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Abstract  
Cache miss stalls are one of the major sources of performance 
bottlenecks for multicore processors. A Hardware Performance 
Monitor (HPM) in the processor is useful for locating the cache 
misses, but is rarely used in the real world for various reasons. It 
would be better to find a simple approach to locate the sources of 
cache misses and apply runtime optimizations without relying on 
an HPM. This paper shows that pointer dereferencing in hot loops 
is a major source of cache misses in Java programs. Based on this 
observation, we devised a new approach to identify the 
instructions and objects that cause frequent cache misses. Our 
heuristic technique effectively identifies the majority of the cache 
misses in typical Java programs by matching the hot loops to 
simple idiomatic code patterns. On average, our technique 
selected only 2.8% of the load and store instructions generated by 
the JIT compiler and these instructions accounted for 47% of the 
L1D cache misses and 49% of the L2 cache misses caused by the 
JIT-compiled code. To prove the effectiveness of our technique in 
compiler optimizations, we prototyped object placement 
optimizations, which align objects in cache lines or collocate 
paired objects in the same cache line to reduce cache misses. For 
comparison, we also implemented the same optimizations based 
on the accurate information obtained from the HPM. Our results 
showed that our heuristic approach was as effective as the HPM-
based approach and achieved comparable performance 
improvements in the SPECjbb2005 and SPECpower_ssj2008 
benchmark programs. 

Categories and Subject Descriptors D.3.4 [Programming 
Languages]: [Programming Languages]: Processors – Compilers, 
Optimization, Memory management. 

General Terms Measurement, Performance, Experimentation. 

Keywords Hardware performance monitor, Object placement 
optimization 

1. Introduction 
Cache miss stalls are one of the major sources of performance 

bottlenecks in high performance processors. Hence, it is important 
for compilers and language runtime systems to use the processor 
cache efficiently, especially on multicore processors, which have 
limited memory bandwidth compared to the huge computation 
resources. Previous techniques [1-4] showed that cache miss 
profiles were useful for runtime systems in reducing cache misses 
and improve the performance of cache-miss-intensive programs. 
These previous techniques used an HPM (Hardware Performance 
Monitor) in the processor to obtain cache miss profiles. However, 
for a compiler to use the HPM in is difficult because the HPM 
functions are often specific to the processor, the HPM may 
require a special device driver and super-user privilege, and only 
one process can use the HPM at a time. 

In this paper, we identify the source of cache misses without 
relying on hardware support. We used an HPM for a thorough 
study of various Java programs and identified the hot loops that 
cause frequent cache misses. We found that many of them can be 
classified into a small set of patterns that can be heuristically 
detected as simple idioms without relying on an HPM. In general, 
the idioms correspond to repeated indirect loads from the Java 
heap in hot loops. Typical object-oriented programs heavily use 
complicated data structures, such as hashmaps and linked lists, 
and many cache misses come from accesses to such data 
structures. Our basic idioms work well for many Java programs 
because they can effectively capture such accesses. We 
experimentally showed that our heuristic approach effectively 
identified a large part of the L1 and L2 cache misses in many Java 
programs, including SPECjbb2005, SPECpower_ssj2008, 
SPECjvm2008, and the DaCapo benchmark suite. On average, 
our technique selected only 2.8% of the load and store 
instructions generated by the JIT compiler and these instructions 
accounted for 47.3% of the L1D cache misses and 48.9% of the 
L2 data cache misses caused by the JIT-compiled code. 
Compared to the total number of load and store instructions and 
cache misses caused by hot methods that we apply our analysis, 
our technique achieved about 63.6% and 69.2% coverage for the 
L1 and L2 cache misses by selecting 14.2% of the load and store 
instructions in the hot methods. 

We demonstrate the effectiveness of our technique for 
compiler optimizations. We prototyped two types of object 
placement optimizations based on our heuristic approach in a Java 
VM with a JIT compiler. We compared the performance 
improvements from the optimizations based on our heuristic 
approach against the similar optimizations based on accurate 
cache miss statistics obtained from the HPM. Our optimizations 
showed performance improvements in two benchmarks with 



many cache misses, SPECjbb2005 and SPECpower_ssj2008. 
These performance improvements were close to the gains based 
on the accurate cache miss statistics from the HPM. 

The main contributions of this paper are two-fold. (1) We 
present a technique to identify the instructions and objects that 
frequently cause cache misses in Java programs without relying 
on an HPM. (2) We prototyped the online optimizations in a Java 
JIT compiler using our heuristic approach and compared to the 
HPM-based approach. Our results showed that our technique is 
effective in implementing optimizations in dynamic compilers. 

The rest of the paper is organized as follows. Section 2 
discusses related techniques. Section 3 presents our no-HPM 
technique to identify the instructions that cause frequent cache 
misses. Section 4 describes the experimental environment and our 
results. Section 5 explains how we use the pattern-matching-based 
heuristic approach in compiler optimizations. We also show the 
performance gains from our optimizations and compare them to 
the HPM-based approach. Section 6 summarizes our work. 

