SIAM J. Sc1. COMPUT. (© 2017 Society for Industrial and Applied Mathematics
Vol. 39, No. 1, pp. A303-A332

ENHANCING PERFORMANCE AND ROBUSTNESS
OF ILU PRECONDITIONERS BY BLOCKING
AND SELECTIVE TRANSPOSITION*

ANSHUL GUPTAT

Abstract. Incomplete factorization is one of the most effective general-purpose preconditioning
methods for Krylov subspace solvers for large sparse systems of linear equations. Two techniques for
enhancing the robustness and performance of incomplete LU factorization for sparse unsymmetric
systems are described. A block incomplete factorization algorithm based on the Crout variation of
LU factorization is presented. The algorithm is suitable for incorporating threshold-based dropping
as well as unrestricted partial pivoting, and it overcomes several limitations of existing incomplete
LU factorization algorithms with and without blocking. It is shown that blocking has a three-
pronged impact: it speeds up the computation of incomplete factors and the solution of the associated
triangular systems, it permits denser and more robust factors to be computed economically, and it
permits a trade-off with the restart parameter of GMRES to further improve the overall speed and
robustness. A highly effective heuristic for improving the quality of preconditioning and subsequent
convergence of the associated iterative method is presented. The choice of the Crout variant as the
underlying factorization algorithm enables efficient implementation of this heuristic, which has the
potential to improve both incomplete and complete sparse LU factorization of matrices that require
pivoting for numerical stability.

Key words. sparse solvers, iterative methods, preconditioning, incomplete factorization,
GMRES

AMS subject classifications. 65F08, 65F10, 65F50

DOI. 10.1137/15M1053256

1. Introduction. This paper presents two highly effective techniques for en-
hancing both the performance and robustness of threshold-based incomplete LU (ILU)
factorization.

It is well known that the nature of computations in a typical iterative method for
solving sparse linear systems results in poor CPU-utilization on cache-based micropro-
cessors. In contrast, static symbolic factorization and the use of supernodal [20] and
multifrontal [17, 41] techniques typically enable highly efficient implementations of
direct methods. The problem of poor CPU-utilization in iterative methods relative to
the CPU-utilization of a well-implemented direct solver is evident in varying degrees
for almost all preconditioners [21]. In the context of incomplete factorization, which
has long been used to precondition Krylov subspace methods [1, 49], the primary cul-
prits are indirect addressing and lack of spatial and temporal locality during both the
preconditioner generation and solution phases. As a result, incomplete factorization
runs at a fraction of the speed of complete factorization [29], and for many small
and medium-sized practical problems, a direct solution turns out to be faster than an
iterative solution, even when complete factorization requires significantly more mem-
ory and floating-point operations than incomplete factorization [21, 22]. Conventional
methods to compute an incomplete factor much smaller than its complete counterpart
can cost as much or more in run time as complete factorization. Therefore, only very

*Submitted to the journal’s Methods and Algorithms for Scientific Computing section December
17, 2015; accepted for publication (in revised form) November 28, 2016; published electronically
February 23, 2017.

http://www.slam.org/journals/sisc/39-1/M105325.html
fIBM T.J. Watson Research Center, Yorktown Heights, NY 10598 (anshul@us.ibm.com).

A303

http://www.siam.org/journals/sisc/39-1/M105325.html
mailto:anshul@us.ibm.com

A304 ANSHUL GUPTA

sparse incomplete factors can be practically computed, and the resulting precondi-
tioner is often not effective for hard problems. Performing computations on dense
blocks instead of individual elements can potentially help close the performance gap
between complete and incomplete factorization of sparse matrices.

We present a practical algorithm that uses either natural or induced blocking
of rows and columns to significantly increase the speed of incomplete factorization.
This algorithm, first presented at the 2012 STAM Conference on Applied Linear Alge-
bra [24], is based on the Crout variation of LU factorization and supports threshold-
based dropping for fill reduction as well as unrestricted partial pivoting for numerical
stability.

