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Abstract
Structured and unstructured data (Big Data) have been growing exponen-
tially in enterprise storage systems. At the same time, the need for preserva-
tion of such data is increasing due to the demands of regulations and audits.
These factors are driving the need for long term digital preservation of Big
Data, and more specifically, the ability to extend the life of data beyond
that of the systems on which it is stored. Recent research projects have
proposed architectures for short term archiving of Big Data, but they lack
specific support for long term preservation. In addition, they lack the elas-
ticity needed to scale to very large data sets and to support the variety of
potential ways in which data may need to be accessed. In this paper, we
propose an architecture for the archiving, long-term preservation and re-
trieval of Big Data with elasticity. We also present our implementation of a
concrete architecture containing an elasticity layer using Vagrant and Chef.

Introduction

With the increasing trend towards the collection of data of both structured and unstruc-
tured nature (Big Data) (Beath, Becerra-Fernandez, Ross, & Short, 2012) (Tallon, 2013),
there comes the problem of storing the data as efficiently as possible: finding the proper
media, calculating costs and ensuring that the storage containers can grow along with the
data. Recent innovative technologies such as the internet of things tend to exacerbate the
problem, since the volume of data tends to be even bigger.

(Herbst, Kounev, & Reussner, 2013) define the concept of elasticity as "the degree to
which a system is able to adapt to workload changes by provisioning and de-provisioning
resources in an autonomic manner, such that at each point in time the available resources
match the current demand as closely as possible". Such adaptation to changes is sometimes
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Figure 1 . Information life-cycle curve, adapted from (Tallon, 2013)

necessary in a Big Data architecture if one wishes to preserve the data coming from a data
stream or being ingested. When preserved data is unstructured in nature, it is common for
the increase in data volume to occur so rapidly that it is necessary to increase the system’s
capacity at runtime to accommodate the new demand, and that’s where elasticity comes
into play.

We propose a cloud architecture for the archival, long-term preservation and retrieval
of structured and unstructured data (Big Data) that uses an elasticity layer to provide
scalability during runtime. The Big Data field presents its own set of challenges when it
comes to preservation, given the heterogeneous formats that are used and the fact that
unstructured data can typically grow rapidly. In addition, Big Data is often distributed
across a number of different servers, which poses challenges in the search and retrieval of
preserved data.

Related Work

(Tallon, 2013) addressed in depth the governance and financial aspects of Big Data, such
as cost, value, return on investment, opportunity costs for data preservation and/or disposal,
as well as the information life cycle curve. The information life cycle curve identifies four
different regions when data is preserved, as per figure 1.

Region (I) is the point in time when the data is being created, and therefore its use and
value are increasing. Region (II) corresponds to the time when the data is being consumed
frequently and is usually stored in a hot medium. Region (III) represents the time when the
use starts decreasing rapidly and therefore also the value of the data decreases. Finally, in
region (IV) the data is archived in a cooler medium and preserved for future use. In region
(IV) occasional retrievals of the preserved data occur, causing temporary blips in its use
and value.

Our work focuses particularly on what happens in region (IV), that is, after the data
has been preserved and is retrieved for analytic purposes.

(Factor et al., 2007) provide the definition of data preservation and differentiate between
physical preservation, which is the preservation of the physical bits of data (non-corruption
and prevention of data loss) and logical preservation, which is the preservation of the mean-
ing and readability of data throughout the years.
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(Pease & Rabinovici-Cohen, 2012) are the first to explicitly cover the problem of Big
Data preservation, identifying scalability as one of the challenges to preservation. Since
then, several researches have focused on preserving Big Data.

(Rabinovici-Cohen, Henis, Marberg, & Nagin, 2014) describe an engine to execute com-
putational modules - storlets - within the storage container in secure sandboxes. This
complements our proposed architecture in which the storlets can be used to enable effi-
cient internal big data preservation processes such as fixity checks, data transformation to
sustainable formats, provenance tracking close to where the changes happen.

