DRAM

8x capacity than DRAM, at ½ cost per GB

Expect 12TB capacity in 2U by 2020

Optane DC PMM:
Load/store addressable (64B)
Up to 512GB DIMMs providing 6TB in 2U
150-300ns access latency (64B)
56GB/s RR, 20GB/s RW
Storage Class Memory

<table>
<thead>
<tr>
<th>Cloud / Database</th>
<th>HPC/Enterprise Network-Attached Storage</th>
<th>Local NVMe Storage</th>
<th>DDR Memory (Intel Cascade Lake)</th>
<th>CPU L1 Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 MB/s</td>
<td>100 Gbps (12.5 GB/s)</td>
<td>50 GB/s</td>
<td>200 GB/s</td>
<td>> 10 TB/s</td>
</tr>
<tr>
<td>> 10ms</td>
<td>10-20 µsec</td>
<td>< 10 µsec</td>
<td>< 0.1 µsec</td>
<td>1ns</td>
</tr>
</tbody>
</table>

Durable
- **45 GB/s**
- **< 0.3 µsec**

Programmable
- **> 10 TB/s**
- **3-4x**

Hybrid
- **2x**
- **30x**

*random read aggregate

Global Storage Systems Research/ DOC ID / Nov, 2019 / © 2019 IBM Corporation
Changing the Landscape

How does Persistent Memory change our view of the world?

<table>
<thead>
<tr>
<th>Brining data closer to the CPU</th>
<th>Data in-memory is now durable against s/w crash and reset events</th>
<th>Near-DRAM low latency access for synchronous CPU load/store</th>
<th>x8-16 capacity and lower cost than DRAM</th>
<th>Potential for unified compute and storage data models</th>
<th>Seamless data movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data intensive applications with unpredictable access patterns</td>
<td>Reduced recovery data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Global Storage Systems Research/ DOC ID / Nov, 2019 / © 2019 IBM Corporation
Memory-Storage Convergence Vision

<table>
<thead>
<tr>
<th>Durable and programmable data domains the same thing</th>
<th>Unified security protection scheme (i.e. process/user)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eliminate the need to transform data for storage</td>
<td>RDMA/DMA engines allow fast CPU-bypass transfers of data</td>
</tr>
<tr>
<td>Remove need for file and block abstractions?</td>
<td></td>
</tr>
</tbody>
</table>
Convergence Challenges

Different programming languages have different data models

Efficient support for relocatable data structures

Realizing conventional storage services, encryption, de-dupe, erasure coding, versioning, snapshots ...

Achieving crash-consistency and transactional boundaries for legacy data structure

Reliability and Serviceability

Minimizing the overhead of crash-consistency

Data recovery
Road Ahead

Accelerated devices
- 5+ GB/s SSD
- 400Gbps+ network
- In-storage compute (e.g. Samsung SmartSSD)
- In-network compute (e.g. Mellanox Bluefield)

Direct-to-memory accelerators
- PCIe 4.0 and OpenCAPI
- FPGA accelerator cards
- Peer-to-peer device DMA
- Digital and analog AI cores

Near-memory accelerators
- CPU domain-specific instructions (e.g., low precision)
- Programmable DIMM-embedded Data Processing Units (e.g., UPMEM)

Processing In-memory
- Phase Change Memory-based embedded logic (e.g. Memristor-Aided Logic MAGIC, FLEX)
IBM Research MCAS Project

MCKVS (Memory Centric Key-Value Store)

- Key-Value
- Persistent Memory
- Zero-copy RDMA

or DRAM

or Sockets or libfabric provider

High-performance in-memory key-value store
6TB capacity
Zero-copy (RDMA) data transfer
Crash-consistent and power-fail tolerant

New kind of key-value storage
Seamless data movement
Unified programming and storage data models
Fast in-memory operations

MCAS (Memory Centric Active Storage)

- In-store + In-place Operations
- Accelerators + PIM
- MCKVS

10TB capacity
Zero-copy (RDMA) data transfer
Crash-consistent and power-fail tolerant
Fast in-memory operations
MCKVS

(Memory Centric Key-Value Store)

MCKVS

- Key-Value
- Persistent Memory
- Zero-copy RDMA

or DRAM

or Sockets
or libfabric provider

Current prototype

- 20M IOPS (small random gets)
- 10M IOPS (small random puts)
- ~7us round-trip latency synchronous put
- Tested on 100GbE RDMA
- 20GB/s + throughput for larger transfers (2xNICs)
- Based on custom crash-consistent hash table
- GPU-Direct capable
- Does NOT use PMDK (due to RDMA integration)
- C++ and basic Python APIs
- Can be deployed in containers/k8 or VMs
- Open Source (building community)
- Not secure (yet)
- Available at https://github.com/IBM/mcas/
Evolution to MCAS

Prototype in development

- MCKVS as the core
- Shift to “structured document” key-value store
- Flexible to support arbitrary data structures
- Flexible to support either flat (e.g., JSON) or pointer-based data models (e.g., C++ data structures)
- Designed to allow user-written operations to be safely deployed in the system
- Open protocol allows custom layering of services (e.g., versioning, encryption, logging, data conversion, data summarization,)
- Aimed at allowing accelerators based on HW (e.g., FPGA, AI core, Processing-in-Memory)
- Initial release expected 1Q2020
MCAS

Defines an open architecture for layering “services” on top of an in-memory key-value store - more performance, less data movement.

Plain key-value

Active data services
Example Use-Cases

Storage Services
- versioning/TTL
- encryption/CRC
- logging
- durability
- event notification

Data Curation
- sorting, filtering
- EDI transform
- real-time compression and decompression
- summary operators

Real-time Data Analytics
- domain specific data structures (e.g., k-d tree)
- core math operations (e.g., mat mul, fft)

Real-time Cognitive
- graph processing
- inferencing
- sparse distributed memory / HTM
- NLP