2. Related Work 
In this paper, we identify the instructions and objects that tend to 
cause many cache misses. Burtscher et al. [5] classified load 
instructions based on the region of memory (stack, heap, or 
global), the kind of reference (array, field, or scalar) and the type 
of data (pointer or value). They showed that load instructions for 
certain classes caused more cache misses than others in C and 
Java programs. Our technique identifies exactly those load and 
store instructions that tend to cause many cache misses. Panait et 
al. [6] proposed a technique to statically identify the load 
instructions that cause many cache misses. They call such a load 
instruction a delinquent load. Their technique focuses on 
analyzing program binaries to calculate a weight for each load 
instruction. They estimate the likelihood each load causes cache 
misses based on criteria such as the number of dereferences and 
the base register used to calculate the address to be accessed. Our 
technique identifies more information for compiler optimizations, 
such as the target classes, rather than just identifying load 
instructions that cause cache misses. Therefore we focus on 
analyzing the compiler IR, which includes more information than 
the binaries. We demonstrated the practical effectiveness of our 
technique by implementing two types of optimizations in a Java 
JIT compiler, in contrast to simply identifying the delinquent load 
instructions. 

There are some techniques that use cache miss profiles from 
HPMs for optimizations in compilers and runtime systems. Adl-
Tabatabai et al. [1] exploit cache miss statistics in their Java JIT 
compiler to insert effective prefetch instructions for the Itanium 2 
processor. Schneider et al. [2] used cache miss statistics from the 
garbage collector to optimize the placement of objects in the Jikes 
RVM on the Pentium 4 processor. Serrano and Zhuang [3] also 
identified opportunities to reduce cache misses by reordering the 
objects in the garbage collector in the POWER5 and POWER6 
processors. Cuthbertson et al. [4] exploited the HPM of the 
Itanium 2 processor for instruction scheduling and object 
collocation in the garbage collector. In our work, we use 
alignment [3] and collocation [2-4] to test the effectiveness of our 
approach, since they are two of the most proven optimization 
techniques based on cache miss profiles. Both HPM-based and 
pattern-matching-based optimizations use approaches similar to 
the previous techniques [2-4], locating load instructions that cause 
many cache misses, identifying target classes, and then 
optimizing the object locations to reduce the cache misses. 
Though we did not study prefetch injection [1] with our heuristic 
approach, it could be used to identify the targets for prefetching. 

Object placement optimization has a rich history of research 
and many software-based techniques have been proposed. These 
techniques use a variety of types of static and dynamic 
information that can be obtained without special hardware, such 
as field access profiles at read barriers [7, 8, 9], object lifetimes 
[10], allocation frequencies for each Java class [11], hints 
provided by the STL container libraries [12], or static access 
patterns analyzed at the compilation time [13]. Our heuristic 
approach is unique in the sense that we try to detect objects and 
fields that cause many cache misses, not just those that are 
frequently accessed. In most environments cache misses are 
transparent to software. Therefore, to predict the number of cache 
misses we need to use an empirical approach based on pattern 
matching rather than inserting instrumentation code. 

3. Identifying the Instructions and Objects 
Causing Frequent Cache Misses without an HPM 
In this section, we first explain our technique to identify the 
instructions and objects that frequently cause cache misses to 
provide effective information for optimizations in the JIT 
compiler. Our key insight to locate cache misses without using an 
HPM is that most cache misses identified by an HPM in typical 
Java workloads are often caused by certain idiomatic code 
patterns in those programs. This insight allows us to identify the 
objects that frequently cause cache misses by matching the hot 
loops with the idiomatic patterns. 

Though these patterns look quite simple and standard in many 
Java programs, we found that the percentage of load instructions 
selected by matching with this idiom in hot loops was up to 5.9% 
of the total load and store instructions in the JIT-compiled code 
(and 2.8% on average). We identified these patterns by 
investigating the cache miss profiles from the HPM using 
SPECjbb2005 and SPECjvm2008. As shown later, due to the 
simplicity and generality of these patterns, pattern matching with 
them worked well with programs from the DaCapo-9.12 
benchmark suite [14]. In Section 4, we also discuss some cache 

 ClassA objA;
ClassB objB;
while (!end) { // in a hot loop

...
// 1) first, load a reference of ClassA
objA = objB.referenceToClassA;
...
// 2) then, access a field of objA
access to objA.field1; 
...

}

ClassA objA;
while (!end) { // in a hot loop

...
// 1) first, load a reference of ClassA from 
//     a field of ‘this’ object
objA = this.referenceToClassA;
...
// 2) then, access a field of objA
access to objA.field1; 
...

}

a) a pattern for frequent cache misses

b) anti-pattern  

Figure 1. (a) A pattern that tends to cause frequent cache misses 
and (b) An anti-pattern that does not cause frequent cache misses.



misses in multi-threaded programs that we cannot capture with 
our current technique. 

