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Abstract

We introduce a stereo correspondence system imple-
mented fully on event-based digital hardware, using a fully
graph-based non von-Neumann computation model, where
no frames, arrays, or any other such data-structures are
used. This is the �rst time that an end-to-end stereo pipeline
from image acquisition and recti�cation, multi-scale spatio-
temporal stereo correspondence, winner-take-all, to dispar-
ity regularization is implemented fully on event-based hard-
ware. Using a cluster of TrueNorth neurosynaptic pro-
cessors, we demonstrate their ability to process bilateral
event-based inputs streamed live by Dynamic Vision Sen-
sors (DVS), at up to 2,000 disparity maps per second, pro-
ducing high �delity disparities which are in turn used to re-
construct, at low power, the depth of events produced from
rapidly changing scenes. Experiments on real-world se-
quences demonstrate the ability of the system to take full ad-
vantage of the asynchronous and sparse nature of DVS sen-
sors for low power depth reconstruction, in environments
where conventional frame-based cameras connected to syn-
chronous processors would be inef�cient for rapidly mov-
ing objects. System evaluation on event-based sequences
demonstrates a� 200 � improvement in terms of power
per pixel per disparity map compared to the closest state-
of-the-art, and maximum latencies of up to 11ms from spike
injection to disparity map ejection.

1. Introduction

Sparsity and parallel asynchronous computation are two
key principles of information processing in the brain. They
allow to solve complex tasks using a tiny fraction of the en-
ergy consumed by stored-program computers [64]. While
the successful arti�cial neural networks may not operate the
same way as the brain, both of them utilize highly parallel
and hierarchical architectures that gradually abstract input
data to more meaningful concepts [8, 51, 16]. However,
event-based computation has not been equally adopted [4].
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Another barrier for sparse computation are traditional sen-
sors, such as frame-based cameras, which provide regular
inputs. For autonomous vehicles, drones, and satellites, en-
ergy consumption is a challenge [6]. Event-based process-
ing dramatically reduces power consumption by computing
only what is new while omitting unchanged input parts.

Recently developed event-based cameras such as Dy-
namic Vision Sensor (DVS) [37, 10] and ATIS [50], in-
spired by the biological retina, encode pixel illumination
changes as events. These sensors solve two major draw-
backs of frame-based cameras. First, temporal resolution
of frame-based applications is limited by the camera frame
rate, usually 30 frames per second. Event-based cameras
can generate events at microsecond resolution. Second,
consecutive frames in videos are usually highly redundant,
which waste downstream data transfer, computing resources
and power. Since events are sparse, event-based cameras
lead to better downstream resource usage. Moreover, event-
based cameras have high dynamic range (� 100dB), which
is useful for real world variations in lighting conditions.

To achieve the low energy and high temporal resolution
bene�ts of event-based inputs, computations must be per-
formed asynchronously. To bene�t from sparse and asyn-
chronous computation, neuromorphic processors have been
developed [44, 24, 30, 9, 56]. These processors represent
input events as spikes and process them in parallel using
a large neuron population. They are stimulus-driven and
the propagation delay of an event through the neuron layers
is usually a few milliseconds, suitable for many real-time
applications. For example, the TrueNorth neuromorphic
chip [44] has been used for high throughput Convolutional
neural networks (CNNs) [22], character recognition [53],
optic �ow [ 11], saliency [3], and gesture recognition [2].

Depth perception is an important task for autonomous
mobile agents to navigate in the real world. The speed and
low power requirements of these applications can be effec-
tively met using event-based sensors. Event-based stereo
provides additional advantages over other depth estimation
methods that increase accuracy and save energy, such as
high temporal resolution, high dynamic range, and robust-
ness to interference with other agents.

Several methods have been proposed to solve event-



based stereo correspondence. Most global methods [40, 17,
49, 45] are derived from the Marr and Poggio cooperative
stereo algorithm [42]. The algorithm assumes depth conti-
nuity and often event-based implementations are not tested
with objects tilted in depth. Local methods can be paral-
lelized and �nd corresponding events using either local fea-
tures over a spatiotemporal window or event-to-event fea-
tures [13, 58, 52, 32, 57]. However, most approaches use
non-event-based hardware, such as CPU or DSP.

