
E�cient Formulation for Optimal Modulo Schedulers

Alexandre E. Eichenberger Edward S. Davidson

ECE Department EECS Department
North Carolina State University University of Michigan

Raleigh, NC 27695-7911 Ann Arbor, MI 48109-2122
alexe@eos.ncsu.edu davidson@eecs.umich.edu

Abstract

Modulo scheduling algorithms based on optimal
solvers have been proposed to investigate and tune the
performance of modulo scheduling heuristics. While
recent advances have broadened the scope for which
the optimal approach is applicable, this approach
increasingly su�ers from large execution times. In this
paper, we propose a more e�cient formulation of the
modulo scheduling space that signi�cantly decreases
the execution time of solvers based on integer linear
programs. For example, the total execution time is
reduced by a factor of 8.6 when 782 loops from the
Perfect Club, SPEC, and Livermore Fortran Kernels
are scheduled for minimum register requirements using
the more e�cient formulation instead of the traditional
formulation. Experimental evidence further indicates
that signi�cantly larger loops can be scheduled under
realistic machine constraints.

1 Introduction

Current research compilers for VLIW and superscalar
machines focus on exposing more of the inherent paral-
lelism in an application to obtain higher performance by
better utilizing wider issue machines and reducing the
schedule length of a code. There is generally insu�cient
parallelism within individual basic blocks and higher
levels of parallelism can be obtained by also exploiting
the instruction level parallelism among successive basic
blocks. Modulo scheduling [1][2][3] is a technique that
exploits the instruction level parallelism present among

To appear at the 1997 ACM SIGPLAN Conference
on Programming Language Design and Implemen-
tation, Las Vegas, Nevada, 15-18 June, 1997.

the iterations of a loop by overlapping the execution of
consecutive loop iterations. It uses the same schedule
for each iteration of a loop and it initiates successive
iterations at a constant rate, i.e. one initiation interval

(II clock cycles) apart.
In order to e�ciently exploit the available instruc-

tion level parallelism, modulo scheduling algorithms
must take into account the constraints of the target
processor, such as the latencies of the operations, the
number of available resources, and the size of the reg-
ister �les. In addition to satisfying the above machine
constraints, several potentially con
icting objectives are
typically considered, such as minimizing the initiation
interval of the modulo schedule, minimizing the sched-
ule length of a loop iteration, and minimizing the reg-
ister requirements of the resulting modulo schedule.

Because of the potentially con
icting nature of these
above objectives, and to investigate the best feasible
schedules for a given loop iteration and set of machine
constraints, modulo scheduling algorithms based on op-
timal solvers have been proposed. These algorithms,
referred to as optimal modulo schedulers are only opti-
mal with respect to their objective functions. Exam-
ples of objective functions found in the literature are
\minimum II," \minimum schedule length among all
minimum-II modulo schedules," and \minimum regis-
ter requirements among all minimum-II modulo sched-
ules." Note also that the code is generally assumed to be
optimized (including transformations such as load-store
elimination, strength reduction, and loop unrolling) and
no further code transformations are performed while
scheduling.

Recent advances in optimal modulo scheduling algo-
rithms have broadened the scope of the machines for
which this approach is applicable: for example, ma-
chines with arbitrary patterns of resource usages can
be handled using the formulation proposed in [4] or [5].
The formulation in [5] may also map each operation to



a given instance of a resource (e.g. map a multiply op-
eration to one of the multiply functional units). Recent
advances have also re�ned the secondary objectives that
may be minimized; for example, the actual register re-
quirements of a modulo schedule (i.e. the maximum
number of live variables at any cycle of the schedule,
referred to as MaxLive) may be minimized using the
formulation proposed in [4].

While the optimal modulo scheduling approach may
be further extended to, for example, architectures with
clusters of functional units or scheduling models that
integrate spill code generation or loop transformations,
such extensions will only be practical if loops of rea-
sonable size may be solved in a reasonable amount of
time. Unfortunately, the present state-of-the-art op-
timal modulo schedulers based on integer linear pro-
gramming solvers has not yet reached this stage, when
accounting for all the machine constraints, even when
scheduling for traditional machines and without con-
sidering spill code generation or loop transformations.
As recently illustrated by Ruttenberg et al [6], a mod-
ulo scheduler that minimizes the register requirements
among all minimum-II modulo schedules has di�culty
�nding solutions in reasonable time for medium-sized
loops when precisely modeling the machine constraints.
However, they show that if simplifying assumptions are
made (by minimizing an approximation of the register
requirements and by ignoring the memory bank con-
tentions present on the actual machine), the resulting
schedules, although optimal under the simplifying as-
sumptions, are frequently slower on the actual machine
and have often higher register requirements than the
schedules obtained by a carefully tuned heuristic. As a
result, we may conclude from their study that modulo
schedulers based on optimal solvers provide useful in-
sight only if they are both e�cient, to solve problems of
reasonable size, and precise, to �nd solutions that are
relevant to the actual machine.

In this paper, we address this major concern by
proposing a more e�cient formulation of the modulo
scheduling space, which can be used by integer lin-

ear programming solvers (IP solvers) to signi�cantly de-
crease the computation time required to �nd an optimal
schedule under realistic machine constraints. Compared
to the traditional formulation of the modulo scheduling
space used in previous work [4][5][6][7], this novel formu-
lation decreases the number of branch-and-bound nodes
visited by the IP solver by two orders of magnitude, on
average, when searching for schedules with minimum
register requirements among all minimum-II modulo
schedules, for the 782 loops (out of 1327 loops from the
Perfect Club, SPEC-89, and the Livermore Fortran Ker-
nels) that were successfully scheduled by both the tra-
ditional and the proposed formulations. This decrease

results, in turn, in a reduction of the total computation
time of the solver by a factor of 8.6, from 870.2 to 101.0
seconds.

Furthermore, this more e�cient formulation en-
ables us to increase the number of loops successfully
scheduled for minimum register requirements among all
minimum-II modulo schedules from 782 to 917 loops.
When searching for a minimum II modulo schedule
only, up to 1179 or 88.8% of the 1327 loops can be sched-
uled in reasonable time (which was set to 15 minutes per
loop in our experiments). Note also that these results
are all obtained when scheduling for the Cydra 5 ma-
chine, a machine with complex resource requirements.