Figure 1(a) shows the most frequently observed pattern that 
causes many cache misses. In this pattern, there is a load of a 
reference to objA and a following access to the objA in one 
highly iterated loop. Here, the access to the objA can be a load or 
a store to a field of objA, or an operation accessing the object 
header, such as a monitor enter, a monitor exit, a checkcast, or an 
instanceof operation. As a variant, a reference to objA can be 
obtained from a return value of a method call instead of loading 
from a field of objB. We observed that a hot loop matching this 
pattern tends to cause a cache miss in each iteration when 
accessing the objA.field1. Thus we should focus on the objects 
of ClassA to improve the memory system performance.  

In addition to this basic pattern, we used an anti-pattern in our 
analysis. Figure 1(b) shows this anti-pattern. The code sequence is 
almost identical to the basic pattern shown in Figure 1(a), but a 
reference to objA is loaded from the ‘this’ object. In this case, the 
‘this’ object is loop invariant and thus objA should not cause 
many cache misses. We observed that this anti-pattern appeared 
frequently in many programs but rarely caused cache misses. This 
anti-pattern can be extended to check the loop invariance of the 
first load in addition to loading from a ‘this’ object. When we 
match the pattern after applying the loop optimizations including 
loop invariant code motion, we do not need to explicitly apply 
this anti-pattern. We used this approach in our implementation 
rather than handling ‘this’ object explicitly. 

We do this pattern matching in the JIT compiler. The JIT 
compiler uses this analysis when it recompiles a method with a 
higher optimization level than the initial level. We used the 
execution frequency information obtained by software-based 
profiling to identify the hot loops for the pattern matching. Many 
high performance dynamic compilers already provide this 
information because it is important for many widely used 
optimizations. We designate a loop as hot if the estimated number 
of iterations per method invocation (Niter) exceeds a threshold, 
which we call the hot loop threshold. In the current implementa-
tion, we adjust the threshold for the hot loops between Niter = 10 
and 40 based on the hotness of the compiling method. When the 
method is compiled with the highest optimization level 
(scorching), such a method is typically consuming more than 10% 
of the total CPU time, and we use 10 as the threshold. When the 
method is compiled with the second highest level (veryHot), 
typically consuming more than 3% of the CPU time, we use 20 as 
the threshold. For other hot methods we use 40.  

The heuristics based on the number of iterations give good 
estimates for the hot loops, but in some cases opportunities are 
missed. If a method is invoked frequently, loops included in the 
method are also executed frequently, even though the loops do 
not meet our criteria. To identify such methods, we do pattern 
matching for the entire method when there are no loops having 
Niter larger than 3.0 in the method and the method was compiled 
with veryHot or scorching levels (for the hot method threshold). If 
there are no highly iterated loops within a very hot method, then 
the method must be invoked quite frequently, typically from 
inside a very hot loop. We do not use the anti-pattern shown in 
Figure 1(b) when we match the pattern for the entire method, 

because in this case ‘this’ pointer may change in each invocation 
of the method. Figure 2 summarizes our hot loop detection 
methods. We also use the execution frequency to exclude cold 
blocks when we analyze a loop. There can be cold blocks even 
inside of a hot loop, such as a rarely executed if block. 

These thresholds control the aggressiveness of the identifica-
tion. Using smaller values for these thresholds increase the 
number of identified targets. To study the effect of the thresholds, 
we also evaluated another configuration with lower threshold 
values to pick more loops for analysis. We call these two 
threshold configurations Base and Aggressive. Table 1 
summarizes the two configurations. 

We do the pattern matching after applying most of the code 
transformation optmizations including method inlining to simplify 
the implementation of our analyzer. Small methods in hot loops 
are inlined by method inlining and so we do not need to 
implement our analysis as a costly interprocedural analysis. In the 
current implementation, we did not alter the method inlining 
policy to cooperate with our analyzer. 

4. Experimental Results 
This section presents our experimental results to evaluate the 
accuracy of our pattern-matting-based technique in identifying the 
instructions that frequently cause cache misses. We used standard 
benchmarks: SPECpower_ssj2008, SPECjbb2005, SPECjbb2000, 
SPECjvm2008 (excluding the scimark and crypto benchmarks), 
and the DaCapo-9.12 benchmark suite. 

We ran the benchmarks on an IBM BladeCenter JS22 using 2 
POWER6 [15] cores running at 4.0 GHz with 2 SMT threads per 
core. We implemented our technique in the 32-bit JVM included 
in the IBM SDK for Java 6 SR2. Each POWER6 core has 64 KB 
of L1 data cache (L1D), 64 KB of L1 instruction cache, and 4 MB 
of L2 cache. The cache line size of the POWER6 processor is 128 
bytes for both L1 and L2 caches. The size of the Java heap was 2 
GB using 16-MB pages. We selected the generational garbage 
collector so that the Java heap was divided into a nursery space 
and a survivor space for young objects and a tenured space for 
older objects. The test system had 16 GB of system memory and 
used RedHat Enterprise Linux 5.2. 

Table 1. Thresholds for two configurations. 
hot loop threshold  

hot veryHot scorching 
hot method 
threshold 

Base 40 20 10 veryHot 
Aggressive 16 8 4 hot 

 

 void method1 (void) {

for (i=0; i<100; i++) {  // Niter = 100
....