We propose a fully neuromorphic event-based stereo dis-
parity algorithm. A live-feed version of the system running
on nine TrueNorth chips is shown to calculate 400 dispar-
ity maps per second, and the ability to increase this up to
2,000 disparities per second (subject to certain trade-offs)
is demonstrated, for use with high speed event cameras,
such as DVS. The main advantages of the proposed method,
compared to the related work [17, 49, 45, 52, 57], are si-
multaneous end-to-end neuromorphic disparity calculation,
low power, high throughput, low latency (9-11 ms), and
linear scalability to multiple neuromorphic processors for
larger input sizes. Compared to frame-based computation,
in the asynchronous, event-based computation supported by
TrueNorth, at each time cycle, in general only neurons that
have input spikes are computed, and only spike events “1”
are communicated. When the data in a cycle is sparse, as is
the case with a DVS sensor, most neurons would not com-
pute for most of the time, resulting in low active power [44].
This processing differs from traditional architectures that
use frame-buffers and other conventional data structures;
where same memory fetching and computation is repeated
for each pixel every frame, independent of scene activity.

The proposed event-based disparity method is imple-
mented using a stereo pair of DAVIS sensors [10] (a ver-
sion of DVS) and nine TrueNorth NS1e boards [53]. How-
ever, the method is applicable to other spiking neuromor-
phic architectures, and it is also tested of�ine on larger
models using a TrueNorth simulator. Input recti�cation,
spatiotemporal scaling, feature matching, search for best
matches, morphological erosion and dilation, and bidirec-
tional consistency check are all performed on TrueNorth,
for a fully neuromorphic disparity solution. With respect to
the most relevant state-of-the-art approach [17], our method
uses� 200� less power per pixel per disparity map. We
also release the event-based stereo dataset used, which in-
cludes Kinect-based registered ground-truth.

2. Related work

Frame-based stereo disparity methods calculate match-
ing cost using a spatial similarity metric [25, 27, 29] or a
cost function learned from a dataset (see reviews [62, 55, 34,
63]). CNNs [35] have been used to learn stereo matching
cost [66, 46]. Ground truth disparity maps from benchmark
frame-based datasets [27, 54, 26, 43] are used to train these

Figure 1. The time-stamp synchronized stereo rig is connected to
a cluster of TrueNorth chips via ethernet.

models, followed by sparse-to-dense conversions [18, 5].
Feature based matching techniques, such as color, edge, his-
togram, and SIFT [39] based matching, produce sparse dis-
parity maps [28, 38, 21, 61].

In contrast, event-based stereo correspondence litera-
ture is relatively new. Mahowald and Delbrück [41] im-
plemented the Marr and Poggio cooperative stereo algo-
rithm [42], a global approach, in an analog VLSI circuit.
The algorithm converges well when object surfaces are
fronto-parallel and candidate matches injected to the net-
work are close together [40, 17]. Later Mahowald [40]
modi�ed the VLSI embodied algorithm to solve tilted depth
maps using a network of analog valued disparity units,
which linearly interpolates the cooperative network output.

However, most of the recent event-based implementa-
tions of the cooperative algorithm do not consider depth
gradients [47, 48, 23, 17]. Piatkowska et al. [49] inject
neighborhood similarity of candidate matches into the co-
operative network. Dikov et al. [17] use six SpiNNaker [24]
processor boards to implement the cooperative network for
106� 106 pixels of stereo event data. Osswald et al. [45]
propose an FPGA based implementation of spiking neurons
as the nodes of the cooperative network. Xie et al. [65]
employ message passing on a Markov Random Field with
depth continuity for a global solution.

Local event-based stereo correspondence approaches are
area-based or time-based. Area-based methods assume that
object shapes appear identically on left and right sensors.
Camũnas-Mesa et al. [13, 12] propose to match edge orien-
tations in event frames accumulated over 50 ms. Schraml et
al. [60, 58] propose DSP implementation of a spatiotempo-
ral similarity method using two live event sensors [37]. Bel-
bachir et al. [7] use a rotating pair of event-based line (verti-
cal) sensors in static scenes and render events from each ro-
tation to an edge map [33], which is subsequently processed
using a frame-based panoramic stereo algorithm [36].

Time-based methods utilize event timestamps for match-
ing. Although spike dynamics vary among pixels and sen-
sors [52] and events cannot be matched based on exact
timestamps. Rogister et al. [52, 14] propose to use event-to-
event constraints for calculating matching cost, such as time
window, distance to the epipolar line, ordering constraint,
and polarity. Kogler et al. [32, 31] calculate similarity as the
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Figure 2. Frames-based (a) and event-based (b-left DAVIS and c-
right DAVIS) camera output for a rotating fan. Green dots are
positive events, i.e. increase in pixel intensity, and red dots are
negative events.

inverse of temporal distance and average them within each
depth plane. The proposed method and its FPGA imple-
mentations [20, 19] are equivalent to the cooperative stereo
algorithm [42] with noisy time difference inputs. Schraml
et al. [59, 57] propose a cost function for the rotating stereo
panorama setup in [7] based on temporal event difference.