(Yan, Yao, Cao, Xie, & Jiang, 2017) point emerging Big Data analysis technology as a
way to preserve data that would be discarded daily. (Clua & Feldgen, 2017) propose the
digitization and preservation of manuscripts as a tool for historic research. Such digitization
requires the addition of metadata in order to make the information retrievable. (Bruns &
Weller, 2016) identify Twitter as source of historical information about society and its
thoughts, and the preservation of tweets as an artifact to be used by future historians.
(Khan, Rahman, Awan, & Alam, 2016) follow a similar line of thought by focusing on
the long term preservation of online newspapers and magazines and the migration to a
normalized format after analytical processes are applied to the content. (McGovern, 2017)
focused on data that may go extinct if not preserved, such as information about climate
change that might be destroyed due to political motivations.

(Huhnlein, Korte, Langer, & Wiesmaier, 2009) and (Butler et al., 2009) present reference
architectures for the long term preservation of structured data. Whilst the objective of our
work is not to propose a reference architecture, the frameworks used to generate such
architectures were studied and followed in order to create our proposal, particularly the
method described by (Angelov, Grefen, & Greefhorst, 2012).

Self-contained Information Retention Format (SIRF)

The Self-contained Information Retention Format, or SIRF, was created by SNIA as a
self-contained format for long-term preservation of data. According to (Storage Network
Industry Association, 2014), the use of storage containers, such as SIRF containers, greatly
increases data sustainability with a small additional cost, since the effort and financial cost
to maintain data integrity is significant.

Since SNIA is an association of different storage manufacturers, SIRF was designed to be
manufacturer-independent, media-independent and free. Because of these characteristics, a
SIRF object will be easily interpreted by preservation systems in the future, thus reducing
the costs associated with digital preservation. A SIRF object can be in any format, but its
metadata is preserved in the SIRF catalog which currently is in XML or JSON formats.

Let a storage container be a device, partition, logical volume, directory, file system, or
cloud storage device, that is, a piece or the whole of a physical storage medium that is
available to store data. A SIRF container is a storage container dedicated exclusively to
storing SIRF elements.

The SIRF catalog is the central element of a SIRF container. Every catalog contains
metadata about preservation objects or POs, as well as metadata for the entire container.
According to (Rabinovici-Cohen, Baker, Cummings, Fineberg, & Marberg, 2011), a preser-
vation object is "a digital information object that includes the raw data to be preserved plus
additional embedded or linked metadata needed to enable sustainability of the information
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encoded in the raw data for decades to come". Both types of metadata (container and PO)
are organized into categories.

The container metadata includes the following categories:

• Specification: this category contains information about the SIRF specification used
in the container (typically the SIRF version being used).

• Container ID: the unique identifier of the container, which may be associated with
the unique identifier of the storage container (for example, tape ID if using LTFS or
container ID if using a cloud container).

• State: the state of the container indicates the progress of activities. If a container is
currently being initialized, migrated or ready to receive new POs, the state metadata
must indicate that.

• Provenance: this is a set of metadata describing the history of a SIRF container e.g.,
its origins and chain of custody. This metadata includes reference to one or more
provenance POs in a well-documented format such as the W3C-PROV format.

• Audit Log: this category contains reference to a log of container access and modifica-
tion. The content of the audit logs are by themselves POs and depend on the domain
being preserved as distinct domains have different audit logs regulations e.g. FDA for
the pharmaceutical domain, GDPR for personal data.

The metadata for each PO includes the following categories:

• Object IDs: each PO has one or more identifiers, which can be of four different types
and are described below. Identifiers are used to identify a PO and reference other
POs.

• Related objects: allows you to reference other POs (internal and external) by their
UUIDs.

• Dates: used to keep information about the date and time of the PO creation, last
modification and optionally last access.

• Packaging Format: is used to specify the PO packaging format. Typically POs are
packaged in archival formats, such as the OAIS AIP.

• Fixity: stores the checksum of the file to ensure that media problems did not cause
the PO to go corrupt.

• Audit Log: similar to the container audit log, this category stores information about
how the PO was accessed and modified.

• Extension: reserved for domain-specific information. Depending on the use case and
the organization using SIRF, this can be used to store extra information belonging to
a specific format of the field of knowledge being preserved.
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The object IDs referenced above are unique universal identifiers (UUIDs) which must be
unique not only in the container, but in any context. As a general rule, the use of domain
names is suggested for UUIDs. The types of identifiers are:

• Object name: the name (or one of the names) of the preservation object. This iden-
tifier is complementary, not serving as a unique or universal identifier. It can be, for
example, the name of the file or an abstract, real-world name for the object. It is an
optional field and can be repeated.