}

for (j=0; j<5; j++) {  // Niter = 5
....
for (k=0; k<20; k++) {  // Niter = 100

....
}
....

}

}

hot loop

hot loop

void method2 (Element e) {  

....

}

cold loop

hot method without hot loops
(apply the analysis for the entire 
method instead of hot loops)

Niter: average number of iterations per method invocation
calculated from the block execution frequencies

Threshold of the hot loop depends on 
the optimization level of the method  
Figure 2. Overview of our hot loop criteria. 
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Fig. 3. Coverages of the instructions identified by our technique for the number of L1D cache misses, L2 cache data misses, memory 
accesses, and the static counts of load and store instructions. Our technique selected only 1.4% and 2.8% of the total load and store 
instructions, which account for about 27% and 48% of the total L1 cache misses for Base and Aggressive threshold configurations. 
 



4.1 Coverage  

The first graph in Figure 3 shows the number of load and store 
instructions selected by our technique over the total number of 
load and store instructions generated by the JIT compiler. The 
other three graphs in Figure 3 show the coverages for the 
instructions identified by our technique for L1D cache misses, L2 
cache data misses and all memory accesses. We measured the 
number of cache misses and memory accesses by using the HPM. 
We compare the coverages for our technique using the two 
threshold configurations (Base and Aggressive, as shown in Table 
1) against the case of selecting all of the load and store 
instructions in the methods compiled with hot or higher 
compilation levels (labeled all in hot methods in the figure). Here, 

we focus on the events caused by JIT-compiled code and hence 
the results do not include the events caused by the Linux kernel or 
native code in the JVM such as the garbage collector. We 
performed the measurements 4 times and averaged the results. 

From the figure, our technique selected an average of only 
1.4% and 2.8% (and up to 3.7% and 5.9%) of the total load and 
store instructions generated by the JIT compiler for Base and 
Aggressive threshold configurations, respectively. These 
instructions accounted for 27.3% and 47.3% of the total L1D 
cache misses and 27.9% and 48.9% of the total L2 data cache 
misses (average values). The coverages for the numbers of 
memory accesses of the instructions selected by our technique 
were 15.2% and 27.9%, which were smaller than the coverages of 
the cache misses. This means that the instructions selected by our 
technique were not only frequently executed but also caused more 
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L1D misses

L2 misses

 
Figure 4. L1 and L2 cache miss ratios and breakdown by code location and access targets. We exclude the cache misses during stop-
the-world garbage collection to focus on mutator performance. 

Table 2. Summary of the coverage by our technique. 
 Base Threshold Aggressive Threshold 

ratio to the total counts 
in all the JIT-compiled method 

coverage: L1D miss 27.3%, L2 miss 27.9% 
(by selecting 1.4% of load/store instructions)

coverage: L1D miss 47.3%, L2 miss 48.9% 
(by selecting 2.8% of load/store instructions) 

ratio to the total counts  
in the hot methods that we apply 

our analysis 
(against the white bars labeled 

"All in hot methods" in Figure 3) 

coverage: L1D miss 36.7%, L2 miss 39.4% 
(by selecting 6.9% of load/store instructions)

coverage: L1D miss 63.6%, L2 miss 69.2% 
(by selecting 14.2% of load/store instructions)



cache misses per execution than the instructions not selected. For 
example, the instructions selected by pattern matching caused 
more than twice as many cache misses per execution as the 
instructions not selected regardless of the threshold configuration.  

When we select all of the load and store instructions in the 
methods compiled with hot or higher optimization levels, the 
number of instructions selected was 19.7% of the total of the load 
and store instructions. Because we apply our analysis only to 
these hot methods to avoid excessive overhead, the number of 
total cache misses for the hot methods were the upper bound for 
our technique. Compared to this upper bound (the white bars 
labeled "All in hot methods" in Figure 3), our technique achieved 
63.6% and 69.2% coverage for the L1 and L2 cache misses with 
the Aggressive threshold by selecting 14.2% of the load and store 
instructions in the hot methods. Table 2 summarizes the coverage 
by our technique. These results show that our technique can cover 
a large part of the sources of the cache misses without depending 
on the HPM. 

4.2 Discussion 

We show the L1 and L2 cache miss statistics for each bench-
mark in Figure 4. The bar shows the number of cache misses per 
10,000 executed instructions and the breakdown by the code 
location (JIT-compiled code or native code) and the accessed data 
type (objects, arrays, or non-Java-heap addresses). 
SPECpower_ssj2008, SPECjbb2005, and compress generated 
much more frequent cache misses than the other benchmarks in 
the JIT-compiled code. In these benchmarks, many of these cache 
misses were caused by only few hot loops. Our technique is 
effective in identifying such hot loops even with the Base 
threshold and hence the coverages for these benchmarks are much 
higher than the average of the other benchmarks. In the other non-
cache-miss-intensive programs, no dominant hot loops exist and 
many code locations were contributing to the cache misses. Hence, 
the coverages were more dependent on the hot loop thresholds 
and their coverages were typically smaller than the three cache-
miss-intensive programs. 