3. Event-based hardware

Our implementation uses a pair of synchronized
DAVIS240C cameras [10], connected via Ethernet to a clus-
ter of TrueNorth NS1e boards (Fig.1). The use of DAVIS
sensors improve speed, power, dynamic range, and com-
putational requirements. As shown in Fig.2, fast moving
objects are more challenging for frame-based cameras.

The IBM TrueNorth is a recon�gurable, non-von Neu-
mann neuromorphic chip containing 1 million spiking neu-
rons and 256 million synapses distributed across 4096 par-
allel, event-driven, neurosynaptic cores [44]. Cores are
tiled in a64 � 64 array, embedded in a fully asynchronous
network-on-chip. The chip consumes 70mW when oper-
ating at a 1 ms computation tick and normal workloads.
Depending on event dynamics and network architecture,
faster tick period is possible, which we take advantage of
in this work to achieve as low as 0.5 ms per tick, thus
doubling the maximum throughput achievable. Each neu-
rosynaptic core connects 256 inputs to 256 neurons using
a crossbar of256� 256binary synapses with a lookup ta-
ble of weights for 8 bits of precision, plus a sign bit. A
neuron state variable, called membrane potential, integrates
synaptically weighted input events with an optional leak de-
cay. Each neuron can generate an output event determinis-
tically, if the membrane potentialV (t) exceeds a threshold;
or stochastically, with a probability that is a function of the
difference between the membrane potential and its thresh-
old [2, 15]. The membrane potential is updated at each tick
t to V (t) = V (t � 1) + @V(t )

@t , followed by the application
of an activation functionan (V (t)) where

an (V (t)) =

(
1; if V (t) � n
0; otherwise

(1)

Each neuron is assigned an initial membrane potential

V (0). Furthermore, upon producing an event, a neuron
is reset to a user-speci�ed value. Unless speci�ed other-
wise, we assume initial membrane potentials and reset val-
ues of zero. TrueNorth programs are written in the Corelet
Programming Language — a hierarchical, compositional,
object-oriented language [1].

4. Stereo correspondence on TrueNorth

The proposed local event-based stereo correspondence
algorithm is implemented end-to-end as a neuromorphic
event-based algorithm. This consists of systems of equa-
tions de�ning the behavior of TrueNorth neurons, encased
in modules called corelets [1], and the subsequent compo-
sition of the inputs and outputs of these modules. Fig.3 de-
picts the sequence of operations performed by the corelets
using inputs from stereo event sensors.
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Figure 3. The pipeline of execution using input events generated
by left and right sensors. A toy example of main operations per-
formed is demonstrated side-by-side in a single spatiotemporal
scale, with an event on the left image and its two candidate cor-
responding events on the right image. Standard morphological op-
erations and left-to-right consistency check are not demonstrated.

4.1. Recti�cation

The stereo recti�cation is de�ned by a pair of func-
tionsL , R which map each pixel in the left and right sen-
sor's recti�ed space to a pixel in the left and right sen-
sor's native resolution respectively. On TrueNorth, this
is implemented usingjH j � jW j splitter neurons per sen-
sor & polarity channel, arranged in anjH j � j W j retino-
topic map. The events at each recti�ed pixelp 2 H �



W �fL ; Rg � f + ; � ; f + ; �gg are generated through split-
ter neurons which replicate corresponding sensor pixels.

Their membrane potentialV spl
p (t) is de�ned by

@Vspl
p ( t )
@t =

I (t � 1;p0) whereI (t; p0) ! f 0; 1g denotes whether a sen-
sor event is produced at timet and the sensor pixelp0 cor-
responding to the recti�ed pixelp. a1(V spl

p (t)) de�nes the
activation of the corresponding neuron. Potentials are ini-
tialized to zero and set to also reset to zero upon spiking.

4.2. Multiscale temporal representation

The event rate of an event-based sensor depends on fac-
tors, such as scene contrast, sensor bias parameters, and ob-
ject velocity. To add invariance across event rates, we accu-
mulate spikes over various temporal scales through the use
of temporally overlapping sliding windows. These temporal
scales are implemented through the use of splitter neurons
which cause each event to appear at its corresponding pixel
multiple times, depending on the desired temporal scale, or
through the use of temporal ring buffer mechanisms, which
lead to lower event rates. The ring buffer is implemented by
storing events in membrane potentials of memory cell neu-
rons in a circular buffer, and through the use of control neu-
rons which spike periodically to polarize appropriate mem-
ory cell neurons. Buffers can encode the input at various
temporal scales. For example at a scaleT = 5 the buffer
denotes if an event occurred at the corresponding pixel dur-
ing the last 5 ticks (logical disjunction).

