

© ACM, 2012. This is the author's version of the work. It is
posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in ISMM’12
June 15, 2012, Beijing, China.
http://doi.acm.org/10.1145/2258996.2259014

Identifying the Sources of Cache Misses in Java Programs
Without Relying on Hardware Counters

Hiroshi Inoue and Toshio Nakatani
IBM Research - Tokyo

NBF Canal Front Building, 5-6-52, Toyosu, Tokyo, 135-8511, Japan
{inouehrs, nakatani}@jp.ibm.com

Abstract
Cache miss stalls are one of the major sources of performance
bottlenecks for multicore processors. A Hardware Performance
Monitor (HPM) in the processor is useful for locating the cache
misses, but is rarely used in the real world for various reasons. It
would be better to find a simple approach to locate the sources of
cache misses and apply runtime optimizations without relying on
an HPM. This paper shows that pointer dereferencing in hot loops
is a major source of cache misses in Java programs. Based on this
observation, we devised a new approach to identify the
instructions and objects that cause frequent cache misses. Our
heuristic technique effectively identifies the majority of the cache
misses in typical Java programs by matching the hot loops to
simple idiomatic code patterns. On average, our technique
selected only 2.8% of the load and store instructions generated by
the JIT compiler and these instructions accounted for 47% of the
L1D cache misses and 49% of the L2 cache misses caused by the
JIT-compiled code. To prove the effectiveness of our technique in
compiler optimizations, we prototyped object placement
optimizations, which align objects in cache lines or collocate
paired objects in the same cache line to reduce cache misses. For
comparison, we also implemented the same optimizations based
on the accurate information obtained from the HPM. Our results
showed that our heuristic approach was as effective as the HPM-
based approach and achieved comparable performance
improvements in the SPECjbb2005 and SPECpower_ssj2008
benchmark programs.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: [Programming Languages]: Processors – Compilers,
Optimization, Memory management.

General Terms Measurement, Performance, Experimentation.

Keywords Hardware performance monitor, Object placement
optimization

1. Introduction
Cache miss stalls are one of the major sources of performance

bottlenecks in high performance processors. Hence, it is important
for compilers and language runtime systems to use the processor
cache efficiently, especially on multicore processors, which have
limited memory bandwidth compared to the huge computation
resources. Previous techniques [1-4] showed that cache miss
profiles were useful for runtime systems in reducing cache misses
and improve the performance of cache-miss-intensive programs.
These previous techniques used an HPM (Hardware Performance
Monitor) in the processor to obtain cache miss profiles. However,
for a compiler to use the HPM in is difficult because the HPM
functions are often specific to the processor, the HPM may
require a special device driver and super-user privilege, and only
one process can use the HPM at a time.

In this paper, we identify the source of cache misses without
relying on hardware support. We used an HPM for a thorough
study of various Java programs and identified the hot loops that
cause frequent cache misses. We found that many of them can be
classified into a small set of patterns that can be heuristically
detected as simple idioms without relying on an HPM. In general,
the idioms correspond to repeated indirect loads from the Java
heap in hot loops. Typical object-oriented programs heavily use
complicated data structures, such as hashmaps and linked lists,
and many cache misses come from accesses to such data
structures. Our basic idioms work well for many Java programs
because they can effectively capture such accesses. We
experimentally showed that our heuristic approach effectively
identified a large part of the L1 and L2 cache misses in many Java
programs, including SPECjbb2005, SPECpower_ssj2008,
SPECjvm2008, and the DaCapo benchmark suite. On average,
our technique selected only 2.8% of the load and store
instructions generated by the JIT compiler and these instructions
accounted for 47.3% of the L1D cache misses and 48.9% of the
L2 data cache misses caused by the JIT-compiled code.
Compared to the total number of load and store instructions and
cache misses caused by hot methods that we apply our analysis,
our technique achieved about 63.6% and 69.2% coverage for the
L1 and L2 cache misses by selecting 14.2% of the load and store
instructions in the hot methods.

We demonstrate the effectiveness of our technique for
compiler optimizations. We prototyped two types of object
placement optimizations based on our heuristic approach in a Java
VM with a JIT compiler. We compared the performance
improvements from the optimizations based on our heuristic
approach against the similar optimizations based on accurate
cache miss statistics obtained from the HPM. Our optimizations
showed performance improvements in two benchmarks with

many cache misses, SPECjbb2005 and SPECpower_ssj2008.
These performance improvements were close to the gains based
on the accurate cache miss statistics from the HPM.

The main contributions of this paper are two-fold. (1) We
present a technique to identify the instructions and objects that
frequently cause cache misses in Java programs without relying
on an HPM. (2) We prototyped the online optimizations in a Java
JIT compiler using our heuristic approach and compared to the
HPM-based approach. Our results showed that our technique is
effective in implementing optimizations in dynamic compilers.

The rest of the paper is organized as follows. Section 2
discusses related techniques. Section 3 presents our no-HPM
technique to identify the instructions that cause frequent cache
misses. Section 4 describes the experimental environment and our
results. Section 5 explains how we use the pattern-matching-based
heuristic approach in compiler optimizations. We also show the
performance gains from our optimizations and compare them to
the HPM-based approach. Section 6 summarizes our work.

2. Related Work
In this paper, we identify the instructions and objects that tend to
cause many cache misses. Burtscher et al. [5] classified load
instructions based on the region of memory (stack, heap, or
global), the kind of reference (array, field, or scalar) and the type
of data (pointer or value). They showed that load instructions for
certain classes caused more cache misses than others in C and
Java programs. Our technique identifies exactly those load and
store instructions that tend to cause many cache misses. Panait et
al. [6] proposed a technique to statically identify the load
instructions that cause many cache misses. They call such a load
instruction a delinquent load. Their technique focuses on
analyzing program binaries to calculate a weight for each load
instruction. They estimate the likelihood each load causes cache
misses based on criteria such as the number of dereferences and
the base register used to calculate the address to be accessed. Our
technique identifies more information for compiler optimizations,
such as the target classes, rather than just identifying load
instructions that cause cache misses. Therefore we focus on
analyzing the compiler IR, which includes more information than
the binaries. We demonstrated the practical effectiveness of our
technique by implementing two types of optimizations in a Java
JIT compiler, in contrast to simply identifying the delinquent load
instructions.