1.1. Benefits of blocking. Blocked incomplete factorization has several ben-
efits other than the obvious time saving in the preconditioner setup phase. First,
denser and more robust factors, which would have been impractical to compute with
conventional methods, can now be computed economically. Second, blocking in the
factors improves spatial and temporal locality, and therefore the computation speed,
when the preconditioner is used to solve triangular systems during the iterative phase.
Finally, the ability to practically compute faster and denser incomplete factors results
in a somewhat less obvious way to further improve the speed and robustness of the so-
lution process. Restarted GMRES [50] is often the algorithm of choice for iteratively
solving large sparse unsymmetric linear system arising in many applications. The
algorithm is typically referred to as GMRES(m), where m is the restart parameter.
The algorithm restricts the size of the subspace to m. After m iterations, it restarts
while treating the residual after m iterations as the initial residual. This requires a
minimum of (m + 2)n words of storage for solving an n x n system. Although the
exact relationship between m and the overall convergence rate of GMRES(m) is not
well-understood, and a reliable a priori estimator for the optimum value of m for a
given system does not exist, it is generally observed than increasing m up to a point
tends to improve convergence. If the density of the preconditioner can be increased
without an excessive run time penalty, then a high-density ILU paired with a small m
in GMRES(m) can replace a combination of low-density ILU and GMRES(m) with
a large m, without changing the overall memory footprint. In our experiments on a
diverse suite of test problems, a value around 40 appeared to be a good choice for
m. Our experiments indicate that it is better to use the memory for retaining ad-
ditional entries in the ILU preconditioner than for increasing m significantly beyond
this point. On the other hand, if memory is scarce, then a sparse preconditioner is
preferable to reducing m significantly below this point. Such a trade-off between the
value of m and the density of the ILU preconditioner is possible only if the latter
can be increased without undue increase in the time to compute the preconditioner.
This is enabled by blocking and is not likely to be possible with conventional ILU
factorization without blocking.

1.2. Related work. Li, Saad, and Chow [38] proposed a Crout version of ILU
factorization that they refer to as ILUC and highlighted several advantages of the
approach over traditional row- or column-based ILU. Our block variant, which we
will henceforth refer to as BILUC (block ILU in Crout formulation), follows a similar
approach but incorporates several enhancements described in section 3.

Dense blocks have been used successfully in the past [6, 7, 18, 29, 31, 34, 35, 36,
39, 45, 48, 55] to enhance the performance of incomplete factorization preconditioners.
Many of these block algorithms are designed for symmetric positive definite (SPD) sys-
tems, which we covered in an earlier publication [29]. Both complete and incomplete

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU A305

factorization algorithms for unsymmetric sparse systems are inherently more complex
than their SPD counterparts. In addition to possible structural unsymmetry, dy-
namic pivoting for numerical stability is the main source of this complexity. Pivoting
can change the order of rows and columns and therefore the positions of potential
nonzeros in the factors on the fly. In order to effectively search for a suitable pivot
along both the rows and columns, at least a part of the unfactored portion of the
matrix must be fully updated, which precludes a pure left-looking implementation.
Therefore, in the remainder of this section, we restrict our attention to blocked imple-
mentations of ILU for unsymmetric systems only. Of these, only some are designed
to handle dynamic pivoting. Furthermore, with a few exceptions like VBARMS [6]
and SuperLU [39], these block algorithms have been applied to relatively simpler
level-based incomplete factorization of matrices that have a naturally occurring block
structure [42]. Dynamic dropping of factor entries based on a user-defined relative
magnitude threshold is known to be significantly more effective than symbolic level-
based dropping for general problems [2, 49]. Among the few threshold-based blocked
ILU algorithms, VBARMS relies on a statically computed block structure [48] of the
original matrix and, optionally, of one or more Schur complements. As a result, it
is unable to perform partial pivoting, which can disrupt the static block structure.
SuperLU can search for pivots within a supernode but relies on perturbing diagonal
entries to avoid instability if a suitable pivot cannot be found within the confines of a
supernode. The BILUC algorithm is able to use the classical complete factorization
techniques of partial pivoting and delayed pivoting for numerical stability and does
not require perturbations that can introduce extra error in factorization. In addition,
unlike SuperLU’s single-tier supernodes, BILUC uses a two-tier blocking scheme (sec-
tion 3.1) that enables it to compute sparser factors with more precise dropping while
maintaining the computational advantage of blocking.