Using the proposed technique in conjunction with
a commercial integer linear programming solver, one
should be able to build in a few days an optimal mod-
ulo scheduler, which can be used to evaluate and �ne
tune the performance of modulo scheduling heuristics.
In this paper, we use our formulation to evaluate the
performance of the schedules produced by the Iterative
Modulo Scheduler [3][8] as well as the register require-
ments of the schedules produced by the Stage Schedul-
ing heuristics [9][10] used in conjunction with Iterative
Modulo Scheduler.

In this paper, we present the background concepts
and the traditional formulation of the modulo schedul-
ing space in Sections 2 and 3, respectively. We derive a
more e�cient formulation of the dependence constraints
in Section 4. We evaluate the bene�ts of our technique
in Section 5 and conclude in Section 6.

2 Backgrounds on Modulo Scheduling

In this section, we present the background concepts
used in modulo scheduling. The example target ma-
chine is a hypothetical processor with three fully-
pipelined general-purpose functional units. The mem-
ory latency and the add/sub latency is one cycle, and
the mult latency is four cycles. We selected these val-
ues to obtain a concise example; however, our method
works independently of the numbers of functional units,
resource constraints, and latencies.

Example 1 This example [11] illustrates the schedul-
ing constraints and the register requirements of a
modulo-scheduled loop. This kernel is: y[i] = x[i]2-

x[i]- a, where the value of x[i] is read from memory,
squared, decremented by x[i]+a, and stored in y[i],
as shown in the dependence graph of Figure 1a.

The vertices of the dependence graph correspond to
operations and the edges correspond to virtual registers.
The value of each virtual register is de�ned by a unique
operation and once its value has been de�ned, it may be

2



ld

vr0 vr1 vr2 vr3

1

2

3

4

5

6

7

vr0 vr1 vr2 vr3

*

ld

st

+

st

* −

ld +

*

+

−−

st

Time: 0,2,4,6

1,3,5,7

ld

* +

−

st

b) Schedule (II=2) d) Lifetimes

e) Register requirements

a) Data dependence graph

c) MRT (II=2)

Schedule 
of one 
iteration

Time: 0

1

2

3

Stage:
0

Lifetime

Additional 
lifetime

Latency 
portion 
of the 
lifetime

Figure 1: Modulo schedule for the kernel y[i] = x[i]2-x[i]-a with minimum register requirements.

used by several operations. In this paper, a virtual reg-
ister is reserved in the cycle where its de�ne operation is
scheduled, and remains reserved until it becomes free in
the cycle following its last-use operation. The lifetime

of a virtual register is the set of cycles during which it
is reserved.

The scheduler places each operation of an iteration
so that both resource constraints and dependence con-
straints are ful�lled. Figure 1b illustrates a schedule
with an II of 2 for the kernel of Example 1 on the tar-
get machine. In this schedule, the load, mult, add, sub
and store operations of the iteration starting at time 0
are respectively scheduled at time 0, 1, 2, 5, and 6. The
schedule can be divided into stages of II cycles each.
In this example, the above operations are respectively
scheduled in stage 0, 0, 1, 2, and 3.

The modulo reservation table (MRT) associated with
a schedule is obtained by collapsing the schedule for an
iteration to a table of II rows, using wraparound. Fig-
ure 1c illustrates the MRT associated with the sched-
ule of Figure 1b. The resource constraints of a modulo
schedule are satis�ed if and only if the packing of the op-
erations within the II rows of the MRT does not exceed
the resources of the machine. For our target machine,
the resource constraints allow up to 3 operations of any
kind to be issued in each row of the MRT.

The initiation interval is bounded by the minimum

initiation interval (MII) [1], which is a lower bound on
the smallest feasible value of II for which a modulo
schedule can be found. This lower bound is constrained
either by critical resources being fully utilized or by
critical loop-carried dependence cycles. Note that the
MII lower bound is not a tight lower bound as they
may be no feasible modulo schedules that achieves MII,

possibly due to the presence complex resource patterns
or to the interference between resource and dependence
constraints [8].

The virtual register lifetimes associated with this it-
eration are presented in Figure 1d. The register require-
ments can also be computed by collapsing Figure 1d to
II rows, with wraparound, as shown in Figure 1e. We
see that exactly 7 virtual registers are live in the �rst
row and 7 in the second. Thus the register require-
ments, which are determined by the row with the maxi-
mum number of live values, and referred to as MaxLive

[12], are thus 7 in this example.

3 Backgrounds on Optimal Modulo Scheduling

In this section, we �rst present the traditional formula-
tion that is used by optimalmodulo schedulers based on
integer linear programming solvers. We then present a
general framework used by optimal modulo schedulers
to �nd a minimum-II modulo schedule.

The traditional formulation used by optimalmodulo
schedulers consists of two types of variables per oper-
ation: one type describing the MRT row and one type
describing the stage associated with each operation.
The traditional formulation consists of three types of
scheduling constraints: the assignment constraints, the
dependence constraints, and the resource constraints.
The formulation of the variables and the �rst two types
of constraints (presented in Sections 3.1 and 3.2) were
proposed by Govindarajan et al [7], and the last type
of constraints (shown in Section 3.3) was proposed by
us in [4].

3



Relating the more e�cient formulation investigated
in this paper to the traditional formulation, the more
e�cient formulation reuses the same variables, assign-
ment constraints, and the resource constraints as the
traditional formulation; however, the more e�cient for-
mulation di�ers in its formulation of the dependence
constraints, which will be presented in Section 4.

In this work, we represent a loop by a dependence
graph G = fV , Esched, Eregg, where the set of vertices
V represents operations and the sets of edges Esched and
Ereg correspond, respectively, to the scheduling depen-
dences and the register dependences among operations.
A scheduling edge enforces a temporal relationship be-
tween dependent operations or between any operations
that cannot be freely reordered, such as load and store
operations to ambiguous memory locations. A schedul-
ing edge from operation i to operation j, w iterations
later, is associated with a latency li;j and a dependence
distance !i;j = w. A register edge corresponds to a
data 
ow dependence carried in a register.