There are some techniques that use cache miss profiles from
HPMs for optimizations in compilers and runtime systems. Adl-
Tabatabai et al. [1] exploit cache miss statistics in their Java JIT
compiler to insert effective prefetch instructions for the Itanium 2
processor. Schneider et al. [2] used cache miss statistics from the
garbage collector to optimize the placement of objects in the Jikes
RVM on the Pentium 4 processor. Serrano and Zhuang [3] also
identified opportunities to reduce cache misses by reordering the
objects in the garbage collector in the POWER5 and POWER6
processors. Cuthbertson et al. [4] exploited the HPM of the
Itanium 2 processor for instruction scheduling and object
collocation in the garbage collector. In our work, we use
alignment [3] and collocation [2-4] to test the effectiveness of our
approach, since they are two of the most proven optimization
techniques based on cache miss profiles. Both HPM-based and
pattern-matching-based optimizations use approaches similar to
the previous techniques [2-4], locating load instructions that cause
many cache misses, identifying target classes, and then
optimizing the object locations to reduce the cache misses.
Though we did not study prefetch injection [1] with our heuristic
approach, it could be used to identify the targets for prefetching.

Object placement optimization has a rich history of research
and many software-based techniques have been proposed. These
techniques use a variety of types of static and dynamic
information that can be obtained without special hardware, such
as field access profiles at read barriers [7, 8, 9], object lifetimes
[10], allocation frequencies for each Java class [11], hints
provided by the STL container libraries [12], or static access
patterns analyzed at the compilation time [13]. Our heuristic
approach is unique in the sense that we try to detect objects and
fields that cause many cache misses, not just those that are
frequently accessed. In most environments cache misses are
transparent to software. Therefore, to predict the number of cache
misses we need to use an empirical approach based on pattern
matching rather than inserting instrumentation code.

3. Identifying the Instructions and Objects
Causing Frequent Cache Misses without an HPM
In this section, we first explain our technique to identify the
instructions and objects that frequently cause cache misses to
provide effective information for optimizations in the JIT
compiler. Our key insight to locate cache misses without using an
HPM is that most cache misses identified by an HPM in typical
Java workloads are often caused by certain idiomatic code
patterns in those programs. This insight allows us to identify the
objects that frequently cause cache misses by matching the hot
loops with the idiomatic patterns.

Though these patterns look quite simple and standard in many
Java programs, we found that the percentage of load instructions
selected by matching with this idiom in hot loops was up to 5.9%
of the total load and store instructions in the JIT-compiled code
(and 2.8% on average). We identified these patterns by
investigating the cache miss profiles from the HPM using
SPECjbb2005 and SPECjvm2008. As shown later, due to the
simplicity and generality of these patterns, pattern matching with
them worked well with programs from the DaCapo-9.12
benchmark suite [14]. In Section 4, we also discuss some cache

 ClassA objA;
ClassB objB;
while (!end) { // in a hot loop

...
// 1) first, load a reference of ClassA
objA = objB.referenceToClassA;
...
// 2) then, access a field of objA
access to objA.field1;
...

}

ClassA objA;
while (!end) { // in a hot loop

...
// 1) first, load a reference of ClassA from
// a field of ‘this’ object
objA = this.referenceToClassA;
...
// 2) then, access a field of objA
access to objA.field1;
...

}

a) a pattern for frequent cache misses

b) anti-pattern

Figure 1. (a) A pattern that tends to cause frequent cache misses
and (b) An anti-pattern that does not cause frequent cache misses.

misses in multi-threaded programs that we cannot capture with
our current technique.

Figure 1(a) shows the most frequently observed pattern that
causes many cache misses. In this pattern, there is a load of a
reference to objA and a following access to the objA in one
highly iterated loop. Here, the access to the objA can be a load or
a store to a field of objA, or an operation accessing the object
header, such as a monitor enter, a monitor exit, a checkcast, or an
instanceof operation. As a variant, a reference to objA can be
obtained from a return value of a method call instead of loading
from a field of objB. We observed that a hot loop matching this
pattern tends to cause a cache miss in each iteration when
accessing the objA.field1. Thus we should focus on the objects
of ClassA to improve the memory system performance.

In addition to this basic pattern, we used an anti-pattern in our
analysis. Figure 1(b) shows this anti-pattern. The code sequence is
almost identical to the basic pattern shown in Figure 1(a), but a
reference to objA is loaded from the ‘this’ object. In this case, the
‘this’ object is loop invariant and thus objA should not cause
many cache misses. We observed that this anti-pattern appeared
frequently in many programs but rarely caused cache misses. This
anti-pattern can be extended to check the loop invariance of the
first load in addition to loading from a ‘this’ object. When we
match the pattern after applying the loop optimizations including
loop invariant code motion, we do not need to explicitly apply
this anti-pattern. We used this approach in our implementation
rather than handling ‘this’ object explicitly.

We do this pattern matching in the JIT compiler. The JIT
compiler uses this analysis when it recompiles a method with a
higher optimization level than the initial level. We used the
execution frequency information obtained by software-based
profiling to identify the hot loops for the pattern matching. Many
high performance dynamic compilers already provide this
information because it is important for many widely used
optimizations. We designate a loop as hot if the estimated number
of iterations per method invocation (Niter) exceeds a threshold,
which we call the hot loop threshold. In the current implementa-
tion, we adjust the threshold for the hot loops between Niter = 10
and 40 based on the hotness of the compiling method. When the
method is compiled with the highest optimization level
(scorching), such a method is typically consuming more than 10%
of the total CPU time, and we use 10 as the threshold. When the
method is compiled with the second highest level (veryHot),
typically consuming more than 3% of the CPU time, we use 20 as
the threshold. For other hot methods we use 40.

The heuristics based on the number of iterations give good
estimates for the hot loops, but in some cases opportunities are
missed. If a method is invoked frequently, loops included in the
method are also executed frequently, even though the loops do
not meet our criteria. To identify such methods, we do pattern
matching for the entire method when there are no loops having
Niter larger than 3.0 in the method and the method was compiled
with veryHot or scorching levels (for the hot method threshold). If
there are no highly iterated loops within a very hot method, then
the method must be invoked quite frequently, typically from
inside a very hot loop. We do not use the anti-pattern shown in
Figure 1(b) when we match the pattern for the entire method,

because in this case ‘this’ pointer may change in each invocation
of the method. Figure 2 summarizes our hot loop detection
methods. We also use the execution frequency to exclude cold
blocks when we analyze a loop. There can be cold blocks even
inside of a hot loop, such as a rarely executed if block.