A control neuron that produces events with periodT
and phase� is de�ned by a neuronaT (V ctrl

� ) that satis-

�es
@Vctrl

� ( t )
@t = 1 , V (0) = � and resets to zero upon pro-

ducing an event. Through populations of such neurons one
can also de�neaT (V ctrl

[�;� ]) corresponding to phase intervals
[�; � ] (where� � � + 1 � T), de�ning periodic intervals
of events. Such control neurons are used to probe (prb)
or reset (rst ) neuron membrane potentials. A memory cell
neuron is a recurrent neuron which accepts as input either
its own output (so that it does not lose its stored value when-
ever the neuron is queried for its stored value), input axons
to set the neuron value and control axons for resetting and
querying the memory cell. In more detail the output at index
r 2 f 0; :::; T +1g of aT +2 size memory cell ring-buffer at
a given pixelp, is multiplexed via two copies (m 2 f 0; 1g)
and is de�ned asa2(V mem

p;m;r ) where

@Vmem
p;m;r (t + 1)

@t
= [ � aT +2 (V rst

ŝ+1 (t))

+( [a1(V spl
p (t)) ]r

r̂ _ [a2(V mem
p;m;r (t � 1))]m

t̂ )

+ [aT +2 (V prb
[3� r;T +2 � r ](t)) ]m

t̂

� [aT +2 (V rst
[2� r;T +1 � r ](t)) ]1� m

t̂
]+ (2)

where probe/reset (prb=rst) control neurons are used,r̂ =
t mod (T + 2) , ŝ = T + 2 � r mod (T + 2) , t̂ = t mod 2,

_ is logical disjunction1,

[x] r
r̂ =

(
max f 0; xg; if r = r̂
0; otherwise

(3)

and[x]+
def= [x]1

1 de�nes a ReLU function. Eq.2 de�nes
a ring-buffer withT + 2 memory cells, where probe pulses
periodically and uniformly queryT of theT +2 cells for the
stored memory contents at each tick, wherem = 0 neurons
are probed at odd ticks andm = 1 neurons are probed at
even ticks. Reset pulses control when to reset one of the
T + 2 memory cells to zero in preparation of a new input.
Notice that new inputs (a1(V spl

p (�)) ) are always routed to
the cell r that was reset in the previous tick. The probe
pulses result in the creation of an output event if during the
last T ticks a1(V spl

p (�)) produced an event. After a probe
event, a reset event decrements the previous+1 membrane
potential increase, followed by the restoring of the memory
event output during the last probe (a2(V mem

p;m;r (t � 1))).

4.3. Morphological erosion and dilation

Binary morphological erosion and dilation is option-
ally applied on the previous module's outputs to denoise
the image. Given a 2-D neighborhoodN (p) centered
around each pixelp, the erosion neuron's membrane po-

tential V e
p is guided by the system of equations

@Ve
p ( t )
@t =

[1 � j N (p)j +
P

q2 N (p)

P
m

W
r a2(V mem

q;m;r (t � 1))]+ and
uses ana1 activation function. Similarly, dilation neu-
rons V d

p with receptive �elds N (p) evolve according to
@Vd

p ( t )
@t =

P
q2 N (p) a1(V e

q (t � 1)) wherea1 is also used as
the dilation neurons' activation function. The neuron poten-
tials are initialized to zero and set to also reset to zero upon
producing a spike. In practice3 � 3 pixel neighborhoods
are used. At each tick, erosion and dilation neurons output
the minimum and maximum value respectively, of their re-
ceptive �elds. Cascades of erosion and dilation neurons, are
used to denoise retinotopic binary inputs (Fig.3).

4.4. Multiscale spatiotemporal features

Each feature extracted around a recti�ed pixelp is a con-
catenation of event patches, extracted from one or more
spatiotemporal scales. Spatial scaling consists of spatially
sub-sampling each output map of the temporal scale phase
(Sec.4.2/4.3), as speci�ed in the corelet parameters, to ap-
ply the window matching (Sec.4.5) on the sub-sampled
data. This results in spatiotemporal coordinate tensors
XL;p , XR;p de�ning the coordinates where events form fea-
ture vectors. Thei th of these coordinates is represented by
neuron activationsa1(V L f + ; �g

X ( i )
L;p

(t)) anda1(V R f + ; �g

X ( i )
R;p

(t)) in

1disjunction is implemented by sending input events to the same neuron
input axon, effectively merging any input events to a single input event.



the left and right sensor's positive (+ ) or negative (� ) po-
larity channel.2

4.5. Hadamard product for matching

Given a pair of spatiotemporal coordinate tensorsXL;p ,
XR;q centered at coordinatesp, q in the left and right rec-
ti�ed image respectively and representingK coordinates
each, we calculate the binary Hadamard productfL (p; t) �
fR (q; t) associated with the corresponding patches at time
t, where fL (p; t) =

