Fast Interpolation of Grid Data at a Non-Grid Point

Hiroshi Inoue
IBM Research – Tokyo
Interpolation from Grid Data

Goal: to make compute-intensive interpolation operation faster

- Input: values at grid points
- Output: estimated (interpolated) value at a non-grid point

Target workloads include:
- medical imaging
 - CT reconstruction
 - registration etc
- stencil applications
 - particle simulation etc
Contributions

- Developed an fast method to interpolate values from grid data at a non-grid point

- Evaluated with 3D Computed Tomography (CT) reconstruction benchmark (RabbitCT)
 - this technique itself can be applicable for other imaging and non-imaging applications
 - although we explain the technique using bi-linear interpolation in this talk, it is applicable for more accurate interpolation algorithms (See paper for detail)
CT Reconstruction Overview

- Input: a set of 2D projection images obtained from different angles (and geometry information for each image)
- Output: density values for voxels in a 3D volume

Example of a (C-arm) CT system

Example of output from a CT system

Source: https://en.wikipedia.org/wiki/CT_scan

Projection in CT Reconstruction

Flat-panel detector (capturing 2D projection images)

Projected point \((u, v)\)

3D volume containing the object to be imaged

Voxel at \((x, y, z)\)

Point source of X-ray

Flat-panel detector (capturing 2D projection images)
Baseline Reconstruction Algorithm Overview [2]

for each projection image I_n

 // reconstruction (projection)
 for $z = 0$ to $L-1$
 for $y = 0$ to $L-1$
 for $x = 0$ to $L-1$
 for each voxel in 3D volume
 1) project voxel (x,y,z) onto I_n
 2) read values from surrounding four grid points
 3) estimate value at projected point by interpolation
 4) update density value of voxel (x,y,z)
 end
 end
 end
end
Baseline Reconstruction Algorithm Overview [2]

for each projection image \(I_n \)

\[
\begin{aligned}
// & \text{ reconstruction (projection)} \\
& \text{for } z = 0 \text{ to } L-1 \\
& \quad \text{for } y = 0 \text{ to } L-1 \\
& \quad \quad \text{for } x = 0 \text{ to } L-1 \\
& \quad \quad \quad \text{1) project voxel } (x,y,z) \text{ onto } I_n \\
& \quad \quad \quad \text{2) read values from surrounding four grid points} \\
& \quad \quad \quad \text{3) estimate value at projected point by interpolation} \\
& \quad \quad \quad \text{4) update density value of voxel } (x,y,z) \\
& \quad \quad \end{aligned}
\]

end

end

end
Interpolation from Grid Data at Non-Grid Point

pixel at \((i, j)\)

pixel at \((i+1, j)\)

projected point \((u, v)\)

pixel at \((i, j+1)\)

pixel at \((i+1, j+1)\)
Interpolation from Grid Data at Non-Grid Point

\[p_n(i, j) \]

\[p_n(i + 1, j) \]

\[\hat{p}_n(u, v) \]

\[p_n(i, j + 1) \]

\[p_n(i + 1, j + 1) \]
Interpolation from Grid Data at Non-Grid Point

Bilinear interpolation

\[\hat{p}_n(u, v) = (1 - \alpha)(1 - \beta)p_n(i, j) + \alpha(1 - \beta)p_n(i + 1, j) + (1 - \alpha)\beta p_n(i, j + 1) + \alpha \beta p_n(i + 1, j + 1) \]
Do we have any redundancy in this formula?

$$\hat{p}_n(u,v) = (1 - \alpha)(1 - \beta)p_n(i, j) + \alpha(1 - \beta)p_n(i + 1, j) + (1 - \alpha)\beta p_n(i, j + 1) + \alpha \beta p_n(i + 1, j + 1)$$

😊 Yes, we can simplify it if many interpolation operations are done in one grid

- In CT reconstruction, hundreds to thousands of interpolations are executed in one grid on average

➜ Now, think $p_n(i, j), p_n(i + 1, j), p_n(i, j + 1), p_n(i + 1, j + 1)$ as constant values
Do we have any redundancy in this formula?

\[\hat{p}_n(u,v) = (1-\alpha)(1-\beta)p_n(i,j) + \alpha(1-\beta)p_n(i+1,j) + (1-\alpha)\beta p_n(i,j+1) + \alpha\beta p_n(i+1,j+1) \]

\[= (1-\alpha-\beta+\alpha\beta) \cdot p_n(i,j) \]
\[+ (\alpha-\alpha\beta) \cdot p_n(i+1,j) \]
\[+ (\beta-\alpha\beta) \cdot p_n(i,j+1) \]
\[+ \alpha\beta \cdot p_n(i+1,j+1) \]