These thresholds control the aggressiveness of the identifica-
tion. Using smaller values for these thresholds increase the
number of identified targets. To study the effect of the thresholds,
we also evaluated another configuration with lower threshold
values to pick more loops for analysis. We call these two
threshold configurations Base and Aggressive. Table 1
summarizes the two configurations.

We do the pattern matching after applying most of the code
transformation optmizations including method inlining to simplify
the implementation of our analyzer. Small methods in hot loops
are inlined by method inlining and so we do not need to
implement our analysis as a costly interprocedural analysis. In the
current implementation, we did not alter the method inlining
policy to cooperate with our analyzer.

4. Experimental Results
This section presents our experimental results to evaluate the
accuracy of our pattern-matting-based technique in identifying the
instructions that frequently cause cache misses. We used standard
benchmarks: SPECpower_ssj2008, SPECjbb2005, SPECjbb2000,
SPECjvm2008 (excluding the scimark and crypto benchmarks),
and the DaCapo-9.12 benchmark suite.

We ran the benchmarks on an IBM BladeCenter JS22 using 2
POWER6 [15] cores running at 4.0 GHz with 2 SMT threads per
core. We implemented our technique in the 32-bit JVM included
in the IBM SDK for Java 6 SR2. Each POWER6 core has 64 KB
of L1 data cache (L1D), 64 KB of L1 instruction cache, and 4 MB
of L2 cache. The cache line size of the POWER6 processor is 128
bytes for both L1 and L2 caches. The size of the Java heap was 2
GB using 16-MB pages. We selected the generational garbage
collector so that the Java heap was divided into a nursery space
and a survivor space for young objects and a tenured space for
older objects. The test system had 16 GB of system memory and
used RedHat Enterprise Linux 5.2.

Table 1. Thresholds for two configurations.
hot loop threshold

hot veryHot scorching
hot method
threshold

Base 40 20 10 veryHot
Aggressive 16 8 4 hot

 void method1 (void) {

for (i=0; i<100; i++) { // Niter = 100
....

}

for (j=0; j<5; j++) { // Niter = 5
....
for (k=0; k<20; k++) { // Niter = 100

....
}
....

}

}

hot loop

hot loop

void method2 (Element e) {

....

}

cold loop

hot method without hot loops
(apply the analysis for the entire
method instead of hot loops)

Niter: average number of iterations per method invocation
calculated from the block execution frequencies

Threshold of the hot loop depends on
the optimization level of the method
Figure 2. Overview of our hot loop criteria.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SPECpo
wer_

ss
j20

08

SPECjbb
20

05

co
mpil

er.
co

mpil
er

co
mpil

er.
su

nfl
ow

co
mpre

ss
de

rby

mpe
ga

ud
io

se
ria

l

su
nfl

ow

xm
l.tr

an
sfo

rm

xm
l.v

ali
da

tio
n

av
ror

a
ba

tik

ec
lip

se fop h2
jyt

ho
n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow

tom
ca

t

tra
de

be
an

s

tra
de

so
ap

xa
lan

av
era

ge

co
ve

ra
ge

 (r
at

io
 to

 th
e

to
ta

l n
um

be
r o

f l
oa

d
an

d
 .

st
or

e
in

st
ru

ct
io

ns
 in

 J
IT

-c
om

pi
le

d
co

de
) Our technique with Base threshold Our technique with Aggressive threshold All in hot methods (upper bound for us)

L1D misses

L2 misses

memory
accesses

static counts of
load and store
instructions

We select only 1.4% (resp. 2.8%) of
the total load/store instructions.

They cover about 27% (resp. 48%)
of the total L1/L2 cache misses.

10
0%

 m
ea

ns
 t

ot
al

 #
 o

f l
oa

d/
st

or
e

in
st

ru
ct

io
ns

 g
en

er
at

ed
 b

y
JIT

10
0%

 m
ea

ns
 t

ot
al

 #
 o

f L
1D

 c
ac

he
 m

is
se

s
ca

us
ed

 in
 JI

T
-c

om
pi

le
d

co
de

10
0%

 m
ea

ns
 t

ot
al

 #
 o

f L
2

ca
ch

e
da

ta

m
is

se
s

ca
us

ed
 in

 JI
T

-c
om

pi
le

d
co

de
10

0%
 m

ea
ns

 t
ot

al
 #

 o
f l

oa
d

/ s
to

re
in

st
ru

ct
io

ns
 e

xe
cu

te
d

in
 JI

T
-c

om
pi

le
d

co
de

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SPECpo
wer_

ss
j20

08

SPECjbb
20

05

co
mpil

er.
co

mpil
er

co
mpil

er.
su

nfl
ow

co
mpre

ss
de

rby

mpe
ga

ud
io

se
ria

l

su
nfl

ow

xm
l.tr

an
sfo

rm

xm
l.v

ali
da

tio
n

av
ror

a
ba

tik

ec
lip

se fop h2
jyt

ho
n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow

tom
ca

t

tra
de

be
an

s

tra
de

so
ap

xa
lan

av
era

ge

co
ve

ra
ge

 (r
at

io
 to

 th
e

to
ta

l n
um

be
r o

f e
ve

nt
s

 c
au

se
d

in
 J

IT
-c

om
pi

le
d

co
de

)

Our technique with Base threshold Our technique with Aggressive threshold All in hot methods (upper bound for us)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SPECpo
wer_

ss
j20

08

SPECjbb
20

05

co
mpil

er.
co

mpil
er

co
mpil

er.
su

nfl
ow

co
mpre

ss
de

rby

mpe
ga

ud
io

se
ria

l

su
nfl

ow

xm
l.tr

an
sfo

rm

xm
l.v

ali
da

tio
n

av
ror

a
ba

tik

ec
lip

se fop h2
jyt

ho
n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow

tom
ca

t

tra
de

be
an

s

tra
de

so
ap

xa
lan

av
era

ge

co
ve

ra
ge

 (r
at

io
 to

 th
e

to
ta

l n
um

be
r o

f e
ve

nt
s

 c
au

se
d

in
 J

IT
-c

om
pi

le
d

co
de

)

Our technique with Base threshold Our technique with Aggressive threshold All in hot methods (upper bound for us)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SPECpo
wer_

ss
j20

08

SPECjbb
20

05

co
mpil

er.
co

mpil
er

co
mpil

er.
su

nfl
ow

co
mpre

ss
de

rby

mpe
ga

ud
io

se
ria

l

su
nfl

ow

xm
l.tr

an
sfo

rm

xm
l.v

ali
da

tio
n

av
ror

a
ba

tik

ec
lip

se fop h2
jyt

ho
n

lui
nd

ex

lus
ea

rch pm
d

su
nfl

ow

tom
ca

t

tra
de

be
an

s

tra
de

so
ap

xa
lan

av
era

ge

co
ve

ra
ge

 (r
at

io
 to

 th
e

to
ta

l n
um

be
r o

f e
ve

nt
s

 c
au

se
d

in
 J

IT
-c

om
pi

le
d

co
de

)

Our technique with Base threshold Our technique with Aggressive threshold All in hot methods (upper bound for us)

SPECjvm2008 DaCapo-9.12

Fig. 3. Coverages of the instructions identified by our technique for the number of L1D cache misses, L2 cache data misses, memory
accesses, and the static counts of load and store instructions. Our technique selected only 1.4% and 2.8% of the total load and store
instructions, which account for about 27% and 48% of the total L1 cache misses for Base and Aggressive threshold configurations.