3.1 Assignment Constraints

Consider a loop with N operations and an initiation
interval of II. We represent a schedule for this loop by
a II �N binary matrix, called A, where ar;i = 1 if and
only if operation i is scheduled in row r of the MRT and
0 otherwise.

The �rst condition that a valid modulo schedule
must satisfy is that each operation is scheduled exactly
once in the MRT:

II�1X
r=0

ar;i = 1 8i 2 [0; N ) (1)

Equation (1) de�nes all the assignment constraints, i.e.
the constraints that assign each operation to exactly
one row of the MRT.

3.2 Dependence Constraints

While the A matrix de�nes the row in which each op-
eration is scheduled, we must also select the stage in
which each operation is placed. We represent the stage
numbers by k, an integer vector of dimension N , where
ki is the stage number in which operation i is sched-
uled. Matrix A and vector k uniquely de�ne the cycle
in which each operation is scheduled.

We now introduce two derived parameters that char-
acterize the MRT row and the time at which each op-
eration is scheduled, which are de�ned as follows:

rowi =
II�1X
r=1

r � ar;i timei = ki � II + rowi (2)

Note that since ar;i = 1 precisely in the row in which
operation i is scheduled, and is 0 otherwise, rowi is
correctly computed and satis�es the following property:
rowi 2 [0; II).

A modulo schedule must enforce all the scheduling
dependences of its dependence graph. A dependence be-
tween operation i and operation j, !i;j iterations later,
is ful�lled if operation j is scheduled at least li;j cycles
after operation i:

(timej + !i;j � II) � timei � li;j (3)

Substituting Equation (2) into Inequality (3) results in
the following inequality:

II�1X
r=1

r � (ar;j � ar;i) + (kj � ki) � II � li;j �

!i;j � II 8(i; j) 2 Esched (4)

Inequality (4) de�nes all the dependence constraints
of a modulo schedule for a given initiation interval II
with respect to the dependence distances !i;j and de-
pendence latencies li;j of a dependence graph G.

3.3 Resource Constraints

The third condition that a valid modulo schedule must
satisfy is that no cycle of the schedule consumes more
resources than are available in the machine. In this
paper, we use the constraints derived in [4]:

N�1X
i=0

X
c2Resi;q

a(r�c)modII;i � Mq

8q 2 Q; r 2 [0; II) (5)

where Q is the set of resource types, Mq is the number
of resources of type q, and c 2 Resi;q indicates that op-
eration i uses a resource of type q exactly c cycles after
being issued. Note that for machines where a mapping
from each operation's resource usages to resource in-
stances cannot be trivially found, the formulation pro-
posed by Altman et al [5] should be used. A derivation
of Inequality (5) as well as a precise de�nition of the
machines for which Inequality (5) is applicable is found
in [10].

4



3.4 Optimal Modulo Scheduling Framework

The traditional formulation of the modulo scheduling
space is based on the assignment, dependence, and re-
source constraints as de�ned by Constraints (1), (4),
and (5), respectively. In this formulation, and for a
given II, each variable (i.e. each element of the A

matrix and k vector) is only multiplied by a constant
factor; thus an integer linear programming solver (IP
solver) can be used to �nd a solution. However, since
the primary objective is to minimize the initiation in-
terval, a schedule with minimum II is obtained by solv-
ing a series of integer programming problems until the
smallest II with a feasible solution is found.

A traditional framework of optimal modulo sched-
uler for minimum II based on IP solvers is thus de�ned
as follows. First, the minimum initiation interval (MII)
[8] is computed, and the tentative II is set to MII. Sec-
ond, the integer linear programming system for the ten-
tative II, given loop iteration, and given target machine
is constructed. Third, an IP solver is used to solve the
system, possibly minimizing a secondary objective func-
tion such as the schedule length of the loop iteration or
the register requirements of the resulting modulo sched-
ule. If the IP solver fails to �nd a feasible solution, the
tentative II is incremented by one, and the second and
third steps are repeated; otherwise, the solution found
is optimal.

4 Structured Formulation of the Dependence

Constraints

Solving an integer linear programming system can be
implemented by iteratively solving a linear program-
mingmodel where additional constraints are introduced
(and removed) to force each integer variable to an inte-
ger value without omitting from the solution space any
optimal (integer) solution [13]. A branch-and-bound al-
gorithm is used to determine which parts of the search
space to consider, and each branch-and-bound node is
evaluated by solving a linear programming model with
the original constraints augmented by some additional
constraints that force variables to integer values.

A key aspect for formulating an e�cient integer
program is to �nd a formulation that results in fewer
branch-and-bound nodes, a goal that can be achieved in
part by structuring the problem so that the linear pro-
gramming solver naturally results in an integer solution
for as many integer variables as possible. Recent work
by Chaudhuri et al [14] on the structure of the schedul-
ing problem has shown techniques to formulate e�cient
integer linear program for scheduling straight-line (non-
loop, nonbranching) code. One bene�cial property that
can be derived from their theoretical results is de�ned

here as follows:

De�nition 1 (0-1-Structured Constraints) A

constraint is de�ned as 0-1-structured if each variable

appears at most once, multiplied by either a 0, +1, or
�1 constant coe�cient. By extension, a formulation is

de�ned as 0-1-structured if each of its constraints are

structured.

Note that the assignment constraints de�ned by
Equation (1) and the resource constraints de�ned by
Inequality (5) satisfy this property, whereas the depen-
dence constraints de�ned by Inequality (4) do not sat-
isfy this property, since the elements of the k vector
are multiplied by II and the elements of the binary A

matrix are multiplied by r 2 [0; II).
In this section, we investigate a more e�cient for-

mulation of the dependence constraints that can be
used instead of Constraints (4) in the optimal modulo
scheduling framework described in Section 3.4. Experi-
mental evidence shown in Section 5 indicates that when
this 0-1-structured formulation of the dependence con-
straints is used, the number of branch-and-bound nodes
visited by the IP solver is decreased by two orders of
magnitudes, on average, for a benchmark of 782 loops
scheduled for minimum register requirements among all
minimum-II modulo schedules. The basic idea for this
reformulation is due to Chaudhuri et al [14] which has
such a reformulation for straight line (nonloop, non-
branching) code. The adaptation of this idea to modulo
schedules for loop code is, however, not straightforward
and substantially di�erent in detail, as is the proof of
the validity of this adaptation.