• Logical identifier of the object: is the common identifier to be used by different versions
of an object. Different versions of the same object must have the same logical identifier.
It is a required field and can not be repeated.

• Object version identifier: is the unique identifier (or identifiers) of the object version.
Each object must have one or more version identifiers, so this field is required. Typ-
ically the version identifier is composed of the logical identifier plus a number that
identifies the version of the object.

• Object parent identifier: used when the object is derived from another PO. This
identifier identifies the object from which it was derived. This element is optional,
but if it exists it must be unique.

OpenSIRF: a reference implementation of SIRF

OpenSIRF is the reference implementation of the SIRF format in Java (Viana & Sato,
2014). Two main components provide the functionality necessary to manipulate a SIRF
container:

• The Core component, which contains the Java classes that model the SIRF catalog
and its elements.

• The REST component, which exposes a REST API to manipulate the SIRF catalog
and its objects.

The OpenSIRF Core component matches the SIRF specification exactly, meaning it con-
tains the Java beans for the SIRF container, magic object, catalog, PO, and all categories.
The Java classes in the Core component are JAXB-annotated, allowing easy marshalling to
and unmarshalling from JSON and XML.

The OpenSIRF Server component defines an API for manipulating SIRF elements. Since
OpenSIRF Server is deployed through a web application server (for example, Apache Tomcat
or WebSphere Application Server), other software components can easily integrate with the
OpenSIRF Server and therefore interact with a SIRF container.

The OpenSIRF Server uses the Core classes to model the elements being read from and
written to by the API. The calls sent back to the client that contain SIRF elements always
have a content type header of either XML or JSON. The calls received from clients also
always have content type of XML or JSON.

OpenSIRF supports the use of multiple storage containers. Each type of storage con-
tainer has a driver implemented in OpenSIRF, and the Strategy design pattern is used to
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define which driver is selected at runtime based on the target storage container that will be
used. The Java code has an IStorageContainerStrategy interface that defines the oper-
ations that a strategy must be able to perform. These operations are abstract operations
on a SIRF container, such as container creation, magic object retrieval, PO submission,
among others. The ISirfDriver interface is responsible for providing support for several
types of media. The interface defines the signature of low-level operations that must be
performed at the storage layer. The implementation of different storage containers such
as file system or OpenStack Swift is done by implementing the interface in the Java code.
Currently OpenSIRF supports file systems including LTFS (Linear Tape File System), mag-
netic disks and OpenStack Swift, and in order to support other types of media a driver must
be implemented. The ISirfDriver interface is defined as follows:

public void createContainerAndMagicObject(String containerName);

public MagicObject containerMetadata(String storageContainer, String
sirfContainer);

public InputStream getFileInputStream(String container, String filename)
throws IOException;

public void uploadObjectFromString(String containerName, String fileName,
String content);

public void uploadObjectFromByteArray(String containerName, String fileName
, byte[] b);

public void deleteContainer(String containerName);

public void deleteObject(String containerName, String objectName);

public Set<Container> listContainers();

public void close() throws IOException;

The createContainerAndMagicObject() method is responsible for bootstrapping the
SIRF container on the medium. The magic object is created along with the SIRF container.

The containerMetadata() method returns the magic object in JSON or XML format
through the marshalling of a MagicObject object of OpenSIRF Core. The object is created
depending on where the metadata is stored in the physical medium: for OpenStack Swift,
the magic object is stored as container metadata; for all other formats, it is stored as a file
with name magic.json.

The getFileInputStream() method opens an octet stream from the storage container
to the HTTP client. This is used to retrieve the binary contents of the POs.

The uploadObjectFromString() method transforms a string parameter into a byte
array and invokes the uploadObjectFromByteArray() method.

The uploadObjectFromByteArray() method uploads a byte array of data to a storage
container, thus storing the PO in the target medium.

The deleteContainer() method removes the SIRF container from a storage container.
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The deleteObject() method removes a PO from the storage container.
OpenSIRF supports the storage of POs across multiple heterogeneous storage media.

This is an important requirement for data preservation since a preservation architecture
running for decades will likely require support for different kinds of media that may not
exist today. For instance, a data preservation system bootstrapped 20 years ago didn’t
support solid-state drives since they didn’t exist at the time, but the requirement for SSD
support may exist today.