Group terms by the number of \(\alpha \) and \(\beta \)

\[= \alpha\beta \cdot C_0(i,j) + \alpha \cdot C_1(i,j) + \beta \cdot C_2(i,j) + C_3(i,j) \]

\[C_0(i,j) = p_n(i,j) - p_n(i+1,j) - p_n(i,j+1) + p_n(i+1,j+1) \]
Our Efficient Interpolation Method

\[
\hat{p}_n(u,v) = (1 - \alpha)(1 - \beta)p_n(i, j) + \alpha(1 - \beta)p_n(i + 1, j) + (1 - \alpha)(1 - \beta)p_n(i, j + 1) + \alpha(1 - \beta)p_n(i + 1, j + 1)
\]

\[
= \alpha(\beta \cdot C_0(i, j) + C_1(i, j)) + (\beta \cdot C_2(i, j) + C_3(i, j))
\]

- If we have these four coefficients \(C_0 - C_3\), we can compute this formula with only three multiply-and-add instructions!

\(C_0 - C_3\) are independent from \(\alpha\) and \(\beta\) (and hence \(x, y, z\))

- We can pre-compute them at run time before iterating voxels and store in memory

original (without pre-computation)

for each projection image

projection

end

with pre-computation

for each projection image

pre-computation

projection

end

In the paper, we group terms based on \(u\) and \(v\) instead of \(\alpha\) and \(\beta\) for further performance boost:

\[
\alpha = u - i = u - \lfloor u \rfloor \quad \beta = v - j = v - \lfloor v \rfloor
\]
In-memory Pre-computed Table

Pre-computed Table

\[
\begin{align*}
C_3 & \quad C_0 & \quad C_1 & \quad C_2 & \quad C_3 & \quad C_0 & \quad C_1 \\
\end{align*}
\]

for \((i, j-1)\) \quad for \((i, j)\) \quad for \((i, j+1)\)

- 😞 total size of pre-computed table is 4x larger than original data
- 😊 need to read from only one cache line (w/ one aligned vector load)

Original data (Projection image) ➔ 😞 need to read from two cache lines

\[
\begin{align*}
\ldots \; p_n(i, j-1) \; p_n(i, j) \; p_n(i, j+1) \; p_n(i, j+2) \; p_n(i, j+3) \; p_n(i, j+4) \; p_n(i, j+5) \; \ldots \\
\ldots \; p_n(i+1, j-1) \; p_n(i+1, j) \; p_n(i+1, j+1) \; p_n(i+1, j+2) \; p_n(i+1, j+3) \; p_n(i+1, j+4) \; p_n(i+1, j+5) \; \ldots
\end{align*}
\]
Overall Algorithm with Pre-Computation

for each projection image I_n

// pre-computation
for $i = 0$ to S_x-1
 for $j = 0$ to S_y-1
 calculate and store coefficients C_0 to C_3 for pixel (i, j)
 end
end

// reconstruction (projection)
for $x = 0$ to $L-1$
 for $y = 0$ to $L-1$
 for $z = 0$ to $L-1$
 1) project voxel (x, y, z) onto I_n
 2) read coefficients C_0 to C_3 from pre-computed table
 3) estimate value at projected point by interpolation
 4) update density value of voxel (x, y, z)
 end
 end
end
Performance Evaluation with RabbitCT

- RabbitCT is a framework for evaluating 3D CT reconstruction on performance and accuracy.
- It includes:
 - benchmark driver
 - reference implementations of the backprojection algorithm
 - input data (a C-arm CT dataset of a rabbit)
 - 496 projection images of 1248x960 pixels associated with transformation matrixes
- Output data is 3-D images of 256^3 mm3 space, $L^3 = 128^3$, 256^3, 512^3, 1024^3 voxels, 12-bit value per voxel
System used for evaluations

- 2-socket POWER8 3.69 GHz
 - 20 cores in total (5 cores / NUMA node)
 - 8 SMT threads / core
- 256 GB system memory
- Ubuntu Linux 14.10 for Little Endian POWER
- IBM XL C compiler 13
 - all algorithms are implemented with VSX (128-bit SIMD instructions) using intrinsics
Throughput with and without pre-computation

- Higher throughput is better.
- Up to 75% improvements.
Root Mean Squared Error

<table>
<thead>
<tr>
<th>Problem size</th>
<th>With pre-computation</th>
<th>Without pre-computation</th>
<th>Interpolation disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L=128$</td>
<td>0.534</td>
<td>0.513</td>
<td>12.088</td>
</tr>
<tr>
<td>$L=256$</td>
<td>0.538</td>
<td>0.517</td>
<td>12.108</td>
</tr>
<tr>
<td>$L=512$</td>
<td>0.538</td>
<td>0.518</td>
<td>12.118</td>
</tr>
<tr>
<td>$L=1024$</td>
<td>0.545</td>
<td>0.526</td>
<td>12.120</td>
</tr>
</tbody>
</table>

(lower is better)