In the remainder of this section, we derive a 0-1-
structured formulation of the dependence constraint as-
sociated with scheduling edge (i; j) in three steps. First,
we assume in Section 4.1 that we know the scheduling
time of operation i (i.e. timei is known and constant)
and derive a structured constraint that precisely deter-
mines the scheduling times for operation j that satisfy
scheduling edge (i; j). Second, we show in Section 4.2
how to extend this result without assuming the value
of timei to be known and constant. Third, we de-
rive in Section 4.3 the �nal structured formulation of
the dependence constraints. Derivations in Sections 4.1
and 4.2 are original to our work, and the technique
proposed by Chaudhuri et al for straight line code is
adapted to loop code in Section 4.3.

4.1 Case with known timei

Recall that a dependence constraint associated with
scheduling edge (i; j) enforces the scheduling depen-
dence between operation i and operation j, !i;j it-
erations later, and was de�ned in Inequality (3) as

5



timej + !i;j � II � timei � li;j . Since each term in
the dependence constraint has an integer value, we may
reformulate this constraint as a strict inequality, i.e.
timej + !i;j � II � timei > li;j � 1. We may thus write:

timej + !i;j � II > timei + li;j � 1 (6)

The left hand side of Inequality (6) corresponds to
the times where the value produced by operation i can
legally be used by operation j (!i;j iterations later).
For conciseness, we refer to this value as timeu (for the
time of use) in the remainder of Section 4. Using the
relations timej = kj � II + rowj and timeu = ku � II +
rowu, we may thus de�ne the stage and row of timeu
as, respectively,

ku = kj + !i;j rowu = rowj (7)

Similarly, the right hand side of Inequality (6) corre-
sponds to the latest time in which the value produced
by i is forbidden from use. We refer to this value as
timef (for the last forbidden time) in the remainder of
Section 4. Using the relations timei = ki � II + rowi

and timef = kf � II + rowf , we may thus de�ne the
stage and row of timef as, respectively,

kf = ki +

�
rowi + li;j � 1

II

�

rowf = (rowi + li;j � 1) mod II (8)

Note that since we assume here that the value of timei
is known and constant, by extension, the values of kf
and rowf are known and constant as well.

Using the de�nitions from Equations (7) and (8),
we may write the dependence constraint expressed in
Inequality (6) as:

ku � II + rowu > kf � II + rowf (9)

We may transform Inequality (9) to isolate the two
stage numbers, ku and kf :

ku � kf >
rowf � rowu

II
(10)

Interestingly, we can show that the row di�erence
rowf�rowu has values in the range (�II; II) since row
numbers have by de�nition values in the range [0; II).
Consequently, the right hand side of Inequality (10) has
values in the range (�1; 1). Therefore, we can guarantee
that when the integer valued stage di�erence ku�kf is 1
(or larger), the dependence constraint is satis�ed. Sim-
ilarly, we can guarantee that when the stage di�erence
ku � kf is -1 (or smaller), the dependence constraint is
violated. We may thus write:

(ku > kf ) ) dep. is satis�ed (11)

(ku < kf ) ) dep. is violated (12)

Consequently we are able to determine the schedul-
ing times of operation j that satisfy the dependence
constraint when ku 6= kf . Otherwise kf = ku, i.e. both
the use time of the value produced by operation i and
the latest forbidden time for that value occur in the
same stage of the schedule, and thus the speci�c values
of rowu and rowf must be take into account to deter-
mine whether timej is feasible.

To evaluate this case, let kf = ku and substitute kf
for ku in Inequality (9), obtaining the following depen-
dence constraint:

rowu > rowf (13)

Inequality (13) simply states that operation j cannot
be assigned to any of the rows x 2 [0; rowf ] when kf =
ku. Reformulating Inequality (13) using the binary ar;j
variables, we obtain:

z =

rowfX
x=0

ax;j = 0 (14)

where the value of the sum in Equation (14) is referred
to as z. Because of the assignment constraints, we know
that only one ar;j variable is equal to 1, and all other
ar;j variables are equal to 0. Thus, we know that z is
either 0 or 1, depending on the row in which operation
j is scheduled. Consequently, we can clearly see that
Equation (14) is satis�ed if and only if operation j is not
assigned to any of the rows in the range [0; rowf ]. As a
result, Inequality (13) and Equation (14) are equivalent.
We may thus write:

(ku = kf ) & (z = 0) ) dep. is satis�ed (15)

(ku = kf ) & (z 6= 0) ) dep. is violated (16)

To summarize our �ndings, we have shown that op-
eration j satis�es the scheduling edge (i; j) if either Re-
lation (11) is satis�ed (i.e. ku > kf ) or Relation (15) is
satis�ed (i.e. ku = kf and z = 0). Otherwise, we have
shown by Relations (12) and (16) that the dependence
constraint is violated.

We may now combine the two disjoint Relations (11)
and (15) by formulating the following constraint:

kf � ku + z � 0 (17)

Inequality (17) is equivalent to the union of Rela-
tions (11) and (15) because when ku > kf , Inequal-
ity (17) holds regardless of the value of z since z 2 [0; 1]
and when ku = kf , Inequality (17) holds precisely when
z = 0.

6



Using the de�nitions in Equations (7), (8), and (14)
in Inequality (17), we obtain the following constraint:

ki +

�
rowi + li;j � 1

II

�
� kj � !i;j +

(rowi+li;j�1)modIIX
x=0

ax;j � 0 (18)

Consequently, we have derived a constraint that deter-
mines, for a given timei (expressed in terms of ki and
rowi), the scheduling times for operation j (expressed
in terms of kj and ax;j) that satisfy the scheduling edge
(i; j). This constraint is 0-1-structured in that its vari-
ables (i.e. kj and ax;j) appear only once and are only
multiplied by +1, 0, and �1 constant coe�cients.