The support for multiple heterogeneous types of storage in OpenSIRF is done using
the Strategy design pattern and is called MultiContainerStrategy. The multi-container
strategy is responsible for deciding the target read or write medium at runtime. Once the
medium is decided, a driver for that type of media is instantiated and thus the low-level
implementation of the container can be accessed. The decision of which medium will be used
for the operation depends on a so-called distribution policy. A distribution policy defines
how the data is distributed across multiple containers of different types. For instance, the
EVENLY_FREE policy will store data so that all containers in the architecture will tend to
have the same amount of free space at any point in time, while the SERIAL policy will use
up all the space of a container before storing data into a new container.

POs are found in a multi-container configuration through the use of the MultiContainerIndex
class. This is a special type of index that always resides in the catalog node, and associates
a PO’s UUID with the storage container ID. This association happens during write opera-
tions. Note that a single PO cannot be spanned across multiple storage containers.

An Architecture for the Long-term Preservation of Big Data in the Cloud

Figure 2 shows our proposed architecture. It contains five layers: the data layer, the
REST layer, the archival layer, the storage layer and the elasticity layer which contains the
elasticity mechanism.

The bottom layer (storage layer) is where the physical contents of the POs and their
metadata are stored. Some types of media are exemplified in the picture, however, this
layer is abstract. Currently OpenSIRF supports file systems, magnetic disks and OpenStack
Swift, but in the future new types of media will emerge and the storage layer must be ready
to support the new formats through the implementation of new drivers.

The archival layer contains components necessary for the SIRF data processing. The
logical preservation component has the responsibility of ensuring that the physical data is
readable by software, while the physical preservation component ensures that the data is not
lost or corrupted. The retrieval and archival components are responsible for reading from
and writing to the storage layer, respectively. This layer transforms physical data stored in
a medium into logical information (POs with metadata) and returns the information to the
REST layer marshalled as XML or JSON (plus the binary contents).

The REST layer is the point of contact between a SIRF container and clients in the
external world. It exposes a RESTful interface through GET, POST, PUT, and DELETE
commands. According to what is received by this layer, the data is packaged in a preserva-
tion object format and sent to the archival layer (including new data), or the archival layer
is directly accessed (data deletion or data retrieval). The packaging component sits in this
layer, and is responsible for receiving metadata from the other layers and encapsulating
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Figure 2 . Diagram of the proposed architecture

them in the preservation object format for the SIRF container. The REST layer can be
contacted by other systems via a web service or via a graphical user interface.

The Big Data systems reside in the data layer. In this layer are data considered "hot",
that is, with high utilization and value, therefore data coming from relational databases,
analytical processing and data mining tools, data streams, unstructured data processed by
MapReduce workloads, NoSQL, files present in file systems, among many other possible
data sources. The data of this layer are part of the areas (I), (II) and (III) of figure 1 given
its high utilization and its high value. The data layer also contains the archiving gateway,
a component responsible for pulling information from the various Big Data systems and
sending the data to the lower layers for archival and preservation. The archiving gateway
pre-processes the Big Data from the various systems, generating metadata accordingly and
sending the information to the REST layer. Note that the specification of the data layer
is abstract: there is no concrete recommendation of which systems the data layer must
be comprised of. The implementation of the data layer will depend on features of the
environment, such as the application domain, the organization that is using the preservation
system, and the user group.

The elasticity layer

(Toeroe, Pawar, & Khendek, 2014) propose a mechanism of elasticity, responsible for
reacting to variations of workload. Such approach has inspired the elasticity management
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that will be described in the sections that follow.
In the lower right corner of figure 2 is the elasticity layer which contains the elasticity

mechanism, responsible for tracking the workload of the various components in the architec-
ture and deciding whether new components need to be instantiated or existing components
need to be extended. The monitoring of the various components is done via the work-
load monitors, which are microservices running on the various OpenSIRF components that
frequently track the resource usage of the component. In the case of storage devices, the
capacity of the medium is monitored; in the case of the archival gateway, packaging com-
ponent and archival component, runtime information such as CPU usage, heap and stack
are monitored, so that new components can be instantiated to provide load balancing. The
allocation and deallocation of resources happen according to an elasticity policy so that the
architecture can accommodate and integrate new resources at runtime.