We found one type of frequent cache miss that our technique 
failed to detect. Such cache misses are caused by conflicting store 
instructions from multiple threads. For example, the derby 
benchmark from SPECjvm2008 caused many L2 cache misses 
when accessing a method’s static variable, and our heuristics 
could not detect this. These cache misses in the derby benchmark 
were only observed with multi-threaded execution. When we ran 
the derby benchmark with only one thread, accesses to the static 

variables did not cause frequent cache misses and the coverage of 
our technique was greatly improved. This type of cache miss is 
more difficult to capture by static analysis alone. Adding idioms 
to capture such special cases is our future work. Additional 
runtime information such as a lock contention profile will 
potentially help in identifying such cache misses, because objects 
shared by multiple threads tend to be guarded by monitors. 

5. Applications in Runtime Optimization 
In this section, we demonstrate the usefulness of our technique to 
identify the instructions that cause frequent cache misses in 
compiler optimizations. We evaluated two types of object 
placement optimizations, an object alignment optimization and an 
object collocation optimization based on our cache miss 
identification technique without relying on the HPM. We also 
describe techniques to exploit the corresponding opportunities 
based on the accurate cache miss profiles obtained from the HPM 
to compare with the optimizations based on our technique. 

5.1 Our Object Alignment Optimization Without HPM 

In the object alignment optimization, we adjust the address of an 
object to keep two or more hot fields of the object in the same 
cache line. Here, we describe how we identify the objects that 
generate frequent cache misses in more than two fields as targets 
to align based on matching the basic pattern shown in Figure 1. 
We search for the hot loops with the pattern shown in Figure 5. 
This pattern is a straightforward extension of the pattern shown in 
Figure 1(a). In this pattern, there is a load of a reference to objA 
and two following accesses in one loop. We want to adjust the 
address of the object to keep these two fields in the same cache 

Basic pattern for alignment optimization 
 ClassA objA;
ClassB objB;
while (!end) { // in a hot loop

...
// 1) first, load a reference of ClassA
objA = objB.referenceToClassA;
...
// 2) then, access at least two different fields of objA
access to objA.field1; 
...
access to objA.field2;
...

}  

Figure 5. An example of a code sequence for which object 
alignment optimization is appropriate. Here we select ClassA 
as a target for alignment. 
 

Additional patterns for alignment optimization 
ClassA objA;
ClassB objB;
ClassS objS;  // ClassS is a super class of ClassA
while (!end) { // in a hot loop

...
// 1) first, load a reference of a super class of ClassA
objS = objB.referenceToSuperClass;
...
// 2) next, cast objC to ClassA
objA = (ClassA) objS;
...
// 3) then, access at least one field of objA
access to objA.field1;
...

}  
 

 ClassA objA;
objA = head;
while (objA != null) { // in a hot loop

...
// 1) access at least one field of objA
access to objA.field1;
...
// 2) load a reference to ClassA from objA
objA = objA.next; or objA = objA.child[nextChild];
...

}  

Figure 6. Two additional patterns for the object alignment 
optimization. ClassA is the alignment candidate for both 
patterns. The first is typical of hashmap or treemap operations. 
The second appears while traversing a linked list. 
 



line to reduce the cache misses caused by this code sequence 
(from two to one). If we find a hot loop that matches this pattern 
when compiling a method, we can identify the ClassA as a target 
for the object alignment optimization. Based on the anti-pattern 
shown in Figure 1(b), we do not select ClassA as a target if a 
reference to objA is loaded from the ‘this’ object in the loop.  

Figure 6 shows two variant patterns, but still based on the 
pattern shown in Figure 1, in addition to the most common pattern 
shown in Figure 5. We use these special patterns to handle 
collection classes. Because it is known that the objects managed 
by a collection class, such as hashmaps, frequently cause cache 
misses and so these patterns are important when identifying likely 
cache misses [12]. The first pattern in Figure 6 includes a type 
cast. In this example, objS is converted from ClassS (a 
superclass of ClassA) to ClassA. In this case, we select ClassA, 
but not ClassS, as the target. This pattern commonly appears in 
loops accessing a hashmap (java.util.HashMap) or a treemap 
(java.util.TreeMap), in which all of the objects are treated as 
being in java.lang.Object. The second pattern in Figure 6 handles 
a linked data structure. This code pattern often appears in a loop 
iterating over all of the objects in a linked list. In this example, a 
reference to objA is loaded in each iteration and then its fields are 
accessed in the next iteration. We select objA as the target even 
though the load of the reference and the following use belong to 
different iterations of the loop. In the hot loop, two fields of each 
object (field1 and either next or child) are accessed. Thus we pick 
ClassA as the target. 

After a target is identified, we do the optimizations at both 
allocation time and GC time. If the objects frequently cause cache 
misses in the nursery space, we optimize the object locations at 
allocation time. If they cause cache misses in the survivor or the 
tenure space, we do the optimization in the garbage collector. 
From the source code analysis alone, however, we cannot 
determine where the objects will reside. Hence, we adjust the 
object locations of each target at both allocation time and GC 
time.  