4.2 Case with unknown timei

We now extend the previous result to the case where the
scheduling time of operation i, timei, is not assumed to
be known. Since the row in which operation i is sched-
uled is also unknown, we must eliminate rowi from In-
equality (18). The main idea used in this section is to
substitute rowi by an arbitrary row r 2 [0; II), and
transform the right hand side of Inequality (18) such
that the new inequality is only constraining when op-
eration i is e�ectively scheduled in row r. Our claim is
that the following inequality:

ki +

�
r + li;j � 1

II

�
� kj � !i;j +

(r+li;j�1)modIIX
x=0

ax;j � 1� ar;i 8r 2 [0; II) (19)

is equivalent to Inequality (18) when r = rowi for
some row r 2 [0; II) and is trivially satis�ed other-
wise. The sketch of a proof is as follows. Consider a
row r0 2 [0; II). If operation i is scheduled in row r0,
by de�nition ar0;i = 1, and thus the right hand side
of the Inequality (19) with r = r0 is 0. This inequal-
ity is thus identical to Inequality (18) since in this case
r = r0 = rowi. Otherwise, if operation i is not sched-
uled in row r0, by de�nition ar0;i = 0, and thus the right
hand side of the Inequality (19) with r = r0 is 1. This
right hand side value is just large enough to ensure that
this inequality is trivially satis�ed. A detailed proof is
provided in [10].

4.3 Final Formulation of the Structured Depen-

dence Constraints

While we may simply formulate structured dependence
constraints for each dependence edge (i; j) 2 Esched

using Inequality (19), we may further tighten the for-
mulation of the scheduling space using an observation
made by Chaudhuri et al [14] for dependent operations
in straight line (nonloop, nonbranching) code.

Consider operation i, with latency l, that produces a
value used by operation j. When operation i is assigned
to cycle t, or any subsequent cycles [14], operation j

must be assigned in a cycle t0 � t + l. Using a similar
observation here, we may replace ar;i in the right hand
side of Inequality (19) by the sum of the ax;i variables
over x 2 [r; II). Thus, we obtain the following �nal
form of the structured dependence constraints:

II�1X
x=r

ax;i +

(r+li;j�1)modIIX
x=0

ax;j + ki � kj � !i;j �

�
r + li;j � 1

II

�
+ 1 8r 2 [0; II); (i; j) 2 Esched (20)

At �rst, it may appear counterintuitive to replace
Inequality (4) with Inequality (20) in order to obtain
a more e�cient formulation of the problem, since it
corresponds to replacing each constraint with II new
constraints. The crucial point, however, is that the
new constraints are 0-1-structured, since each variable,
namely each k and each element of A appears at most
once, and is multiplied by only +1, 0, or �1 coe�cients.

5 Measurements

In this section, we evaluate four modulo scheduling al-
gorithms based on integer linear programming formula-
tion.

MinReg Modulo Scheduler. This scheduler �nds
a schedule with the minimum II over all modulo
schedules, and with the minimum register requirements
among such schedules. It uses the integer programming
model based on Constraints (1), (4), and (5) when eval-
uating the traditional formulation, and Constraints (1),
(5), and (20) when evaluating the structured formula-
tion of the modulo scheduling space. The formulation of
the secondary objective function (for minimum register
requirements) is based on the 0-1-structured formula-
tion found in [4]. Recall that this algorithm achieves
the minimum feasible register requirements for a given
loop iteration, initiation interval, and set of machine
constraints.

7



0.1

1

10

100

1000

NoObj MinBuff MinLife MinReg

Nu
mb

er 
of B

ran
ch 

& B
oun

d N
ode

s
Traditional
Structured

Figure 2: Average number of branch-and-bound nodes visited by the CPLEX solver.

MinBu� Modulo Scheduler. This scheduler �nds
a schedule with minimum II, and the minimum bu�er
requirements among all such schedules. Recall that un-
like registers, bu�ers are reserved for integer multiples
of II cycles. When considering the traditional formu-
lation of the modulo scheduling space, we use Con-
straints (4), (1), and (5,) as well as the formulation of
the minimum-bu�er secondary objective function found
in [7]. When evaluating the structured formulation, we
use Constraints (1), (5), and (20); in addition, we refor-
mulate the minimum-bu�er objective function as pro-
posed by Dupont de Dinechin [15] in order to obtain
a 0-1-structured formulation1. Although the MinBu�
algorithm minimizes bu�ers, in our comparisons we al-
ways present the actual register requirements associated
with these schedules.

MinLife Modulo Scheduler. This scheduler �nds a
schedule with the maximum steady-state throughput,
and the minimum cumulative length of the lifetimes
among all such schedules. When considering the tradi-
tional formulation of the modulo scheduling space, we
use Constraints (1), (5), and (4,) as well as the for-
mulation of the minimum-lifetime secondary objective
function found in [16]. When evaluating the structured
formulation, we use Constraints (1), (5), and (20); we

1As formulated in [7], the minimum-bu�er objective function
uses additional variables that are de�ned by constraints which are
not 0-1-structured. By transforming the problem using a tech-
nique proposed in [15], however, we may de�ne these additional
variables using constraints of the same type as Constraints (20).
As a result, we obtain a formulation that is entirely 0-1 structured.

also modify the formulation of the objective function
(as devised for the MinBu� Modulo Scheduler) in order
to obtain a formulation that is entirely 0-1 structured.
In our comparisons, we also present the actual register
requirements associated with these schedules.

NoObj Modulo Scheduler. This scheduler simply
�nds a schedule with minimum II, without minimizing
any secondary objective function. It uses the same for-
mulation of the modulo scheduling space as the MinReg
Modulo Scheduler, and simply returns the �rst schedule
that it �nds.

In this study, we use a benchmark of 1327 loops
obtained from the Perfect Club [17], SPEC-89 [18],
and the Livermore Fortran Kernels [19], as compiled
by the Cydra 5 Fortran77 compiler [20] after load-
store elimination, recurrence back-substitution, and IF-
conversion. The resource requirements of the Cy-
dra 5 [21] are precisely modeled, using the reduced ma-
chine description produced in [22]. Note that we only
model, for a given loop, the resources that are used by at
least two operations, since the other resources, if any,
pose no resource con
icts. Furthermore, we limit the
schedule length of the modulo schedules sought to 20
cycles beyond the minimum schedule length, in order
to achieve schedules with high transient performance.
We use here the CPLEX solver, a widely available com-
mercial integer linear programming solver, and never
search for a schedule for more than 15 minutes per loop
on a HP-9000/715 workstation. This time limit is arbi-
trary, and was �xed to complete the scheduling of the
1327-loop benchmark in reasonable time.