Q
i f a1(V L

X ( i )
L;p

(t))g 2 f 0; 1gK and

fR (q; t) =
Q

i f a1(V R
X ( i )

R;q

(t))g 2 f 0; 1gK . The product is

calculated in parallel across multiple neurons, asK pair-
wise logical AND operations of corresponding feature vec-
tor entries, resulting in(a1(V dot

p;q;1); :::; a1(V dot
p;q;K )) where

@Vdot
p;q;i ( t )
@t = [a1(V L

X ( i )
L;p

(t � 1)) + a1(V R
X ( i )

R;q

(t � 1)) � 1]+

The population code representation of the Hadamard prod-
uct output is converted to a thermometer code3, which is
passed to the winner-take-all circuit described below.

4.6. WinnerTakeAll system

The winner-take-all (WTA) system is a feed-forward
neural network that takes as inputD thermometer code rep-
resentations of the Hadamard products forD distinct candi-
date disparity levels, and �nds the disparity with the largest
value, at every tick. For designing a scalable and compact
WTA system on a neuromorphic hardware, we introduced
a novel encoding technique for inputs. In a binary event-
based system, numbers can be ef�ciently coded using base-
4 representation where each digit is encoded using a 3-bits
thermometer code. We denote it asQuaternary Thermome-
ter Code(QTC). Note that a thermometer code of length2n

bits can be represented by a QTC of length3 � dn=2e bits.
For example, values between 0–255 are represented by a
QTC of 12 bits. While it takes a few more bits than an 8
bits binary code, it allows designing a feed-forward WTA
network comprising only four cascaded subnetworks, com-
pared to eight for a binary representation, requiring fewer
hardware resources as well as half the latency. Latency is
further improved with larger bases, but the growth in ther-
mometer code length for each digit results in consuming
more hardware resources. Table1 shows binary, base-4 and
QTC representation of different decimal numbers.

We assume a maximum thermometer code length of
4B +1 � K for someB 2 N. Then for any� 2 f 0; 1; 2g,
� 2 f 0; 1; :::; Bg, we de�ne the conversion of candidate dis-
parity level d 2 f 0; :::; D � 1g to a QT-coded membrane
potentialV CNV

�;�;d (t) as

2for notational simplicity we henceforth drop the+ ; � superscripts:
the left and right sensors could produce distinct event streams based on
event polarity, or could merge events in a single polarity-agnostic stream.

3e.g., given a population code(1; 1; 0; 1; 0) for value 3, its thermome-
ter code is the right-aligned juxtaposition of all events:(0; 0; 1; 1; 1).

Decimal Binary Base-4 QTC

126 01-11-11-10 1-3-3-2 001-111-111-011
174 10-10-11-10 2-2-3-2 011-011-111-011
33 00-10-00-01 0-2-0-1 000-011-000-001
167 10-10-01-11 2-2-1-3 011-011-001-111
26 00-01-10-10 0-1-2-2 000-001-011-011

Table 1. Decimal, binary, base-4 and QTC representation of �ve
example numbers.

Value W0 Stage-0 W1 Stage-1 W2 Stage-2 W3 Stage-3

126 1 001 0 0 0
174 1 011 1 011 1 111 1 011X
33 1 000 0 0 0
167 1 011 1 011 1 001 0
26 1 000 0 0 0

stage max 011 011 111 011

Table 2. Winner selection process for QT-coded inputs (B = 3 )

@VCNV
�;�;d (t)

@t
= [

X

i 2 U( � )

vi
d(t � 1)�

X

i 2 U( � +1)

4 vi
d(t � 1)� � ]+

(4)
wherevi

d(t) is the i -th element of the input thermometer
code4 for dth disparity level at timet andU(� ) = f n 2
N : n � 0 (mod 4� ); 1 � n < 4B +1 g. All the conversion
neurons use ana1 activation function and reset to 0 mem-
brane potential upon spiking. Notice that (a1(V CNV

2;�;d (t)) ,
a1(V CNV

1;�;d (t)) , a1(V CNV
0;�;d (t)) ) is a length-3 thermometer

code representation of a value inf 0; 1; 2; 3g, representing
the� th digit in the base-4 representation ofvd(t � 1).