4.1 Coverage

The first graph in Figure 3 shows the number of load and store
instructions selected by our technique over the total number of
load and store instructions generated by the JIT compiler. The
other three graphs in Figure 3 show the coverages for the
instructions identified by our technique for L1D cache misses, L2
cache data misses and all memory accesses. We measured the
number of cache misses and memory accesses by using the HPM.
We compare the coverages for our technique using the two
threshold configurations (Base and Aggressive, as shown in Table
1) against the case of selecting all of the load and store
instructions in the methods compiled with hot or higher
compilation levels (labeled all in hot methods in the figure). Here,

we focus on the events caused by JIT-compiled code and hence
the results do not include the events caused by the Linux kernel or
native code in the JVM such as the garbage collector. We
performed the measurements 4 times and averaged the results.

From the figure, our technique selected an average of only
1.4% and 2.8% (and up to 3.7% and 5.9%) of the total load and
store instructions generated by the JIT compiler for Base and
Aggressive threshold configurations, respectively. These
instructions accounted for 27.3% and 47.3% of the total L1D
cache misses and 27.9% and 48.9% of the total L2 data cache
misses (average values). The coverages for the numbers of
memory accesses of the instructions selected by our technique
were 15.2% and 27.9%, which were smaller than the coverages of
the cache misses. This means that the instructions selected by our
technique were not only frequently executed but also caused more

0

5

10

15

20

25

30

SPECpo
wer_s

sj2
00

8

SPECjbb
20

05

co
mpile

r.c
ompil

er

co
mpile

r.s
unfl

ow

co
mpres

s
de

rby

mpe
ga

ud
io

se
ria

l

su
nfl

ow

xm
l.tr

an
sfo

rm

xm
l.v

ali
da

tio
n
av

ror
a

ba
tik

ec
lip

se fop h2
jyt

ho
n

luind
ex

luse
arch pm

d

su
nfl

ow
tomca

t

tra
de

be
an

s

tra
de

so
ap

xa
lan

av
era

ge

nu
m

be
r o

f L
2

da
ta

 c
ac

he
 m

is
se

s
pe

r 1
0,

00
0

in
st

ru
ct

io
ns object array non java heap native code/OS

0
20
40
60
80

100
120
140
160
180
200

SPECpo
wer_s

sj2
00

8

SPECjbb
20

05

co
mpile

r.c
ompil

er

co
mpile

r.s
unfl

ow

co
mpres

s
de

rby

mpe
ga

ud
io

se
ria

l

su
nfl

ow

xm
l.tr

an
sfo

rm

xm
l.v

ali
da

tio
n

av
ror

a
ba

tik

ec
lip

se fop h2
jyt

ho
n

luind
ex

luse
arch pm

d

su
nfl

ow
tomca

t

tra
de

be
an

s

tra
de

so
ap

xa
lan

av
era

ge

nu
m

be
r o

f L
1

da
ta

 c
ac

he
 m

is
se

s
pe

r 1
0,

00
0

in
st

ru
ct

io
ns

object array non java heap native code/OS

cache misses caused by JIT-compiled code

cache misses within Java heap

SPECjvm2008 DaCapo-9.12

L1D misses

L2 misses

Figure 4. L1 and L2 cache miss ratios and breakdown by code location and access targets. We exclude the cache misses during stop-
the-world garbage collection to focus on mutator performance.

Table 2. Summary of the coverage by our technique.
 Base Threshold Aggressive Threshold

ratio to the total counts
in all the JIT-compiled method

coverage: L1D miss 27.3%, L2 miss 27.9%
(by selecting 1.4% of load/store instructions)

coverage: L1D miss 47.3%, L2 miss 48.9%
(by selecting 2.8% of load/store instructions)

ratio to the total counts
in the hot methods that we apply

our analysis
(against the white bars labeled

"All in hot methods" in Figure 3)

coverage: L1D miss 36.7%, L2 miss 39.4%
(by selecting 6.9% of load/store instructions)

coverage: L1D miss 63.6%, L2 miss 69.2%
(by selecting 14.2% of load/store instructions)

cache misses per execution than the instructions not selected. For
example, the instructions selected by pattern matching caused
more than twice as many cache misses per execution as the
instructions not selected regardless of the threshold configuration.

When we select all of the load and store instructions in the
methods compiled with hot or higher optimization levels, the
number of instructions selected was 19.7% of the total of the load
and store instructions. Because we apply our analysis only to
these hot methods to avoid excessive overhead, the number of
total cache misses for the hot methods were the upper bound for
our technique. Compared to this upper bound (the white bars
labeled "All in hot methods" in Figure 3), our technique achieved
63.6% and 69.2% coverage for the L1 and L2 cache misses with
the Aggressive threshold by selecting 14.2% of the load and store
instructions in the hot methods. Table 2 summarizes the coverage
by our technique. These results show that our technique can cover
a large part of the sources of the cache misses without depending
on the HPM.

4.2 Discussion

We show the L1 and L2 cache miss statistics for each bench-
mark in Figure 4. The bar shows the number of cache misses per
10,000 executed instructions and the breakdown by the code
location (JIT-compiled code or native code) and the accessed data
type (objects, arrays, or non-Java-heap addresses).
SPECpower_ssj2008, SPECjbb2005, and compress generated
much more frequent cache misses than the other benchmarks in
the JIT-compiled code. In these benchmarks, many of these cache
misses were caused by only few hot loops. Our technique is
effective in identifying such hot loops even with the Base
threshold and hence the coverages for these benchmarks are much
higher than the average of the other benchmarks. In the other non-
cache-miss-intensive programs, no dominant hot loops exist and
many code locations were contributing to the cache misses. Hence,
the coverages were more dependent on the hot loop thresholds
and their coverages were typically smaller than the three cache-
miss-intensive programs.