8



In our �rst experiment, we investigate the bene�ts
of using the structured formulation instead of the tra-
ditional formulation of the dependence constraints. We
present data for the 653 loops that were successfully
scheduled (using no more than 15 minutes per loop) by
each algorithm and formulation of the modulo schedul-
ing space.

We present in Figure 2 the average number of
branch-and-bound nodes visited by the solver when us-
ing either the structured or the traditional formulation.
Recall that the CPLEX solver used in our experiment
explores branch-and-bound nodes when it must force
variables to integral values. Note also that the Y-axis
of Figure 2 is logarithmic.

The �rst observation is that the four schedulers ben-
e�t signi�cantly from using the structured formulation
of the dependence constraints which, for example, de-
creases the average number of branch-and-bound nodes
visited by the MinLife and MinReg Modulo Scheduler
by a factor of 167.4 and 124.5, respectively. The second
observation is that the three algorithms that result in
the lowest average number of branch-and-bound nodes
are the NoObj, MinReg Modulo Schedulers with the
structured formulation of the dependence constraints.

Because of this signi�cant decrease in number of
visited branch-and-bound nodes, schedulers based on
the structured dependence constraints run signi�cantly
faster; for example, the structured MinReg Modulo
Scheduler completes in 11.6% of the time (i.e. 101.0
instead of 870.2 seconds) when scheduling all the loops
successfully scheduled by the MinReg Modulo Sched-
uler with unstructured dependence constraints. Conse-
quently, the IP solver can schedule a larger fraction of
the loops in the benchmark suite when using the struc-
tured dependence constraints; e.g. 1179 versus 1084
loops for the NoObj Modulo Scheduler, 898 versus 859
loops for the MinLife Modulo Scheduler, and 917 ver-
sus 782 loops for the MinReg Modulo Scheduler. We
thus exclusively employ the structured dependence con-
straints in the remainder of this section.

In our second experiment, we investigate the perfor-
mance of each modulo scheduling algorithm with the
structured formulation of the dependence constraints
in a benchmark containing all successfully scheduled
loops. We present the performance characteristics of
the four modulo scheduling algorithms with the struc-
tured formulation in Table 1. In addition to the number
of branch-and-bound nodes, the table also lists data
the numbers of variables and constraints prior to any
simpli�cations that might be performed by the CPLEX
solver, as well as the number of simplex iterations per-
formed by the CPLEX solver, the number of operations,
N , and the initiation interval, II. For comparison, we
provide the same data for the four algorithms with the

traditional formulation of the dependence constraints
in Table 2; however, we only consider the structured
formulation in the discussion below.

First, observe the distribution of the data in Table 1.
As indicated by the low median values, relative to the
average numbers, there is a large number of simple loops
in the benchmark suites. However, the solvers clearly
succeed in solving some rather large problems, as indi-
cated by the large max values.

The second observation is that the NoObj Modulo
Scheduler processes loops with signi�cantly larger av-
erage numbers of operations, II, variables, and con-
straints than the three other algorithms. It also handles
the loops with the largest maximum number of opera-
tions and II, i.e. 80 operations and 118 cycles, respec-
tively. Note also that since it simply returns the �rst
valid integral solution, the number of visited branch-
and-bound nodes directly corresponds to the nodes that
are needed by the solver to force all variables to integer
values. As indicated in the table, very few branch-and-
bound nodes are required (0 node in 73.9% of the loops,
7.93 nodes on average, and and never more than 337
nodes) compared to the traditional formulation (0 node
in 37.4% of the loops, 249.64 nodes on average, and and
never more than 29746 nodes) This data con�rms again
the bene�t of structured formulations.

The third observation is that the MinReg Modulo
Scheduler processes loops that are nearly as large as
those the MinLife Modulo Scheduler can process, and
signi�cantly larger than those of the MinBu� Modulo
Scheduler, even though MinReg Modulo Scheduler pre-
cisely minimizes the register requirements.

In our third experiment, we use the NoObj Modulo
Scheduler to investigate the performance of the Itera-
tive Modulo Scheduler proposed by Rau [8]. Since the
Iterative Modulo Scheduler results in schedules with op-
timal throughput for 1274 (or 96.0%) of the 1327 loops
in the benchmark suite, we only need to investigate and
compare the remaining 53 loops.

Among these 53 loops, the NoObj Modulo Scheduler
�nds 2 loops where II (that was obtained by the Itera-
tive Modulo Scheduler) can be decreased by 2 (but not
3) cycles, i.e. the scheduler �nds a schedule with an II

decreased by 2 cycles and shows that decreasing II by
3 cycles is infeasible. The scheduler also �nds 6 loops
where II can be decreased by 1 (but not 2) cycles. It
furthermore shows that the II of 22 of these loops can-
not be decreased even by 1 cycle. Finally, the scheduler
does not complete the remaining 23 loops within the 15
minute execution time limit. Thus, the NoObj Mod-
ulo Scheduler succeeds in �nding schedules with better
throughput for 8 (or 15.1%) of the 53 interesting loops.