For a set of QT-coded inputs, the WTA system is real-
ized by a cascade of (B +1 ) feed-forward pruning networks
where each of the pruning networks process only 3-bits of
the QT codes and prune the inputs not equal to the bit-wise
maximum of corresonding 3-bits thermometer codes from
all inputs. Now starting from the most signi�cant bits, all
the inputs smaller than the maximum will be pruned at dif-
ferent stages and only the winner(s) will survive at the out-
put of the last cascade network. The membrane potential
V W T A

�;d of stage� and disparity indexd is given by,

@VW T A
�;d (t)

@t
= [4� W�;d (t� 1)+

2X

� =0

[a1(V CNV
�;B � �;d (t� � ))

� max
�d2f d0jW �;d 0( t� 1)>0g

f a1(V CNV
�;B � �; �d(t � � ))g] � 3]+ ; (5)

where W�;d (t)=

(
a1(V W T A

� � 1;d (t)) ; 8� > 0;
1; if � = 0

(6)

Note that the functionW�;d (t) represents the candidate sta-
tus of thed-th input at the end of� -th stage. Initially all the

4the i variable indexing (v i
d ) starts from the right of the thermometer

codevd of (a1 (V dot
p;q; 1 ); :::; a1 (V dot

p;q;K )) 2 f 0; 1gK . The dependence of
vd andd on pixelsp; q is implicit and is not shown to simplify notation.
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Figure 4. Experimental results obtained using TrueNorth. a) Example synthetic depth pattern, b) ground truth disparity map, c-d) RDS for
left and right view, e) disparity map obtained from corelet implementation, f) corelet result after erosion and dilation post-processing, g)
fan sequence input received from the left-right DAVIS cameras and results generated by each layer of corelets from this input, h) example
frame with fan rotating in a particular orientation, i) 3D reconstruction by the proposed method as seen from an angled front view (screen
capture from the 3D visualizer), j) 3D reconstruction from a top view, k-l) Kinect depth maps with static fan blades, m) merged Kinect
depth map, n) example frame with the butter�y rotating around the spring base, o) Kinect depth map for a butter�y frame, p) merged Kinect
depth map, q) left DAVIS output for a 3 ms time window, r-u) top view of 3D reconstruction from the 3D visualizer for four consecutive
frames in the sequence as the butter�y rotates clockwise. See the supplementary material for example videos.

inputs are winning candidates (W0;d (t) = 1) and the status
changes after the input is pruned at any stage indicating it
is out of the competition and the selection process contin-
ues with remaining candidates. As an illustration, winner is
computed from the example set of numbers in Table1 and
the winner selection process is shown in Table2.

4.7. Bidirectional consistency check

A left-right consistency check is then performed to verify
that for each left-recti�ed pixelp matched to right-recti�ed
pixel q, it is also the case that right-recti�ed pixelq gets
matched to left-recti�ed pixelp. This is achieved using two
parallel WTA streams. Stream 1 calculates the winner dis-
parities for left-to-right matching, and stream 2 calculates
the winner disparities of right-to-left matching. The outputs
of each stream are represented byD retinotopic maps ex-
pressed in a �xed resolution (D v

i;j;d (t), d 2 f 0; :::; D � 1g,
v 2 f L; R g), where events represent the retinotopic winner
disparities for that stream. The streams are then merged to
produce the disparity mapD L;R

i;j;d (t) = a1(V L;R
i;j;d (t)) where

@VL;R
i;j;d (t)

@t
= [D L

i;j;d (t � 1) + D R
i;j � d;d (t � 1)+

a1(V spl
( i;j; L ;�) (t � t̂ )) � 2]+ (7)

where t̂ is the propagation delay of the �rst layer split-
ter output events until the left-right consistency constraint
merging takes place. This enforces that an output disparity

is produced at time-stampt and pixel(i; j ) only for left-
recti�ed pixel (i; j ), where an event was produced att � t̂ .

5. Experiments

5.1. Datasets

We evaluate the performance of the system on sequences
of random dot stereograms (RDS) representing a rotating
synthetic 3D object (Fig.4a-f), and two real world sets of
sequences, consisting of a fast rotating fan (Fig.4g-m) and a
rotating toy butter�y (Fig.4n-u) captured using the DAVIS
stereo cameras. The synthetic dataset provides dense dis-
parity estimates, which are dif�cult to acquire with the
sparse event based cameras. The dataset is generated by as-
signing to each left sensor pixel a random event with a 50%
probability per polarity. Similarly, each right sensor pixel is
assigned a value by projecting it to the 3D scene and repro-
jecting the corresponding data-point to the left camera co-
ordinate frame to �nd the closest pixel value. Self-occluded
pixels are assigned random values.