For the allocation-time optimization, we generate special 
allocation code in the JIT compiler, which checks the alignment 
and adds padding before the new object for all of the allocation 
sites of the class. In the current implementation, all methods 
having at least one allocation site of the identified target class are 
recompiled to apply allocation-time optimization.  

The generational garbage collector in the JVM copies objects 
using the parallel hierarchical copying order [16]. When an object 
to be tenured is marked as a target for the GC-time alignment, we 
first check whether the size of the remaining cache line is large 
enough to hold the object. If the remaining space is too small, we 
add padding and skip to the next cache line to ensure the object 
fits into one cache line. We did not implement these optimizations 
for objects in survivor space because additional operations in the 
frequently executed young GC may impose heavy overhead in the 
GC pause time. 

5.2 Object Collocation Optimization Without HPM 

The object collocation optimization collocates two objects that are 
accessed together into the same cache line. In the current 
implementation, we do not apply our optimization to array objects 
nor do we collocate more than two objects at a time. We identify 
pairs of classes to collocate when the code matches the pattern 
shown in Figure 7. We selected the pair of ClassA and ClassB 
as a target for the object collocation in this example. In this 
example, first a reference to objA is loaded, then a reference to 
objB is loaded from a field of objA, and finally a field of objB is 
accessed in the same loop. In such a code sequence, objA and 
objB often cause cache misses and so we can reduce two cache 
misses to one by collocating the two objects into one cache line. 
Based on the anti-pattern shown in Figure 1(b), we do not select 
the target if the reference to objA is loaded from the ‘this’ object. 

We need the ordering of the two objects to do the allocation-
time object collocation. We check their order in the garbage 
collector. The analyzer sends information on the collocation 
targets consisting of a referrer class, a referee class, and the field 
id of the referrer class, which has a reference to the referee. In the 
example of Figure 7, the referrer is ClassA and the referee is 
ClassB. The garbage collector checks the order of the two 
objects of these respective classes when it finds an object of the 
referrer class and its specified field holds a valid pointer to an 
object of the referee class.  

We check if the referee object resides in front of the location 
of the corresponding referrer object. This means that the referee 
object was allocated before the referrer object was allocated, 
because we allocate the objects in the Java heap by simply 
incrementing a pointer that tracks the next location to allocate in 
our JVM. In this situation, we can generate special allocation 
code to add a reserved area of the size of the referrer object in the 
same cache line for all of the allocation sites of the referee objects. 
Also, we generate special allocation code for the allocation sites 
of the referrer objects to use the reserved area generated when the 
referee object was allocated. In the current implementation, all 
methods having at least one allocation site of the identified target 
classes are recompiled. When the garbage collector counts objects 
in the Java heap, we do not consider the class hierarchy. For 
example, in Figure 7 objA is not necessarily an instance of 
ClassA, but it might be an instance of a subclass of ClassA. In 
the current implementation, we skip such cases to avoid excessive 
profiling overhead. 

For the identified targets, we calculate the object creation 
frequencies as the ratios of the number of objects created for each 
class to the total number of objects created by counting the 
number of objects in the nursery area. If this ratio exceeds our 
threshold, 10%, then we do not use the object collocation 
optimization for the class. This is because the optimization 
imposes additional overhead for CPU cycles and space 
proportional to the number of the created objects. We count the 
number of objects allocated in Java heap in the garbage collector 
and use this information to avoid applying allocation-time 

Basic pattern for collocation optimization 
 ClassA objA;
ClassB objB;
ClassC objC;
while (!end) { // in a hot loop

...
// 1) first, load a reference of ClassA
objA = objC.referenceToClassA;
...
// 2) next, load a reference of ClassB from objA
objB = objA.referenceToClassB;
...
// 3) then, access at least one field of objB
access to objB.field1; 
...

}  

Figure 7. An example of a code sequence for the object 
collocation optimization. The pair of ClassA and ClassB is the 
target for collocation. 

 



optimization for frequently instantiated classes. We also apply the 
criteria for object alignment optimization described in Section 5.1. 
Figure 8 is pseudocode for the allocation code sequences for both 
the alignment and collocation optimizations. The current 
implementation does not collocate more than two objects. We 
could support more objects per cache line, but at the price of 
additional instructions in the allocation code. 

5.3 Object Placement Optimizations Using HPM 

This section describes the object alignment and collocation 
optimizations based on the accurate L1 and L2 cache miss 
profiles obtained from the HPM to contrast them against the 
technique based on our cache miss identification technique. Note 
that these optimizations themselves are not the primary focus of 
this paper though our techniques are much simpler than existing 
techniques, but still effective. For example, our HPM-based 
techniques do not require additional metadata to translate the 
instruction addresses into Java bytecode while previous 
techniques require huge amounts of additional metadata for this 
purpose. We implemented a framework to obtain HPM profiles 
from the JVM by adapting the earlier work [17] to obtain L1 and 
L2 data cache miss profiles at runtime. To focus on the mutator 
performance, we do not include the cache misses during stop-the-
world GC in the profiles. 