Using the NoObj Modulo Scheduler, we have thus
shown that the Iterative Modulo Scheduler actually

9



Measurements: min freq median average max

NoObj Modulo-Sched: (1179 loops)
Variables 4:00 0:3% 33:00 183:12 3880:00
Constraints 8:00 0:3% 67:00 298:66 5400:00
Branch-and-bound nodes 0:00 74:0% 0:00 8:02 337:00
Simplex iterations 0:00 37:1% 11:00 345:63 20645:00
II 1:00 32:0% 2:00 7:48 118:00
N 2:00 0:4% 9:00 13:95 80:00

MinBu� Modulo Sched: (762 loops)
Variables 6:00 0:5% 20:00 36:58 748:00
Constraints 9:00 0:5% 33:00 76:11 1922:00
Branch-and-bound nodes 0:00 51:0% 0:00 276:52 21551:00
Simplex iterations 0:00 0:1% 10:00 1167:72 144568:00
II 1:00 49:3% 2:00 2:71 42:00
N 2:00 0:7% 5:00 6:81 36:00

MinLife Modulo Sched: (898 loops)
Variables 8:00 0:4% 48:00 169:50 5846:00
Constraints 11:00 0:4% 72:00 230:79 6934:00
Branch-and-bound nodes 0:00 72:7% 0:00 299:37 27142:00
Simplex iterations 1:00 18:3% 29:00 2181:56 221039:00
II 1:00 36:3% 2:00 5:84 118:00
N 2:00 0:6% 7:00 9:04 41:00

MinReg Modulo Sched: (917 loops)
Variables 7:00 0:4% 36:00 119:67 5810:00
Constraints 10:00 0:4% 57:00 169:24 6975:00
Branch-and-bound nodes 0:00 63:5% 0:00 124:71 10711:00
Simplex iterations 0:00 24:5% 23:00 2539:64 167504:00
II 1:00 41:1% 2:00 4:63 118:00
N 2:00 0:5% 7:00 8:39 41:00

Table 1: Measurements with structured scheduling constraints.

Measurements: min freq median average max

NoObj Modulo Sched: (1084 loops)
Variables 4:00 0:4% 27:00 115:95 3630:00
Constraints 8:00 0:4% 40:00 74:12 792:00
Branch-and-bound nodes 0:00 37:4% 4:00 249:64 29746:00
Simplex iterations 0:00 35:6% 10:00 1731:96 424846:00
II 1:00 35:0% 2:00 6:50 118:00
N 2:00 0:5% 8:00 10:76 52:00

MinBu� Modulo Sched: (762 loops)
Variables 6:00 0:5% 20:00 49:39 2520:00
Constraints 9:00 0:5% 26:00 43:36 698:00
Branch-and-bound nodes 0:00 52:1% 0:00 790:17 26730:00
Simplex iterations 0:00 30:3% 3:00 1668:74 65961:00
II 1:00 49:6% 2:00 3:93 118:00
N 2:00 0:7% 5:00 6:47 21:00

MinLife Modulo Sched: (859 loops)
Variables 6:00 0:5% 28:00 60:13 2520:00
Constraints 9:00 0:5% 37:00 52:13 698:00
Branch-and-bound nodes 0:00 49:6% 1:00 711:44 29262:00
Simplex iterations 0:00 26:9% 4:00 1984:99 88811:00
II 1:00 43:9% 2:00 4:37 118:00
N 2:00 0:6% 7:00 7:51 29:00

MinReg Modulo Sched: (782 loops)
Variables 7:00 0:5% 26:00 77:59 4978:00
Constraints 10:00 0:5% 32:00 77:32 3273:00
Branch-and-bound nodes 0:00 51:4% 0:00 518:32 26524:00
Simplex iterations 0:00 28:5% 3:00 4228:82 322537:00
II 1:00 48:2% 2:00 3:67 118:00
N 2:00 0:6% 5:00 6:81 25:00

Table 2: Measurements with traditional scheduling constraints.

10



�nds a schedule with maximum throughput for 22 more
loops than previously known, i.e. it results in sched-
ules with maximum throughput for 1296 (or 97.7%)
of the 1327 loops in the benchmark suite. In addi-
tion to these 22 loops, the NoObj Modulo Scheduler
�nds 8 more loops with maximum throughput (with a
higher throughput than the schedule found by the Iter-
ative Modulo Scheduler); thus we have now schedules
with maximum throughput for 1304 (or 98.3%) of the
loops in the benchmark suite. At this point, it is un-
known whether the remaining 23 loops have suboptimal
throughput.

To summarize the �ndings of this section, the algo-
rithms based on structured formulation are clearly more
e�cient than the traditional formulations. The sec-
ond result is that the NoObj Modulo Scheduler clearly
schedules the largest fraction of the loops in the bench-
mark suite. This result is not unexpected since this
formulation does not minimize any objective function.
The third and surprising result is that using the Min-
Reg scheduler is nearly as e�cient as using the MinLife
scheduler, and is much more e�cient than using the
MinBu� scheduler, in spite of the fact it precisely min-
imizes MaxLive.

6 Conclusions

In this paper, we contribute a more structured formula-
tion of the modulo scheduling solution space. This more
e�cient formulation addresses a major concern with
modulo schedulers that are based on integer linear pro-
gramming solvers [6], which is their traditionally high
execution time. Experimental evidence (gathered for a
benchmark suite of 1327 loops from the Perfect Club,
SPEC-89, and the Livermore Fortran Kernels, compiled
for the Cydra 5 machine) indicates that the number of
branch-and-bound nodes is decreased on average by a
factor of 103, when using the structured instead of the
traditional formulation of the MinReg Modulo Sched-
uler on the 782 loops successfully scheduled by both
formulations. It results, in turn, in a decrease in the to-
tal execution time by a factor of 8.6, from 870.2 to 101.0
seconds. Also, using the more e�cient representation
enables us to successfully schedule a larger fraction of
the 1327 loops; for example the coverage increases from
58.9% to 69.1% for the MinReg Modulo Scheduler and
from 81.7% to 88.8% for the NoObj Modulo Scheduler.
Also, signi�cantly larger loops are successfully sched-
uled: for example, the maximum number of operations
in a loop increases from 25 to 41 operations for the
MinReg Modulo Scheduler and from 52 to 80 for the
NoObj Modulo Scheduler. These results are obtained
when scheduling for the Cydra 5 machine, a machine

with complex resource requirements.
Using this more e�cient formulation of the mod-

ulo scheduling solution space, we may carry through
relevant performance evaluations of existing scheduling
heuristics. For example, we have analyzed the perfor-
mance of the Iterative Modulo Scheduler proposed by
Rau [3][8]. While this algorithm was known to achieve
the minimum initiation interval (i.e. MII) in 96.0% of
the 1327 loops in the benchmark suite, we can show
that it actually achieves MII in 97.7% of the loops. Fur-
thermore, our algorithm �nds schedules with lower II
for 8 of the 31 remaining loops. We have also analyzed
the register requirements of the stage scheduling heuris-
tics proposed in [9][10] used in conjunction with the It-
erative Modulo Scheduler. Using the MinReg Modulo
Scheduler, we �nd schedules with lower register require-
ments for 23.6% of the 1327 loops. By evaluating the
stage scheduling heuristics with the MinLife and the
MinBu� Modulo Schedulers, a schedule with lower reg-
ister requirements is found in 18.5% and 4.5% of the
loops, respectively. However, the heuristic �nds a sched-
ule with lower register requirements in 3.2% and 12.3%
of the loops, respectively. These results con�rm that
optimal algorithms must be both precise and e�cient
to provide useful insights.