Details about the various elasticity components are given below.
Elasticity policy. The elasticity policy is a machine-readable policy document that

defines limits of workload metrics and elasticity actions for the different possible elasticity
states: underprovisioned, overprovisioned and optimal. The policy is read by the elasticity
controller every time the metrics from the workload monitors are evaluated in order to
make a decision of allocating or deallocating resources. In practice, the elasticity policy
defines what the underprovisioned and overprovisioned states mean in a given preservation
architecture. The capacity limit of a resource is defined in terms of the percentage of usage.
For example, the storage layer may be considered underprovisioned if it reaches 90% or 95%
of its capacity (this threshold is configurable in the policy). Similarly, the optimal state is
also defined in the elasticity policy and is typically a range of additional resources necessary
to expedite future bootstrappings. One or more active resources will be pre-allocated in the
buffer waiting to be bootstrapped.

Elasticity controller. In the proposed architecture, elasticity actions are orches-
trated by the elasticity controller.

The elasticity controller has the function of receiving the metrics from the monitors,
interpreting the elasticity policy and requiring the allocation or deallocation of resources.
It is the central piece of the elasticity mechanism, and is responsible for defining, during
runtime, whether the architecture is underprovisioned, overprovisioned or in optimal state.
This is done by consulting the elasticity policy. If the architecture is underprovisioned or
overprovisioned, the controller creates requests for the allocation or deallocation of resources
in order to accommodate the workload at the lowest possible cost.

If a new resource must be provisioned, there may be one instance of the resource already
available in the buffer. If the resource is already allocated in the buffer, it is then selected.
If not, the elasticity controller requests the allocation of a new resource through a call to the
elasticity actuator and then selects it. By default, a workload monitor is installed alongside
the new resource (if a monitor workload is applicable for that type of component). Once the
new resource is selected, regardless of whether it came from the buffer or a new allocation,
it must be bootstrapped in the preservation architecture. This means the new resource will
be visible as a storage container, archiving gateway, or archival component. If the newly
allocated resource is a storage medium, the data may need to be redistributed according to
the distribution policy.
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Workload monitor. A workload monitor is a component able to detect fluctuations
in the workload of instances of the monitored service (Toeroe et al., 2014). For storage
components, a workload monitor captures metrics about the usage of the media. In our
proposal the workload monitors were implemented as microservices which expose a REST
interface. The service runs continuously listening on a port. The elasticity controller sends
requests via the REST interface and at that point the workload monitor will collect the
metrics by accessing the operating system directly (e.g., will capture CPU or RAM usage
information, free disk space, etc.).

Elasticity Actuator. The elasticity actuator has the function of allocating and deal-
locating resources according to the decisions made by the elasticity controller. When an
allocation happens, the elasticity actuator also bootstraps the new server in the architecture.
The list of tasks performed by the actuator is as follows:

• Determine the internal components (software installed on the operating system) of
the resource to be allocated.

• Provision a new server (usually a virtual machine).

• Install the required software on the new resource.

• Configure network connections for the new resource: network interface, domain names,
synchronization with the clocks of other servers in the architecture, firewall and operat-
ing system services (e.g. ssh, HTTP servers for communication with other architecture
components, infrastructure as code)

After the allocation or deallocation of resources by the elasticity actuator, the elasticity
controller is responsible for configuring the new feature of the preservation architecture
(configuration of the resource as part of storage, data distribution, among other tasks).

Buffer Manager. The buffer manager allocates additional nodes in advance of an
elasticity operation, so that ideally there is always a margin of additional resources readily
available to be bootstrapped when a scale-out operation occurs. The buffer manager allo-
cates the new servers, without however bootstrapping them. No data should be preserved or
processed in the new resource until it is configured as part of the preservation architecture,
even if the resource is available and online. When a minimum threshold of buffer resources
is reached due to servers being bootstrapped, the buffer manager must contact the elasticity
controller so that a new resource is created and made available as part of the buffer.

Due the use of the buffer manager, the "optimal state" is a range of resources that can
be configured according to the elasticity policy, and not an exact number.

Implementation and Results

We instantiated the proposed architecture through the use of Chef and Vagrant tech-
nologies.

Implementation of an elasticity manager

In the case of this experiment, several virtual machine images were created and uploaded
to the OpenSIRF Vagrant organization. These images come with pre-installed components
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Figure 3 . Chef architecture

such as OpenStack Identity, OpenStack Swift, workload monitors, a web server and the
OpenSIRF Server War file. A component of the architecture can therefore be created and
made available to be bootstrapped by passing a configuration file as input to Vagrant,
specifying the image and attributes of the target virtual machine.