5.3.1 Object Alignment Optimization Using HPM 

Based on the accurate cache miss profiles, similar object 
alignment opportunities can be found. We first use the HPM to 
generate L1 and L2 cache miss profiles for each method. If 
multiple fields of one class cause many cache misses in one 
method, that class is a target for the object alignment optimization. 
Table 3 shows cache miss profiles that include targets. In this 
example, we picked two classes, Stock and Orderline, as the 
targets for the object alignment optimization, because two fields 
of each class cause cache misses above the threshold. We used 
0.5% of the total cache miss samples from the entire program as 
the threshold for the alignment optimization. Based on our 
measurements, this simple heuristic identified many targets that 
did not provide significant cache miss reductions when using a 
threshold smaller than 0.5%. In the HPM-based optimization, we 
can get the location of the objects that caused the cache misses 
directly from the HPM, as shown in Table 3. In the table, the 
Stock class causes cache misses in the tenure space and so we 
control the location of the Stock objects when the garbage 
collector moves them into the tenure space. The Orderline 
objects cause cache misses in the nursery space and so we 
optimize at allocation time. We use the same mechanism to 
control the object location at the allocation time and the GC time. 

5.3.2 Object Collocation Optimization Using HPM 

For the object collocation optimization, we identify pairs of 
classes to collocate in a way similar to the alignment optimization. 
Table 4 shows an example of cache miss profiles that include 
targets for the object collocation optimization. In this optimiza-
tion, we count the references from the objects that cause the cache 
misses for other objects, as well as the cache misses themselves, 
to select the targets. First we select each pair of two classes that 
cause more than 0.5% of the total cache misses in one location 
(such as the nursery). Then we iterate over the objects of those 
classes that caused the cache misses and count the number of 
objects that have references to objects in another class. If the 

 allocateObject(class) {
allocateByte = size of the class;
updatedCursor = allocationCursor + allocateByte;

if (updatedCursor > end_of_heap)  call allocation helper

allocationCursor = updatedCursor;
return allocationCursor;

}

(a) original object allocation code  
 allocateObject(class) {

allocateByte = size of the class;

if (class is marked to use reserved area for collocation ) {
if (allocateByte < sizeOfReservedArea) {

sizeOfReservedArea = 0; 
return reservedArea;

}
}

if (class is marked to generate reserved area for collocation) {
if ((allocateByte + byteToReserve) > remainingBytesInCacheline)

allocationCursor += remainingBytesInCacheline;
sizeOfReservedArea = byteToReserve; 
reservedArea = allocationCursor;
allocationCursor += byteToReserve;

}

else if (class is marked for alignment) {
if (allocateByte > remainingBytesInCacheline)

allocationCursor += remainingBytesInCacheline; 
}

updatedCursor = allocationCursor + allocateByte;

if (updatedCursor > end_of_heap)  call allocation helper

allocationCursor = updatedCursor;
return allocationCursor;

}

(b) object allocation code for the allocation-time
object placement optimization

for object collocation

for object alignment

 
Figure 8. Pseudocode of the object allocation code sequence 
used for the allocation-time object-placement optimizations. 

Table 3. An example of a cache miss profile for a method in 
which the object alignment optimization is used. 
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Table 4. An example of a cache miss profile for a method in 
which the object collocation optimization is used. 
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number of objects that have a reference also exceeds 0.5% of the 
total number of sampled cache misses, then this pair is a target for 
the object collocation optimization. In Table 4, the Tree-
Map$Entry and History classes generate many cache misses 
and (though the table does not includes this information) many of 
the TreeMap$Entry objects causing cache misses have 
references to History objects, making this pair is a good target. 
The TreeMap$Entry and History classes shown in Table 4 
both cause cache misses in the nursery space and so we optimize 
them when they are allocated in the Java heap. If the target 
objects cause cache misses in the tenure or the survivor space, we 
collocate the objects in the garbage collector. 

For the allocation-time object collocation, we first check the 
order of the two objects, the TreeMap$Entry object that caused 
the cache miss and the History object that is referenced from the 
TreeMap$Entry object as we do in pattern-matching-based 
approach. To avoid excessive allocation-time overhead, we do not 
use this object collocation and alignment optimization if the 
object creation frequency of one of the target classes exceeds 10% 
based on the object creation profile generated using HPM 
information [17]. 

5.4 Performance Improvements by the Optimizations 

We implemented the HPM-based and our pattern-matching-based 
optimizations to compare the two approaches in the object 
placement optimizations. We implemented both optimizations as 
online optimizations in Java JIT compiler. We use Base threshold 
configurations for our pattern-matching used in the evaluations.  