We found one type of frequent cache miss that our technique
failed to detect. Such cache misses are caused by conflicting store
instructions from multiple threads. For example, the derby
benchmark from SPECjvm2008 caused many L2 cache misses
when accessing a method’s static variable, and our heuristics
could not detect this. These cache misses in the derby benchmark
were only observed with multi-threaded execution. When we ran
the derby benchmark with only one thread, accesses to the static

variables did not cause frequent cache misses and the coverage of
our technique was greatly improved. This type of cache miss is
more difficult to capture by static analysis alone. Adding idioms
to capture such special cases is our future work. Additional
runtime information such as a lock contention profile will
potentially help in identifying such cache misses, because objects
shared by multiple threads tend to be guarded by monitors.

5. Applications in Runtime Optimization
In this section, we demonstrate the usefulness of our technique to
identify the instructions that cause frequent cache misses in
compiler optimizations. We evaluated two types of object
placement optimizations, an object alignment optimization and an
object collocation optimization based on our cache miss
identification technique without relying on the HPM. We also
describe techniques to exploit the corresponding opportunities
based on the accurate cache miss profiles obtained from the HPM
to compare with the optimizations based on our technique.

5.1 Our Object Alignment Optimization Without HPM

In the object alignment optimization, we adjust the address of an
object to keep two or more hot fields of the object in the same
cache line. Here, we describe how we identify the objects that
generate frequent cache misses in more than two fields as targets
to align based on matching the basic pattern shown in Figure 1.
We search for the hot loops with the pattern shown in Figure 5.
This pattern is a straightforward extension of the pattern shown in
Figure 1(a). In this pattern, there is a load of a reference to objA
and two following accesses in one loop. We want to adjust the
address of the object to keep these two fields in the same cache

Basic pattern for alignment optimization
 ClassA objA;
ClassB objB;
while (!end) { // in a hot loop

...
// 1) first, load a reference of ClassA
objA = objB.referenceToClassA;
...
// 2) then, access at least two different fields of objA
access to objA.field1;
...
access to objA.field2;
...

}

Figure 5. An example of a code sequence for which object
alignment optimization is appropriate. Here we select ClassA
as a target for alignment.

Additional patterns for alignment optimization
ClassA objA;
ClassB objB;
ClassS objS; // ClassS is a super class of ClassA
while (!end) { // in a hot loop

...
// 1) first, load a reference of a super class of ClassA
objS = objB.referenceToSuperClass;
...
// 2) next, cast objC to ClassA
objA = (ClassA) objS;
...
// 3) then, access at least one field of objA
access to objA.field1;
...

}

 ClassA objA;
objA = head;
while (objA != null) { // in a hot loop

...
// 1) access at least one field of objA
access to objA.field1;
...
// 2) load a reference to ClassA from objA
objA = objA.next; or objA = objA.child[nextChild];
...

}

Figure 6. Two additional patterns for the object alignment
optimization. ClassA is the alignment candidate for both
patterns. The first is typical of hashmap or treemap operations.
The second appears while traversing a linked list.

line to reduce the cache misses caused by this code sequence
(from two to one). If we find a hot loop that matches this pattern
when compiling a method, we can identify the ClassA as a target
for the object alignment optimization. Based on the anti-pattern
shown in Figure 1(b), we do not select ClassA as a target if a
reference to objA is loaded from the ‘this’ object in the loop.

Figure 6 shows two variant patterns, but still based on the
pattern shown in Figure 1, in addition to the most common pattern
shown in Figure 5. We use these special patterns to handle
collection classes. Because it is known that the objects managed
by a collection class, such as hashmaps, frequently cause cache
misses and so these patterns are important when identifying likely
cache misses [12]. The first pattern in Figure 6 includes a type
cast. In this example, objS is converted from ClassS (a
superclass of ClassA) to ClassA. In this case, we select ClassA,
but not ClassS, as the target. This pattern commonly appears in
loops accessing a hashmap (java.util.HashMap) or a treemap
(java.util.TreeMap), in which all of the objects are treated as
being in java.lang.Object. The second pattern in Figure 6 handles
a linked data structure. This code pattern often appears in a loop
iterating over all of the objects in a linked list. In this example, a
reference to objA is loaded in each iteration and then its fields are
accessed in the next iteration. We select objA as the target even
though the load of the reference and the following use belong to
different iterations of the loop. In the hot loop, two fields of each
object (field1 and either next or child) are accessed. Thus we pick
ClassA as the target.

After a target is identified, we do the optimizations at both
allocation time and GC time. If the objects frequently cause cache
misses in the nursery space, we optimize the object locations at
allocation time. If they cause cache misses in the survivor or the
tenure space, we do the optimization in the garbage collector.
From the source code analysis alone, however, we cannot
determine where the objects will reside. Hence, we adjust the
object locations of each target at both allocation time and GC
time.

For the allocation-time optimization, we generate special
allocation code in the JIT compiler, which checks the alignment
and adds padding before the new object for all of the allocation
sites of the class. In the current implementation, all methods
having at least one allocation site of the identified target class are
recompiled to apply allocation-time optimization.

The generational garbage collector in the JVM copies objects
using the parallel hierarchical copying order [16]. When an object
to be tenured is marked as a target for the GC-time alignment, we
first check whether the size of the remaining cache line is large
enough to hold the object. If the remaining space is too small, we
add padding and skip to the next cache line to ensure the object
fits into one cache line. We did not implement these optimizations
for objects in survivor space because additional operations in the
frequently executed young GC may impose heavy overhead in the
GC pause time.

5.2 Object Collocation Optimization Without HPM

The object collocation optimization collocates two objects that are
accessed together into the same cache line. In the current
implementation, we do not apply our optimization to array objects
nor do we collocate more than two objects at a time. We identify
pairs of classes to collocate when the code matches the pattern
shown in Figure 7. We selected the pair of ClassA and ClassB
as a target for the object collocation in this example. In this
example, first a reference to objA is loaded, then a reference to
objB is loaded from a field of objA, and finally a field of objB is
accessed in the same loop. In such a code sequence, objA and
objB often cause cache misses and so we can reduce two cache
misses to one by collocating the two objects into one cache line.
Based on the anti-pattern shown in Figure 1(b), we do not select
the target if the reference to objA is loaded from the ‘this’ object.