- **Smiley face**: negligible degradation in image quality
- **Sad face**: significant degradation in image quality
Overhead of Pre-Computation

<table>
<thead>
<tr>
<th>Problem size</th>
<th>With pre-computation</th>
<th>Without pre-computation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>precomputation</td>
<td>reconstruction</td>
</tr>
<tr>
<td>$L=128$</td>
<td>0.93 msec (47%)</td>
<td>1.11 msec</td>
</tr>
<tr>
<td>$L=256$</td>
<td>0.94 msec (22%)</td>
<td>3.36 msec</td>
</tr>
<tr>
<td>$L=512$</td>
<td>0.94 msec (4.1%)</td>
<td>22.20 msec</td>
</tr>
<tr>
<td>$L=1024$</td>
<td>0.93 msec (0.6%)</td>
<td>169.30 msec</td>
</tr>
</tbody>
</table>

- The numbers show the execution time per projection image.
- The percentages shown in parenthesis show the ratios to the total execution time.

- Average numbers of interpolations (i.e # voxles) per pixel
 - $L=128 \rightarrow 1.75$
 - $L=1024 \rightarrow 896$
Vector Unit Utilization

- **L=128**
- **L=256**
- **L=512**
- **L=1024**

- **with pre-computation**
- **without pre-computation**
- **interpolation disabled**

Higher is better.
System memory bandwidth requirements

The chart shows the total number of L3 cache misses for different problem sizes (L) with and without pre-computation, as well as with interpolation disabled. The lower the number, the better.

- **L=128**: With pre-computation, without pre-computation, and interpolation disabled.
- **L=256**: Similar categories as above.
- **L=512**: Similar categories as above.
- **L=1024**: Similar categories as above.

The chart indicates that pre-computation significantly reduces the number of cache misses compared to not using pre-computation, especially as the problem size increases.
Throughput with and without pre-computation using 3rd degree Lagrange interpolation

Throughput (GUPS)

<table>
<thead>
<tr>
<th>Problem Size</th>
<th>With Pre-computation</th>
<th>Without Pre-computation</th>
<th>Interpolation Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>L=128</td>
<td>3.5</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>L=256</td>
<td>3.0</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>L=512</td>
<td>2.5</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>L=1024</td>
<td>2.0</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Higher is faster

Up to 57% improvements
Summary

- We developed an efficient way of interpolation from grid data at a non-grid point
 - Our pre-computation simplifies the computation drastically
 - The cost of pre-computation is not significant for realistic data size
- This technique is not specialized for CT reconstruction and applicable for other applications
- Refer the paper for more detail including:
 - Results for a more accurate interpolation algorithm
 - Performance modeling
 - Handling of floating point errors
 - NUMA optimization
backup
Scalability with Multiple NUMA Nodes

- **L=256**
 - 4.9x with 5 cores
 - 9.0x with 10 cores
 - 14.2x with 20 cores (1 NUMA node)

- **L=512**

- **L=1024**

Graph shows throughput (GUPS) on the y-axis and number of cores on the x-axis. Higher values indicate better performance.
Memory Optimization for NUMA Machine

- Each NUMA node processes a projection image independently from other NUMA nodes to avoid remote memory accesses
 - Within a NUMA node, all threads process one projection image by dividing voxels into small blocks
- We gather the partial results from each NUMA nodes after processing all projection images to sum up them
Scalability with Multiple NUMA Nodes

- **L=256**
 - with NUMA opt
 - without NUMA opt

- **L=512**
 - with NUMA opt
 - without NUMA opt

- **L=1024**
 - with NUMA opt
 - without NUMA opt

The graph shows the throughput (GUPS) on a y-axis against the number of cores on an x-axis. Each set of lines represents different grid sizes with and without NUMA optimization. The note indicates an increase of 18.9x with 20 cores.
Comparing to Previous RabbitCT Scores (L=512)

<table>
<thead>
<tr>
<th>Processor</th>
<th># Core / # Boards</th>
<th>Year</th>
<th>Source</th>
<th>GUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER8 3.69 GHz</td>
<td>20 cores (2 sockets)</td>
<td>2015</td>
<td>Ours</td>
<td>20.5</td>
</tr>
<tr>
<td>POWER8 3.69 GHz</td>
<td>10 cores (1 socket)</td>
<td>2015</td>
<td>Ours</td>
<td>10.6</td>
</tr>
<tr>
<td>Westmere-EX 2.4 GHz</td>
<td>40 cores (4 sockets)</td>
<td>2011</td>
<td>Official ranking</td>
<td>8.3</td>
</tr>
<tr>
<td>nVidia GTX 670</td>
<td>2 boards</td>
<td>2014</td>
<td>Official ranking</td>
<td>152.9</td>
</tr>
</tbody>
</table>

- Today’s GPUs support bilinear interpolation in hardware!
- Our method will be beneficial even for GPUs when a higher-order interpolation algorithm is used