For the non-synthetic datasets, a Kinect [67] is used to
extract ground truth of the scene structure. This also en-
tails a calibration process for transforming the undistorted
Kinect coordinate frame to the undistorted DAVIS sensor
coordinate frame. The fan sequence is useful for testing the
ability of the algorithm to operate on rapidly moving ob-
jects. Varying orientations of the revolving fan add contin-
uously varying depth gradient to the dataset. Ground truth



is extracted in terms of the plane in 3D space representing
the blades' plane of rotation (Fig.4m). The butter�y se-
quence tests the ability of the algorithm to operate on non-
rigid objects which are rapidly rotating in a circular plane
approximately perpendicular to the y-axis. Ground truth is
extracted in terms of the coordinates of the circle spanned
by the rotating butter�y (Fig.4p). Nine Fan sequences (3
distances� 3 orientations) and three Butter�y sequences (3
distances) are used. The dataset, with Kinect ground-truth,
is at: http://ibm.biz/StereoEventData .

5.2. Evaluation

On the synthetic dataset we measure the average abso-
lute disparity error, and the average recall, which is de�ned
as the fraction of pixels where a disparity measurement was
found. On the non-synthetic data, performance is measured
in terms of precision, which is de�ned as the median relative
error kx � x 0k

kx 0k between each 3D coordinatex extracted in the
DAVIS frame using the neuromorphic algorithm, and the
corresponding ground coordinatex0 in the aligned Kinect
coordinate frame. Performance is also reported in terms of
the recall, de�ned herein as the percentage of DAVIS pixels
containing events, where a disparity estimate was also ex-
tracted. We tested a suite of sixty stereo disparity networks
generated with ranges of spatiotemporal scales, denoising
parameters, kernel match thresholds, with/without left-right
consistency constraints etc.
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Figure 5. Performance of sixty models on the nine Fan sequences
and the three Butter�y sequences.

5.3. Power measurement

Power is measured using the same process described in
[2]. We calculate the power consumed by ann-chip sys-
tem by measuring power on a single TrueNorth chip model
running on an NS1t board with a high event rate input gen-
erated by the fan sequence. This board has circuitry to mea-
sure the power consumed by a TrueNorth chip. We multiply
the power value byn to extrapolate the power consumed
by ann-chip system. Measurements are reported at supply

Figure 6. Depth reconstruction of the fan (�rst column) and butter-
�y sequence (second column), each shown from two viewpoints.
Each point in the butter�y sequence shown is the median coordi-
nate estimate of the butter�y location at a distinct time instant.

voltages of 0.8V, 1.0V. Total chip power is the sum of pas-
sive power, computed by multiplying the idle power by the
fraction of the chip's cores under use, and active power —
computed by subtracting idle power from the total power
measured when the system is accepting input events .

5.4. Results

The RDS is tested on a model using3 � 5 spatial win-
dows, left-right consistency constraints, no morphologi-
cal erosion/dilation after recti�cation, and 31 disparity lev-
els (0-30) plus a `no-disparity' indicator (often occurring
due to self-occlusions). We also experiment with a post-
processing phase with erosion and dilation applied to out-
put disparity maps in order to better regularize the output.
Average disparity error and recall before regularization is
0.19/0.66 and post-regularization is 0.04/0.63. We observe
major improvements due to the regularization, often occur-
ring in self-occluded regions. Errors increase in slanted re-
gions due to foreshortening effects. The left-right consis-
tency constraint decreases false predictions in those regions.

The evaluation on the non-synthetic dataset was done
under the practical constraints of the availability of a lim-
ited number of NS1e boards on which non-simulated mod-
els could be run, as well as the need to process the full
DAVIS inputs at as high of a throughput as possible. The
models that run on live DAVIS input are operated at spike
injection rate of up to 2,000Hz (a new input every 1/2,000
seconds) and disparity map throughput of 400Hz at a 0.5ms
tick period (400 distinct disparity maps produced every sec-
ond) across a cluster of 9 TrueNorth chips. Single chip
passive/active power on a characteristic model and input is
34.4mW/35.8mW (0.8V) and 82.1mW/56.4mW (1.0V).



Table 3. Comparison of event based depth estimation literature (a blank ` ` means feature not present, a `-' means unknown, a `X' denotes
the presence of the respective feature). As the baseline comparison datapoint, we use a system tested end-to-end with live camera feed and
running in real-time on 9 TrueNorth boards. See the Experiments section for a discussion on other TrueNorth systems tested with different
speed vs. power vs. input size tradeoffs. The relative error indicated for some papers is an approximation of the value, extrapolated from
the reported data (the papers do not use the same evaluation dataset/metrics).
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Features of disparity algorithm and implementation
Fully neuromorphic disparity computation X X
Neuromorphic recti�cation of input X
Real time depth from live sensor input X X X X X
Multi-resolution disparity computation X X
Bidirectional consistency check X X X X X
Scene-independent throughput & latency X X X X X X
Uses event polarity compatibility X X X NA X X
Tested on dense RDS data X X X
Tested on both fast and slow motions X X X X