We need the ordering of the two objects to do the allocation-
time object collocation. We check their order in the garbage
collector. The analyzer sends information on the collocation
targets consisting of a referrer class, a referee class, and the field
id of the referrer class, which has a reference to the referee. In the
example of Figure 7, the referrer is ClassA and the referee is
ClassB. The garbage collector checks the order of the two
objects of these respective classes when it finds an object of the
referrer class and its specified field holds a valid pointer to an
object of the referee class.

We check if the referee object resides in front of the location
of the corresponding referrer object. This means that the referee
object was allocated before the referrer object was allocated,
because we allocate the objects in the Java heap by simply
incrementing a pointer that tracks the next location to allocate in
our JVM. In this situation, we can generate special allocation
code to add a reserved area of the size of the referrer object in the
same cache line for all of the allocation sites of the referee objects.
Also, we generate special allocation code for the allocation sites
of the referrer objects to use the reserved area generated when the
referee object was allocated. In the current implementation, all
methods having at least one allocation site of the identified target
classes are recompiled. When the garbage collector counts objects
in the Java heap, we do not consider the class hierarchy. For
example, in Figure 7 objA is not necessarily an instance of
ClassA, but it might be an instance of a subclass of ClassA. In
the current implementation, we skip such cases to avoid excessive
profiling overhead.

For the identified targets, we calculate the object creation
frequencies as the ratios of the number of objects created for each
class to the total number of objects created by counting the
number of objects in the nursery area. If this ratio exceeds our
threshold, 10%, then we do not use the object collocation
optimization for the class. This is because the optimization
imposes additional overhead for CPU cycles and space
proportional to the number of the created objects. We count the
number of objects allocated in Java heap in the garbage collector
and use this information to avoid applying allocation-time

Basic pattern for collocation optimization
 ClassA objA;
ClassB objB;
ClassC objC;
while (!end) { // in a hot loop

...
// 1) first, load a reference of ClassA
objA = objC.referenceToClassA;
...
// 2) next, load a reference of ClassB from objA
objB = objA.referenceToClassB;
...
// 3) then, access at least one field of objB
access to objB.field1;
...

}

Figure 7. An example of a code sequence for the object
collocation optimization. The pair of ClassA and ClassB is the
target for collocation.

optimization for frequently instantiated classes. We also apply the
criteria for object alignment optimization described in Section 5.1.
Figure 8 is pseudocode for the allocation code sequences for both
the alignment and collocation optimizations. The current
implementation does not collocate more than two objects. We
could support more objects per cache line, but at the price of
additional instructions in the allocation code.

5.3 Object Placement Optimizations Using HPM

This section describes the object alignment and collocation
optimizations based on the accurate L1 and L2 cache miss
profiles obtained from the HPM to contrast them against the
technique based on our cache miss identification technique. Note
that these optimizations themselves are not the primary focus of
this paper though our techniques are much simpler than existing
techniques, but still effective. For example, our HPM-based
techniques do not require additional metadata to translate the
instruction addresses into Java bytecode while previous
techniques require huge amounts of additional metadata for this
purpose. We implemented a framework to obtain HPM profiles
from the JVM by adapting the earlier work [17] to obtain L1 and
L2 data cache miss profiles at runtime. To focus on the mutator
performance, we do not include the cache misses during stop-the-
world GC in the profiles.

5.3.1 Object Alignment Optimization Using HPM

Based on the accurate cache miss profiles, similar object
alignment opportunities can be found. We first use the HPM to
generate L1 and L2 cache miss profiles for each method. If
multiple fields of one class cause many cache misses in one
method, that class is a target for the object alignment optimization.
Table 3 shows cache miss profiles that include targets. In this
example, we picked two classes, Stock and Orderline, as the
targets for the object alignment optimization, because two fields
of each class cause cache misses above the threshold. We used
0.5% of the total cache miss samples from the entire program as
the threshold for the alignment optimization. Based on our
measurements, this simple heuristic identified many targets that
did not provide significant cache miss reductions when using a
threshold smaller than 0.5%. In the HPM-based optimization, we
can get the location of the objects that caused the cache misses
directly from the HPM, as shown in Table 3. In the table, the
Stock class causes cache misses in the tenure space and so we
control the location of the Stock objects when the garbage
collector moves them into the tenure space. The Orderline
objects cause cache misses in the nursery space and so we
optimize at allocation time. We use the same mechanism to
control the object location at the allocation time and the GC time.

5.3.2 Object Collocation Optimization Using HPM

For the object collocation optimization, we identify pairs of
classes to collocate in a way similar to the alignment optimization.
Table 4 shows an example of cache miss profiles that include
targets for the object collocation optimization. In this optimiza-
tion, we count the references from the objects that cause the cache
misses for other objects, as well as the cache misses themselves,
to select the targets. First we select each pair of two classes that
cause more than 0.5% of the total cache misses in one location
(such as the nursery). Then we iterate over the objects of those
classes that caused the cache misses and count the number of
objects that have references to objects in another class. If the

 allocateObject(class) {
allocateByte = size of the class;
updatedCursor = allocationCursor + allocateByte;

if (updatedCursor > end_of_heap) call allocation helper

allocationCursor = updatedCursor;
return allocationCursor;

}

(a) original object allocation code
 allocateObject(class) {

allocateByte = size of the class;

if (class is marked to use reserved area for collocation) {
if (allocateByte < sizeOfReservedArea) {

sizeOfReservedArea = 0;
return reservedArea;

}
}

if (class is marked to generate reserved area for collocation) {
if ((allocateByte + byteToReserve) > remainingBytesInCacheline)

allocationCursor += remainingBytesInCacheline;
sizeOfReservedArea = byteToReserve;
reservedArea = allocationCursor;
allocationCursor += byteToReserve;

}

else if (class is marked for alignment) {
if (allocateByte > remainingBytesInCacheline)

allocationCursor += remainingBytesInCacheline;
}

updatedCursor = allocationCursor + allocateByte;

if (updatedCursor > end_of_heap) call allocation helper

allocationCursor = updatedCursor;
return allocationCursor;

}

(b) object allocation code for the allocation-time
object placement optimization

for object collocation

for object alignment

Figure 8. Pseudocode of the object allocation code sequence
used for the allocation-time object-placement optimizations.

Table 3. An example of a cache miss profile for a method in
which the object alignment optimization is used.