To summarize, at the time of writing, to the best of our knowledge, the BILUC al-
gorithm is the only blocked ILU factorization algorithm that employs threshold-based
dropping, performs unrestricted pivoting, and uses dense blocks both in matrices in
which such blocks occur naturally and in matrices that have poor or no block structure
to begin with. It uses graph-partitioning for parallelism, nested-dissection ordering for
fill reduction, and a combination of matching and selective transposition for enhancing
numerical stability and reducing pivoting.

1.3. Selective transposition. In addition to using blocking to improve the
speed of ILU factorization, we also introduce an effective and reliable heuristic to
reduce extra fill-in due to pivoting and to improve convergence. Note that the solution
x to a system of linear equations Az = b can be obtained either by factoring A as L.U,
where L is unit lower triangular and U is upper triangular, or by factoring A’ into
UT.LT, where U is unit upper triangular and L is lower triangular. Although there is
some numerical advantage to using A = LU factorization (because the first of the two
solution phases uses a unit triangular matrix), it is often the case that the quality of
AT = UTLT factorization is superior, making it more attractive. When A is sparse,
there are two merit criteria for pivoting quality—pivot growth and extra fill-in due
to pivoting. Both pivot growth and extra fill-in are affected by whether A or AT is
factored. In fact, when factorization is incomplete and is used for preconditioning,
the impact is magnified because an inferior preconditioner can both increase the cost
of each iteration and result in an increase in the number of iterations. We show that
it is possible to make a reliable and inexpensive a priori determination of whether
A= LU or AT = UTLT factorization is likely to be superior. The Crout formulation,

A306 ANSHUL GUPTA

in addition to its other benefits, permits an implementation that can seamlessly switch
between factoring A or AT, partly because U and L are treated almost identically.

1.4. Experimental setup. In the paper, wherever practical and useful, we
present experimental results on matrices derived from real applications to demonstrate
the benefits of the newly introduced techniques. All experiments were performed on
a 4.2 GHz Power 6 system running AIX with 96 GB of memory. We used three
Krylov subspace solvers in our experiments: restarted GMRES [50], BiCGStab [54],
and TFQMR [19]. A maximum total of 1200 inner iterations of restarted GMRES [50]
were permitted in any experiment. Iterations were terminated when both of the fol-
lowing conditions were satisfied: (a) the relative residual norm dropped below 10~8
and (b) a simple a posteriori relative error norm estimate, based on the change in
the norm of the computed solution between iterations, fell below 10~%. The second
condition permits GMRES iterations to continue even if the relative residual norm has
fallen below the specified threshold until a certain level of stability has been achieved in
the computed solution. Our GMRES implementation adds approximate eigenvectors
corresponding to a few smallest eigenvalues of the matrix to the subspace in order to
mitigate the impact of restarting on convergence [43]. We found that this augmented
version of restarted GMRES converges faster in general than conventional restarted
GMRES for the same amount of memory. The software implementation of the BILUC
preconditioner and the Krylov subspace solvers is a part of the Watson Sparse Matrix
Package (WSMP) library [28], whose object code and documentation is available for
testing and benchmarking at http://www.research.ibm.com/projects/wsmp.