Acknowledgments

The authors would like to thank B. Ramakrishna Rau
for his many useful suggestions and for providing the
input data set. We are grateful to Vinod Kathail for
his explanation of the resource constraints of the Cy-
dra 5 machine. We also appreciate the suggestions of
the referees which signi�cantly improved the quality of
the paper. This work was supported in part by the
O�ce of Naval Research under grant number N00014-
93-1-0163 and by Hewlett-Packard.

References

[1] B. R. Rau and C. D. Glaeser. Some scheduling tech-
niques and an easily schedulable horizontal architecture
for high performance scienti�c computing. Fourteenth

Annual Workshop on Microprogramming, pages 183{
198, October 1981.

[2] P. Y. Hsu. Highly Concurrent Scalar Processing. PhD
thesis, Department of Electrical and Computer Engi-
neering, University of Illinois, Urbana, IL, 1986.

[3] B. R. Rau. Iterative Modulo Scheduling: An algorithm
for software pipelining loops. Proceedings of the 27th

Annual International Symposium on Microarchitecture,
pages 63{74, November 1994.

[4] A. E. Eichenberger, E. S. Davidson, and S. G. Abra-
ham. Optimum modulo schedules for minimum register

11



requirements. Proceedings of the International Confer-
ence on Supercomputing, pages 31{40, July 1995.

[5] E. R. Altman, R. Govindarajan, and G. R. Gao.
Scheduling and mapping: Software pipelining in the
presence of structural hazards. In Proceedings of

the ACM SIGPLAN'95 Conference on Programming
Language Design and Implementation, pages 139{150,
1995.

[6] J. R. Ruttenberg, G. R. Gao, and A. Stoutchinin. Soft-
ware pipelining showdown: Optimal vs. heuristic meth-
ods in a production compiler. Proceedings of the ACM
SIGPLAN'96 Conference on Programming Language
Design and Implementation, pages 1{11, May 1996.

[7] R. Govindarajan, E. R. Altman, and G. R. Gao.
Minimizing register requirements under resource-
constrained rate-optimal software pipelining. Proceed-

ings of the 27th Annual International Symposium on
Microarchitecture, pages 85{94, November 1994.

[8] B. R. Rau. Iterative Modulo Scheduling. International
Journal of Parallel Programming, 24(1):2{64, 1996.

[9] A. E. Eichenberger and E. S. Davidson. Stage schedul-
ing: A technique to reduce the register requirements
of a modulo schedule. Proceedings of the 28th Annual
International Symposium on Microarchitecture, pages
180{191, November 1995.

[10] A. E. Eichenberger. Modulo Scheduling, Machine Rep-

resentations, and Register-Sensitive Algorithms. PhD
thesis, University of Michigan, Department of Electri-
cal Engineering and Computer Science, Ann Arbor, MI,
1996.

[11] A. E. Eichenberger, E. S. Davidson, and S. G. Abra-
ham. Minimum register requirements for a modulo
schedule. Proceedings of the 27th Annual International
Symposium on Microarchitecture, pages 75{84, Novem-
ber 1994.

[12] R. A. Hu�. Lifetime-sensitive modulo scheduling. Pro-
ceedings of the ACM SIGPLAN'93 Conference on Pro-
gramming Language Design and Implementation, pages
258{267, June 1993.

[13] G. L. Nemhauser and L. A. Wolsey. Integer and Com-
binatorial Optimization. Wiley, New York, 1988.

[14] S. Chaudhuri, R. A. Walker, and J. E. Mitchell. An-
alyzing and exploiting the structure of the constraints
in the ILP approach to the scheduling problem. IEEE
Transactions on Very Large Scale Integration Systems,
2(4):456{471, December 1994.

[15] B. Dupont de Dinechin. Parametric computation of
margins and of minimum cumulative register lifetime
dates. Proceedings of the 9th International Workshop
on Languages and Compilers for Parallel Computing,
1996.

[16] B. Dupont de Dinechin. Simplex scheduling: More than
lifetime-sensitive instruction scheduling. Proceedings of
the International Conference on Parallel Architecture

and Compiler Techniques, pages 327{330, 1994.

[17] M. Berry et al. The Perfect Club Benchmarks: E�ec-
tive performance evaluation of supercomputers. The

International Journal of Supercomputer Applications,
3(3):5{40, Fall 1989.

[18] J. Uniejewski. SPEC Benchmark Suite: Designed for
today's advanced system. SPEC Newsletter, Fall 1989.

[19] F. H. McMahon. The Livermore Fortran Kernels: A
computer test of the numerical performance range.
Technical Report UCRL-53745, Lawrence Livermore
National Laboratory, Livermore, California, 1986.

[20] J. C. Dehnert and R. A. Towle. Compiling for the
Cydra 5. In The Journal of Supercomputing, volume 7,
pages 181{227, 1993.

[21] G. R. Beck, D. W. L. Yen, and T. L. Anderson. The
Cydra 5 mini-supercomputer: Architecture and imple-
mentation. In The Journal of Supercomputing, vol-
ume 7, pages 143{180, 1993.

[22] A. E. Eichenberger and E. S. Davidson. A reduced mul-
tipipeline machine description that preserves schedul-
ing constraints. Proceedings of the ACM SIGPLAN'96
Conference on Programming Language Design and Im-

plementation, pages 12{22, May 1996.

12