1.7%nursery56spec/jbb/Orderline4

1.5%nursery24java/math/BigDecimal5

3

2

1

2.1%nursery8spec/jbb/Orderline

2.1%tenure32spec/jbb/Stock

5.1%tenure0spec/jbb/Stock

number of sampleslocationoffsetclass

1.7%nursery56spec/jbb/Orderline4

1.5%nursery24java/math/BigDecimal5

3

2

1

2.1%nursery8spec/jbb/Orderline

2.1%tenure32spec/jbb/Stock

5.1%tenure0spec/jbb/Stock

number of sampleslocationoffsetclass

• L2 cache miss profile for spec/jbb/CustomerReportTransaction.process
• number of samples shown in the ratio to the total number of samples

Table 4. An example of a cache miss profile for a method in
which the object collocation optimization is used.

4

3

2

1

3.8%nursery24spec/jbb/History

2.4%nursery0spec/jbb/Order

4.5% nursery0spec/jbb/History

8.4%nursery24java/util/TreeMap$Entry

number of sampleslocationoffsetclass

4

3

2

1

3.8%nursery24spec/jbb/History

2.4%nursery0spec/jbb/Order

4.5% nursery0spec/jbb/History

8.4%nursery24java/util/TreeMap$Entry

number of sampleslocationoffsetclass

... • L1 cache miss profile for spec/jbb/DeliveryTransaction.preprocess
• number of samples shown in the ratio to the total number of samples

number of objects that have a reference also exceeds 0.5% of the
total number of sampled cache misses, then this pair is a target for
the object collocation optimization. In Table 4, the Tree-
Map$Entry and History classes generate many cache misses
and (though the table does not includes this information) many of
the TreeMap$Entry objects causing cache misses have
references to History objects, making this pair is a good target.
The TreeMap$Entry and History classes shown in Table 4
both cause cache misses in the nursery space and so we optimize
them when they are allocated in the Java heap. If the target
objects cause cache misses in the tenure or the survivor space, we
collocate the objects in the garbage collector.

For the allocation-time object collocation, we first check the
order of the two objects, the TreeMap$Entry object that caused
the cache miss and the History object that is referenced from the
TreeMap$Entry object as we do in pattern-matching-based
approach. To avoid excessive allocation-time overhead, we do not
use this object collocation and alignment optimization if the
object creation frequency of one of the target classes exceeds 10%
based on the object creation profile generated using HPM
information [17].

5.4 Performance Improvements by the Optimizations

We implemented the HPM-based and our pattern-matching-based
optimizations to compare the two approaches in the object
placement optimizations. We implemented both optimizations as
online optimizations in Java JIT compiler. We use Base threshold
configurations for our pattern-matching used in the evaluations.

Figure 9 shows the performance improvements for
SPECpower_ssj2008 and SPECjbb2005 with our pattern-
matching-based and the HPM-based optimizations for object
alignment and collocation. As shown in Figure 4, the cache miss
rates for the other benchmarks are much smaller than these two
and hence the effects of the optimizations for the other programs
were not significant even when we used the accurate cache miss
profile from the HPM. Thus we only show the averages for the
SPECjvm2008 and dacapo-9.12 benchmark suites. We ran the
performance measurements 8 times and averaged the throughputs.
The error bars in the graph show the 95% confidence intervals.

We observed acceleration for SPECpower_ssj2008 and
SPECjbb2005. The largest improvements were for SPECjbb2005,
with 4.7% for our pattern-matching-based optimization and 5.5%
for the HPM-based optimization with collocation. The effects of
the optimizations for the non-cache-miss-intensive programs were
not significant and the confidence intervals overlap in most cases.
On average for the non-cache-miss-intensive programs, we
observed small performance degradation with our approach. This
performance degradation came from additional runtime overhead
caused by additional profiling in garbage collector and also from
the extra CPU time for the special allocation code.

We observed significant reduction in both L1 and L2 data
cache misses in the two benchmarks that did benefit from our
optimizations. In these benchmarks, many of the L1 and L2 cache
misses were due to very hot loops, and so it was possible to
change the memory access behavior of the entire program by
controlling the objects related to these hot loops. In the other
programs, many objects were contributing to the data cache
misses and thus it was much harder to improve the cache behavior
with the object placement changes even when using the precise
profiles from the HPM.

These results showed that our pattern-matching-based heuristic
approach successfully identified optimization opportunities for
object placement optimizations in cache-miss-intensive programs
and our techniques achieved similar performance gains by
exploiting the same opportunities without depending on the HPM.

5.5 Challenges in Software-Only Optimizations

By comparing the differences between the HPM-based and our
pattern-matching-based optimizations in detail, we identified two
major remaining challenges in optimizations that do not rely on
the HPM.

One obvious advantage is that the HPM can directly identify
the location of the objects causing the cache misses. With static
analysis alone, we cannot determine the locations of the objects.
Hence, for our heuristic approach, we aggressively control the
locations of the target objects at both allocation time and GC time.
With HPM-based optimizations, we can select the best ways to
control the object locations to minimize the additional overhead
in CPU time and memory waste. Using the more accurate

hi
gh

er
 is

 fa
st

er

(non-zero
origin)

non-cache-miss-intensive programscache-miss-intensive programs

object alignment optimization

0.9

0.95

1

1.05

1.1

1.15

SPECpo
wer_

ss
j20

08

SPECjbb
20

05

SPECjvm
20

08

DaC
ap

o-9
.12

re
la

tiv
e

th
ro

ug
hp

ut
 .

Baseline (w/o alignment optimization)
Our software-only optimization
HPM-based optmization

hi
gh

er
 is

 fa
st

er

(non-zero
origin)

non-cache-miss-intensive programscache-miss-intensive programs

object collocation optimization

0.9

0.95

1

1.05

1.1

1.15

SPECpo
wer_

ss
j20

08

SPECjbb
20

05

SPECjvm
20

08

DaC
ap

o-9
.12

re
la

tiv
e

th
ro

ug
hp

ut
 .

Baseline (w/o collocation optimization)
Our software-only optimization
HPM-based optmization

Fig. 9. Performance improvements from object placement optimizations with our approach and with HPM-based approach. The error
bars show 95% confidence intervals. We used the Base threshold for pattern matching. Note that the origin of the Y-axis is not zero.

statistics gathered in the garbage collector may allow the pattern-
matching-based optimizations to be location aware in exchange
for the additional runtime profiling overhead.