1.5. Organization. The remainder of the paper is organized as follows.
Section 2 contains an overview of the entire BILUC-based preconditioning scheme,
including the preprocessing steps that precede the incomplete factorization. In sec-
tion 3, we describe the BILUC algorithm in detail and present some experimental
results to demonstrate the benefits of the blocking scheme. In section 4, we discuss
a heuristic for boosting the robustness of BILUC (or any ILU) preconditioner and
present experimental results to demonstrate its effectiveness. Section 5 includes a
brief experimental comparison with some contemporary ILU-based preconditioners.
Section 6 contains concluding remarks and possible directions of future investigations.

2. Overview of preconditioning scheme. Figure 1 gives an overview of the
shared-memory parallel preconditioning scheme based on BILUC factorization. Note
that the parallelization strategy is aimed at exploiting only a moderate degree of
parallelism, suitable for up to 8-16 cores, depending on the problem size. A scalable
distributed-address-space parallel ILU-based preconditioning would require additional
algorithmic techniques [33, 37] and is being pursued as a continuation of the work re-
ported in this paper. Therefore, parallelism is not the primary concern in this paper,
and we will discuss parallelism minimally and only when necessary for a clear descrip-
tion of the overall algorithm. Nevertheless, BILUC’s mild parallelism is important
for its use in a practical industrial-strength solver like WSMP [28]. A shared-memory
parallel implementation will still be relevant in a highly-parallel distributed scenario
because we expect this algorithm to be used in each of the multithreaded MPI pro-
cesses.

The overall solution process consists of three major phases, namely, preprocessing,
numerical factorization, and solution. In this paper, we primarily focus on preprocess-
ing and preconditioner generation. Standard preconditioned Krylov subspace solvers
are used in the solution phase; however, the routines for the solution of triangular

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU A307

Input Coefficient Matrix

Is sufficiently
iagonally dominant? @
Yes
N 3] BILUC factorization
@ Y j : in independent subtrees
Matching—based permutation to i i
rectify poor diagonal dominance i ; @
Construct Schur complement
matrix corresponding to

separator vertices

Is number of threads (p) > 1

W | ®

‘ Sparsify Schur complement|

Partition graph into p parts and 3 : @
perform symmetric permutation : Complete factorization of
sparsified Schur complement

Perform fill-reducing ordering 1 j
in each partition j j

Preprocessing Numerical Factorization

Fic. 1. An overview of BILUC-based preconditioning.

systems involving the incomplete factors for preconditioning work with blocks instead
of individual nonzeros.

2.1. Preprocessing. The preprocessing phase consists of multiple steps, as
shown in Figure 1.

First, if the matrix has poor diagonal dominance, then it is subject to permutation
to either improve its diagonal dominance or to mitigate the impact of poor diagonal
dominance. For matrices with less than 90% structural symmetry, we use a maximum
weight bipartite matching (MWBP) [15, 30] to compute an unsymmetric permutation
of rows or columns that maximizes the product of the diagonal entries. Thus, the
permuted matrix that is factored is more diagonally dominant than the original one.
If the original matrix is nearly structurally symmetric, then often the destruction of
structural symmetry washes out the advantages of improved diagonal dominance from
applying an MWBP-based unsymmetric permutation. Therefore, for matrices with a
symmetric or nearly symmetric structure, we apply a symmetry-preserving heuristic
to minimize pivoting and pivot-growth during factorization. This greedy heuristic
matches each index corresponding to a small or zero diagonal with another index
that could supply a suitable pivot during factorization. We permute the matrix such
that the matched indices become consecutive in the permuted matrix. We also ensure

A308 ANSHUL GUPTA

9
R 8
Elimination tree for
blockB1 7 T
1 2 4 5

T B » 1
Jjel e e 0 @ o o o B1
i 8 6
Bl ©¢ e e ® © e o e B3 - Fio
L2 9 5
e e e e e e o o B2
e - - s [T T T 777:[9
. e o o o o o o o B3
® © o o o 0o 0 o Lt e
e o o o o o o o B4
37
B2 e e e ®© o e o o B4
S
e o o o o o o o
64