Chef is used as the infrastructure-as-code framework for the many configuration actions
that take place in OpenSIRF. A central Chef server holds the cookbooks and converges the
cookbooks on the servers when an action must be taken on them.

Figure 3 shows a diagram of how Chef and Vagrant are used in practice and how the
combination was used to implement elasticity.

The OpenSIRF Chef Server holds all the node objects and cookbooks, which contain
recipes. Recipes are specifications of files and actions a server must take in order to be
configured or to be running a certain way. These cookbooks are frequently updated by the
knife tool, which compiles the source of the cookbooks present in GitHub and updates the
Chef Server with the latest versions.

Upon a request for scaling out or scaling up, the elasticity mechanism requests a new
VM to Vagrant. The VMs come with the Chef client installed by default and can therefore
be viewed by the Chef server. Once the new servers are available, the elasticity mechanism
contacts the Chef server and asks for one or more cookbooks to run on the new server.
These cookbooks are responsible for generic bootstrapping, such as connectivity, storage
setup and data redistribution.

Steps in resource allocations. When a request is sent to the REST layer to submit a
new PO (HTTP PUT or POST), the archival component will consult the distribution policy
of the architecture and then map the PO to a target storage container. When this happens,
the metrics related to storage capacity are by default sent to the elasticity controller, which
then evaluates the metrics and the elasticity policy. If there is the need to provision new
resources, the buffer manager information is retrieved in case a server is readily available
to be bootstrapped. If it is, the resource is bootstrapped. If not, the elasticity actuator
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instantiates a new server with a storage container.
Once the new storage container is provisioned, the elasticity actuator invokes the knife

command, which accesses the Chef server and sends a request for a Chef recipe to be
executed on the new server. The Chef server invokes the client in the new container, which
executes the recipe for configuration, therefore making the new storage container visible to
the architecture (bootstrapping process). The elasticity controller then redistributes the
data, if necessary, according to the elasticity policy.

Steps in resource deallocations. When a new DELETE request is sent to the REST
layer, the archival component first locates the PO in the media by verifying the index. The
PO is then removed through the driver of the respective storage container. Like with the
allocation, the workload monitor sends metrics by default to the elasticity controller at each
request. If there are underutilized resources that can be released, the data is redistributed
among the remaining storage containers according to the elasticity policy. A Chef recipe is
also used to execute the steps to decommission the server.

Once the server is deallocated, the buffer manager is accessed, so that the resource that
has just been released is added back to the buffer for future bootstrapping (rather than
being completely removed). If, per the elasticity policy, there are sufficient resources in the
buffer, the resource is completely deallocated.

Evaluation

Experiment with Twitter

The experiment revolved around capturing tweets from Twitter as a source of unstruc-
tured text, analyzing them using Apache Spark and then feeding both the pre-analytic,
pure unstructured text and the analytic output of Apache Spark to different elements of
the data layer. This approach led to an experiment containing both unstructured and
structured data (Big Data).

The Twitter4s Scala API was used to provide the data streaming component of the
data layer. It is capable of retrieving data from Twitter through both a simple REST
API and a live streaming API. Virtual machines running Scala with Twitter4s were set
up, continuously receiving Twitter data according to chosen keywords and hashtags (these
keywords were chosen based on the most common hashtags being used at the time). Once
the pure text (unstructured) data was received from the Twitter4s APIs, it was also stored
in a known location on the file system as pure, unstructured text. Apache Spark was then
used to analyze the data by performing map, reduce, filter and zip functions, which are
typical of Big Data analytical tools.

Some of the original data coming from tweets was stored in its original form in file
systems residing in the data layer. The analyzed data from Spark was consolidated into
JSON objects and then stored in mongoDB and relational databases (DB2). These systems
served as the data layer of the experiment, and the scenarios consisted of the archival
gateway pulling data from the data layer and passing it forward to the REST layer for
archival and preservation. Once the requests for preservation were received in the REST
layer by the OpenSIRF Server component, it then invoked the multi-container strategy in
order to write the preservation objects to the storage layer, instantiating the drivers for
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each specific type of medium according to the target storage containers. The storage layer
contained SSDs, hard disks and OpenStack Swift containers.