Another advantage of using the HPM is that the HPM can
identify the classes of the objects that cause the cache misses.
When a class is identified by pattern matching, the objects at
runtime might be instances of subclasses of the identified class.
We actually observed such a case with compiler.compiler. The
HPM-based collocation identified a target consisting of a pair of
Symbol$MethodSymbol and Scope$Entry. However, the
Symbol$MethodSymbol objects caused many cache misses when
they were accessed as instances of Symbol, a superclass of the
Symbol$MethodSymbol. Our current implementation of the
source code analysis and also the profiling facility in the garbage
collector do not handle such cases to avoid excessive overhead
and thus failed to identify this target. To obtain such information
without depending on the hardware, we can generate special code
for additional profiling in the identified loop.

Another challenge in the pattern-matching-based optimizations
was the criteria to select hot loops. In general, picking more loops
for analysis increases the opportunities to reduce the cache misses,
but also increases the overhead. When using the Aggressive
threshold configuration, the number of identified classes was
especially increased for the programs from SPECjvm2008. The
thresholds play roles similar to the threshold for the cache miss
rate to pick the targets in the HPM-based optimizations (0.5% in
our implementation).

Future work for the object placement optimizations will
implement more sophisticated profiling techniques, such as
software-based sampling techniques to capture object creations
[18] or techniques to track the allocation site of each object [19]
to obtain more accurate information with smaller overhead.

In summary, our pattern-matching-based heuristic approach
successfully identified many of the same opportunities for Java
object placement optimization as the HPM-based approach.
Though the HPM had some advantages, such as dynamic
information on objects that caused the cache misses, our results
showed that we can achieve comparable performance gains
without using the HPM in SPECjbb2005 and
SPECpower_ssj2008.

6. Summary
In this paper, we presented our techniques to identify the
instructions and objects that frequently cause cache misses
without using the HPM of the processor and then showed its
effectiveness in compiler optimization using two examples. Our
key insight is that the cache misses are often caused by pointer
dereferences in hot loops in the Java programs. Thus we can
heuristically identify the targets by finding the hot loops with
idiomatic patterns often used in Java programs. We showed that
our heuristic technique effectively identified many of the cache
misses in a variety of Java programs. As a result, optimizations
based on our heuristic approach successfully identified many of
the same targets that the HPM-based optimizations identified.

References
[1] A. Adl-Tabatabai, R. L. Hudson, M. J. Serrano, and S. Subramoney,

“Prefetch injection based on hardware monitoring and object meta-
data”, in Proceedings of the ACM Conference on Programming
Language Design and Implementation, pp. 267–276, 2004.

[2] F. T. Schneider, M. Payer, and T. R. Gross, “Online optimizations
driven by hardware performance monitoring”, in Proceedings of the
ACM Conference on Programming Language Design and Implemen-
tation, pp. 373–382, 2007.

[3] M. Serrano and X. Zhuang, “Placement Optimization Using Data
Context Collected During Garbage Collection”, In Proceedings of
the International Symposium on Memory Management, pp. 69–78,
2009.

[4] J. Cuthbertson, S. Viswanathan, K. Bobrovsky, A. Astapchuk, E.
Kaczmarek, and U. Srinivasan, “A Practical Approach to Hardware
Performance Monitoring Based Dynamic Optimizations in a Produc-
tion JVM”, in Proceedings of the International Symposium on Code
Generation and Optimization, pp. 190–199, 2009.

[5] M. Burtscher, A, Diwan and M. Hauswirth, “Static load classification
for improving the value predictability of data cache misses” in
Proceedings of the ACM Conference on Programming Language
Design and Implementation, pp. 222–233, 2002.

[6] V. M. Panait, A. Sasturkar, and W. F. Wong, “Static Identification of
Delinquent Loads”, in Proceedings of the International Symposium
on Code Generation and Optimization, pp. 303–314, 2004.

[7] T. M. Chilimbi, and J. R. Larus, “Using generational garbage
collection to implement cache-conscious data placement”, in Pro-
ceedings of the ACM International Symposium on Memory
Management, pp. 37-48, 1998.

[8] T. M. Chilimbi, M. D. Hill, and J. R. Larus, “Cache-conscious
structure layout”, in Proceedings of the ACM Conference on Pro-
gramming Language Design and Implementation, pp. 1–12, 1999.

[9] W. Chen, S. Bhansali, T. M. Chilimbi, X. Gao, and W. Chuang,
“Profile-guided proactive garbage collection for locality optimiza-
tion”, in Proceedings of ACM Conference on Programming
Language Design and Implementation, pp. 332–340, 2006.

[10] M. L. Seidel and B. G. Zorn, “Segregating Heap Objects by
Reference Behavior and Lifetime”, in Proceedings of the Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 12–23, 1998.

[11] Y. Shuf, M. Gupta, R. Bordawekar, and J. P. Singh, Exploiting
prolific types for memory management and optimizations, in Pro-
ceedings of the ACM Symposium on Principles of Programming
Languages, pp. 295–306, 2002.

[12] A. Jula and L. Rauchwerger, “Two memory allocators that use hints
to improve locality”, in Proceedings of the ACM International
Symposium on Memory Management, pp. 109–118, 2009.

[13] J. Jeon, K. Shin, and H. Han, “Layout transformations for heap
objects using static access patterns”, in Proceedings of the Interna-
tional Conference on Compiler Construction, pp. 187–201, 2007.

[14] S. M. Blackburn et al., “The DaCapo Benchmarks: Java
Benchmarking Development and Analysis”, in Proceedings of the
ACM conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 169–190, 2006.

[15] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q. Nguyen, B.
J. Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden, “IBM
POWER6 microarchitecture”, IBM Journal of Research and Devel-
opment, Vol. 51 (6), pp. 639–662, 2007.

[16] D. Siegwart and Martin Hirzel, “Improving locality with parallel
hierarchical copying GC”, in Proceedings of the International
Symposium on Memory Management, pp. 52–63, 2006.

[17] H. Inoue and T. Nakatani, “How a Java VM Can Get More from a
Hardware Performance Monitor”, in Proceedings of the ACM
Conference on Object Oriented Programming Systems Languages
and Applications, pp. 137–154, 2009.

[18] M. Jump, S. M. Blackburn, and K. S. McKinley, “Dynamic object
sampling for pretenuring”, in Proceedings of the International
Symposium on Memory Management, pp. 152–162, 2004.

[19] R. Odaira, K. Ogata, K. Kawachiya, T. Onodera, and T. Nakatani,
“Efficient Runtime Tracking of Allocation Sites in Java”, in Pro-
ceedings of the ACM International Conference on Virtual Execution
Environments, pp. 109–120, 2010.