F1G. 2. Correspondence between the partitioned (symmetrized) graph, the elimination tree, and
the reordered matriz.

that these indices stay consecutive during subsequent partitioning and reordering
steps. We scan the columns of the n x n coefficient matrix A for those with diagonal
dominance below a threshold §. A column ¢ would qualify if H‘j((illi))hl < 9. Then we
look for an unmatched index j with the highest matching score, which is a weighted
geometric mean of two quantities: (1) the ratio II‘ﬁg:g‘H and (2) the ratio of the
number of overlapping nonzero row indices in columns ¢ and j to the total number
of nonzero indices in columns ¢ and j. The idea is that columns ¢ and j will likely
end up in the same block during factorization, and swapping A(i,47) and A(j,4) will
satisfy the pivoting criterion. The reason we look for a high degree of overlap between
the nonzero locations in columns ¢ and j is that membership in the same block will
require any zero in one of these columns in a row that has a nonzero in the other
column to be stored as a 0-valued nonzero entry. Clearly, we want to minimize the
fill-in due to such padding.

Next, an undirected graph of the matrix is constructed and partitioned [26] into
p parts, where p is the number of parallel threads being used. The partitioning
(Figure 2) seeks to divide the graph into p subgraphs of nearly equal size while min-
imizing the total number of edges crossing the partition boundaries. This enables
each thread to independently factor block-diagonal submatrices corresponding to each
partition. Similarly, portions of forward and backward substitutions corresponding to
the interior vertices of the partitions can be performed independently by the threads
when applying the preconditioner withing the chosen Krylov subspace solver. The
partitioning is also useful for minimizing the interaction among threads during sparse
matrix-vector multiplication steps of the solver.

After partitioning the overall matrix, a fill reducing ordering is computed for
each of the submatrices corresponding to the p partitions. This step can be performed

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU A309

independently, and in parallel, for each submatrix. Reverse Cuthill-McKee (RCM) [9,
14] ordering is used if the incomplete factors are expected to be relatively sparse (based
on the dropping criteria); otherwise, nested dissection [20, 26] ordering is used. The
choice of ordering is based on our and others’ [16] observation that RCM generally
performs better with low fill-in and nested dissection performs better with relatively
higher fill-in.

Note that the initial coefficient matrix may undergo up to three permutations
before numerical factorization. The first of these is a possibly unsymmetric permuta-
tion to address poor diagonal dominance, if needed. Next, a symmetric permutation is
induced by graph-partitioning for enhancing parallelism, which is performed if more
than one thread is used. Finally, the portion of the graph to be factored by each
thread is reordered for fill reduction via another symmetric permutation. During the
preprocessing phase, we construct single composite row and column permutation vec-
tors that are applied to the right-hand side (RHS) and solution vectors in the solution
phase. While the second and third permutations depend solely on the sparsity pattern
of the matrix, the first one depends on the numerical values of the nonzero entries in
it and, if performed, affects the two symmetric permutations that follow.

After all the permutations have been applied to the input matrix, the final step
of the preprocessing phase is to construct elimination trees [40] from the structures
of B; + B, where B, is the ith diagonal block corresponding to the ith domain
(1 <4 < p) of the coefficient matrix (Figure 2). An elimination tree defines the task
and data dependencies in the factorization process.

Figure 2 shows the correspondence between the partitioned symmetrized graph,
the elimination tree, and the reordered matrix for the case of four threads. Note that
in the case of a single thread, there would be only one elimination tree corresponding
to the entire matrix.

2.2. Numerical factorization. The numerical factorization phase has two main
steps. The first step employs the BILUC algorithm independently on each of the do-
mains that the graph corresponding to the coefficient matrix has been partitioned
into during the preprocessing phase. Each thread follows its own elimination tree to
factor its diagonal block using the BILUC algorithm, which is described in detail in
section 3.