Experimental Setup

We ran the experiment using a Dell PowerEdge T30 server with Intel Xeon E3-1225 v5
(Quad-core) processor against a Linux 3.10 operating system (CentOS 7) with 32 GB of
RAM. VirtualBox 5.2 was used for virtualization and Vagrant 2.0.1 was used as a virtual-
ization manager and orchestrator. OpenSIRF Server ran on Apache Tomcat 8.

Coverage

A set of test cases were designed with the objective of validating three aspects of the
research:

• The behavior of the elasticity mechanism across different elasticity states and changes
between different elasticity states (underprovisioned, optimal and overprovisioned).

• Heterogeneous container (media) support.

• Real-time preservation of analytic Big Data.

A high variation of scenarios was also an important focus of the experiment:

• The four possible operations on preservation objects were executed in order to ex-
ercise the architecture code: insertion, removal, updating and retrieval of archived
preservation objects.

• Statistics on the elasticity and distribution policies were collected, thus verifying that
the different combinations of media and elasticity states were exercised in several
opportunities.

• Tests were performed in scenarios with different combinations of media types: hard
disk, SSD, Swift, hard disks+SSD, and hard disks+SSD+Swift.

Results

Several scenarios were tested according to media combination: hard disks, SSDs, Open-
Stack Swift and the combinations HD+SSD and HD+SSD+Swift. Every scenario typically
included more than one instance of each type (i.e. two or more hard disks, two or more SSDs
etc.). Figure 4 shows the number of scenarios of the experiment by media type and number
of requests. "Allocation" and "Deallocation" refer to the instantiation of new resources in a
scale-out manner, while "Capacity" refers to the increase of resource capacity (scale-up).

The data distribution policy was also taken into consideration in the experiment. 36.3%
of the scenarios used serial distribution (data was allocated to the medium that was closer
to being full at the time of allocation), while the remaining 63.7% of the scenarios used the
equally free distribution policy (data was allocated with the intent of all containers having
same amount of free space).
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Figure 4 . Scenarios of the experiment, by media combination

Figure 5 . Number of scenarios for each elasticity policy by elasticity state

Let the underprovisioning limit be the minimum resource utilization (in %) in order for
an architecture to be considered underprovisioned. Likewise, let the overprovisioning limit
be the minimum resource inutilization (in %) in order for an architecture to be considered
overprovisioned. Figure 5 shows the elasticity policies that were tested in the experiment.
Three sample policies were defined:

• Lowest cost: avoids having resources sitting in the buffer by having a 90% underpro-
visioning limit and a 10% overprovisioning limit.

• Highest reliability: allocates more resources to the buffer, therefore being more readily
available for scale-out operations by having a 70% underprovisioning limit and a 30%
overprovisioning limit.

• Intermediate: intermediate scenario with 80% underprovisioning limit and 40% over-
provisioning limit.

Figure 6 shows the number of operations on preservation objects by each type of media
container (including multi-container configurations). Due to the likelihood that long-term
preservation containers will have heterogeneous types of media, we focused on the execution
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Figure 6 . Number of operations on preservation objects by media combination

Figure 7 . Number of data layer scenarios by technology

of multi-container scenarios. Also, the update and retrieval of objects was the focus of the
tests since they are the most common operations on a preservation object.

Figure 7 shows the different type of scenarios for each data layer technology. Since the
focus of our work was on Big Data preservation, we focused on more scenarios with unstruc-
tured text (such as files in a file system) and analytic data collected from Twitter/Apache
Spark, either in its original form or condensed and recorded into a NoSQL database (mon-
goDB). Other scenarios were executed against a DB2 instance using the TPC-C benchmark.

Conclusion

We created a long-term preservation architecture for Big Data using elasticity in the
cloud. The architecture uses elasticity to automatically adapt to Big Data workloads in real
time. The SIRF format was followed to guarantee the use of metadata in the preservation
domain, therefore having a full preservation system, beyond the simple archival of data.

Performance analysis was not a focus of this work, and we identify this as a topic for
future work. Different performance aspects should be analyzed such as the overhead of the
archival gateway and workload monitors. Another possible future work item is the spanning
of preservation objects across multiple media. Currently the architecture only supports the
preservation object living in one storage medium at a time, however, for bigger preservation
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objects it may be necessary to span the object across multiple storage containers, indexing
the object contents in a known location.
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