Implementation metrics
Algorithm implementation hardware Neuro FPGA CPU DSP CPU CPU FPGA ASIC CPU FPGA
Energy consumption (mWatts/Pixel) 0.058 - 16 0.30 - - - - - -
Disparity maps per second 400 151 500 200 - - 1140 40 3333 20
System latency (ms) 9 6.6 2 5 - - 0.87 25 0.3 50
Image size, per sensor, in real-time (pixels)10800 32400 11236 16384 1.4 M - 16384 57 16384 16384
Disparity levels in real-time 21 30 32 - - - 36 9 128 -
Relative error extrapolation Fig.5 13.4-21% - 6-10% - 3-6% 6-16% - - -

Running a model at the full 2,000Hz throughput comes
at the expense of an increased neuron count. By adding
a multiplexing spiking network to the network, we are
able to reuse each feature-extraction/WTA circuit to process
the disparities for 5 different pixels, effectively decreas-
ing the maximum disparity map throughput from 2,000Hz
to 400Hz, requiring fewer chips to process the full image
(9 TrueNorth chips). We tested the maximum disparity
map throughput achievable, by executing a one-chip model
on a cropped input, with no multiplexing (one disparity
map ejected per tick) at a 0.5ms tick period, achieving the
2,000Hz disparity map throughput. We tested sixty mod-
els on the TrueNorth simulator which provides a spike-for-
spike equivalent behavior to the chip. We achieved best rel-
ative errors of5 � 11:6% and 7:3 � 8% on the Fan and
Butter�y sequence respectively (Fig.5). We also observe
qualitatively good performance (Fig.6). It is observed that
the temporal scale has a higher effect on accuracy than spa-
tial scale. Left-right consistency constraints are typically
present in the best performing fan-sequence models, but not
so in the Butter�y sequences. Distance and orientation do
not have a signi�cant effect on performance. See supple-
mentary materials for more details.

6. Discussion

We have introduced an advanced neuromorphic 3D vi-
sion system uniting a pair of DAVIS cameras with multi-
ple TrueNorth processors, to create an end-to-end, scalable,
event-based stereo system. By using a spiking neural net-
work, with low-precision weights, we have shown that the
system is capable of injecting event streams and ejecting
disparity maps at high throughputs, low latencies, and low
power. The system is highly parameterized and can operate
with other event based sensors such as ATIS [50] or DVS
[37]. Table 3 compares our approach with the literature
on event based disparity. Comparative advantages are low
power, multi-resolution disparity calculation, scalability to
live sensor feed with large input sizes, and evaluation using
synthetic as well as real world fast movements and depth
gradients, in neuromorphic, non von-Neumann hardware.
The implemented neuromorphic stereo disparity system
achieves these advantages, while consuming� 200� less
power per pixel per disparity map compared to the state-
of-the-art [17]. The homogeneous computational substrate
provides the �rst example of a fully end-to-end low-power,
high throughput fully event-based neuromorphic stereo sys-
tem capable of running on live input event streams, using a
fully graph-based computation model, where no frames, ar-
rays or other such data-structures are used.
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[60] S. Schraml, P. Scḧon, and N. Milosevic. Smartcam for real-
time stereo vision-address-event based embedded system. In
VISAPP (2), pages 466–471, 2007.2, 8

[61] K. Sharma, K.-y. Jeong, and S.-G. Kim. Vision based au-
tonomous vehicle navigation with self-organizing map fea-
ture matching technique. InInternational Conference on
Control, Automation and Systems (ICCAS), 2011.2

[62] B. Tippetts, D. J. Lee, K. Lillywhite, and J. Archibald. Re-
view of stereo vision algorithms and their suitability for
resource-limited systems.Journal of Real-Time Image Pro-
cessing, 11(1):5–25, 2016.2

[63] F. Tombari and F. Gori. Evaluation of stereo algorithms for
3d object recognition. InIEEE International Conference on
Computer Vision Workshops (ICCV Workshops), 2011.2

[64] J. Von Neumann.The computer and the brain. Yale Univer-
sity Press, 2012.1

[65] Z. Xie, S. Chen, and G. Orchard. Event-based stereo depth
estimation using belief propagation.Frontiers in Neuro-
science, 11:535, 2017.2

[66] J. Zbontar and Y. LeCun. Stereo matching by training a con-
volutional neural network to compare image patches.Jour-
nal of Machine Learning Research, 17(1-32):2, 2016.2

[67] Z. Zhang. Microsoft kinect sensor and its effect.IEEE mul-
timedia, 19(2):4–10, 2012.6