Figure 9 shows the performance improvements for 
SPECpower_ssj2008 and SPECjbb2005 with our pattern-
matching-based and the HPM-based optimizations for object 
alignment and collocation. As shown in Figure 4, the cache miss 
rates for the other benchmarks are much smaller than these two 
and hence the effects of the optimizations for the other programs 
were not significant even when we used the accurate cache miss 
profile from the HPM. Thus we only show the averages for the 
SPECjvm2008 and dacapo-9.12 benchmark suites. We ran the 
performance measurements 8 times and averaged the throughputs. 
The error bars in the graph show the 95% confidence intervals.  

We observed acceleration for SPECpower_ssj2008 and 
SPECjbb2005. The largest improvements were for SPECjbb2005, 
with 4.7% for our pattern-matching-based optimization and 5.5% 
for the HPM-based optimization with collocation. The effects of 
the optimizations for the non-cache-miss-intensive programs were 
not significant and the confidence intervals overlap in most cases. 
On average for the non-cache-miss-intensive programs, we 
observed small performance degradation with our approach. This 
performance degradation came from additional runtime overhead 
caused by additional profiling in garbage collector and also from 
the extra CPU time for the special allocation code. 

We observed significant reduction in both L1 and L2 data 
cache misses in the two benchmarks that did benefit from our 
optimizations. In these benchmarks, many of the L1 and L2 cache 
misses were due to very hot loops, and so it was possible to 
change the memory access behavior of the entire program by 
controlling the objects related to these hot loops. In the other 
programs, many objects were contributing to the data cache 
misses and thus it was much harder to improve the cache behavior 
with the object placement changes even when using the precise 
profiles from the HPM.  

These results showed that our pattern-matching-based heuristic 
approach successfully identified optimization opportunities for 
object placement optimizations in cache-miss-intensive programs 
and our techniques achieved similar performance gains by 
exploiting the same opportunities without depending on the HPM. 

5.5 Challenges in Software-Only Optimizations 

By comparing the differences between the HPM-based and our 
pattern-matching-based optimizations in detail, we identified two 
major remaining challenges in optimizations that do not rely on 
the HPM. 

One obvious advantage is that the HPM can directly identify 
the location of the objects causing the cache misses. With static 
analysis alone, we cannot determine the locations of the objects. 
Hence, for our heuristic approach, we aggressively control the 
locations of the target objects at both allocation time and GC time. 
With HPM-based optimizations, we can select the best ways to 
control the object locations to minimize the additional overhead 
in CPU time and memory waste. Using the more accurate 
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Fig. 9. Performance improvements from object placement optimizations with our approach and with HPM-based approach. The error 
bars show 95% confidence intervals. We used the Base threshold for pattern matching. Note that the origin of the Y-axis is not zero. 
 



statistics gathered in the garbage collector may allow the pattern-
matching-based optimizations to be location aware in exchange 
for the additional runtime profiling overhead. 

Another advantage of using the HPM is that the HPM can 
identify the classes of the objects that cause the cache misses. 
When a class is identified by pattern matching, the objects at 
runtime might be instances of subclasses of the identified class. 
We actually observed such a case with compiler.compiler. The 
HPM-based collocation identified a target consisting of a pair of 
Symbol$MethodSymbol and Scope$Entry. However, the 
Symbol$MethodSymbol objects caused many cache misses when 
they were accessed as instances of Symbol, a superclass of the 
Symbol$MethodSymbol. Our current implementation of the 
source code analysis and also the profiling facility in the garbage 
collector do not handle such cases to avoid excessive overhead 
and thus failed to identify this target. To obtain such information 
without depending on the hardware, we can generate special code 
for additional profiling in the identified loop. 

Another challenge in the pattern-matching-based optimizations 
was the criteria to select hot loops. In general, picking more loops 
for analysis increases the opportunities to reduce the cache misses, 
but also increases the overhead. When using the Aggressive 
threshold configuration, the number of identified classes was 
especially increased for the programs from SPECjvm2008. The 
thresholds play roles similar to the threshold for the cache miss 
rate to pick the targets in the HPM-based optimizations (0.5% in 
our implementation). 

Future work for the object placement optimizations will 
implement more sophisticated profiling techniques, such as 
software-based sampling techniques to capture object creations 
[18] or techniques to track the allocation site of each object [19] 
to obtain more accurate information with smaller overhead. 

In summary, our pattern-matching-based heuristic approach 
successfully identified many of the same opportunities for Java 
object placement optimization as the HPM-based approach. 
Though the HPM had some advantages, such as dynamic 
information on objects that caused the cache misses, our results 
showed that we can achieve comparable performance gains 
without using the HPM in SPECjbb2005 and 
SPECpower_ssj2008. 

6. Summary 
In this paper, we presented our techniques to identify the 
instructions and objects that frequently cause cache misses 
without using the HPM of the processor and then showed its 
effectiveness in compiler optimization using two examples. Our 
key insight is that the cache misses are often caused by pointer 
dereferences in hot loops in the Java programs. Thus we can 
heuristically identify the targets by finding the hot loops with 
idiomatic patterns often used in Java programs. We showed that 
our heuristic technique effectively identified many of the cache 
misses in a variety of Java programs. As a result, optimizations 
based on our heuristic approach successfully identified many of 
the same targets that the HPM-based optimizations identified. 
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