After all the rows and columns corresponding to the interior vertices of the
partitions are factored in the first step, a Schur complement matrix is constructed
corresponding to the remaining graph vertices that have edges traversing partition
boundaries. This Schur complement (matrix S in Figure 2) is then further sparsified
through a round of dropping, and the sparsified matrix is factored using a parallel
direct solver [27]. The sparsification of the Schur complement matrix is necessary
because it is factored by a direct solver through complete LU factorization without
any further dropping. This sparsification can use the same drop tolerance as the
preceding BILUC phase; however, we have observed that often a smaller threshold
results in better preconditioners with only a slight increase in memory use. WSMP
allows the user to define this threshold. We used half of the drop tolerance of the
BILUC phase in our experiments, which is the WSMP default.

Note that if a single thread is used, then the entire incomplete factorization is
performed in the first step by the BILUC algorithm. In this case, there is no Schur
complement computation or the second factorization step. The proportion of the
matrix factored in the second step increases as the number of threads increases because
relatively more vertices of the graph belong to separators than to interior portions

A310 ANSHUL GUPTA

of the partitions. The second step, which consists of complete factorization of the
sparsified Schur complement, does not introduce a serial component to preconditioner
computation. This factorization step, as well as the triangular solutions with respect
to this factorization, are also multithreaded. Thus, the entire numerical factorization
phase is parallel. However, the two factorization steps do have a synchronization point
between them when the Schur complement matrix is assembled. The computation-
intensive updates that contribute the numerical values to the Schur complement from
each of the domains are still computed independently in parallel; only their assembly
and sparsification to construct the input data structures for the second step are serial.
Nevertheless, as noted earlier, this approach is suitable for a small or moderate number
of threads only. This is because a larger portion of the matrix needs to be sparsified
and the factored completely as the number of threads increases. This results in an
increase in the overall number of entries that are stored, while reducing effectiveness
of preconditioner.

3. The BILUC algorithm. The BILUC algorithm is at the heart of our over-
all incomplete factorization and solution strategy. While BILUC shares the Crout
formulation with Li, Saad, and Chow’s ILUC algorithm [38], most of its key features
are different. BILUC can be expressed as a recursive algorithm that starts at the root
of an elimination tree. The elimination tree serves as the task- and data-dependency
graph for the computation. In the parallel case, each thread executes the algorithm
starting at the root of the subtree assigned to it; in the serial case, there is only one
tree. In the remainder of this section, we will drop the distinction between the subtree
of a partition and tree of the whole matrix. Instead, we will discuss the algorithm in
the context of a generic matrix A and its elimination tree.

Strictly speaking, for a matrix A with an unsymmetric structure, the task- and
data-dependency graphs are directed acyclic graphs [25]. However, all the dependen-
cies can be captured by using the dependency graphs corresponding to the structure
of A+ AT. Such a dependency graph is the elimination tree [40]. Using a tree
adds artificial dependencies and, in theory, may be less efficient than using a mini-
mal dependency graph. On the other hand, the added simplicity and the reduction in
bookkeeping costs afforded by the elimination tree more than make up for its subopti-
mality in the case of incomplete factorization, where the total amount of computation
is significantly smaller than in complete LU factorization.

3.1. Block data structures. The BILUC algorithm uses two types of blocks
that consist of contiguous rows and columns of the matrix corresponding to straight
portions of the elimination tree. In these straight portions, all parents except the
last (the one with the smallest index) have one child each. In Figure 2, vertices 7,
8, and 9 form such a straight portion. The two types of blocks are assembly blocks
and factor blocks. The assembly blocks consist of large sections of straight portions of
the elimination tree. Each assembly block typically consists of multiple smaller factor
blocks. Figure 3 illustrates assembly and factor blocks and their relationship with the
elimination tree.

Although assembly and factor blocks consist of multiple vertices in straight por-
tions of the tree (and, therefore, multiple consecutive matrix rows and columns), in
BILUC, we identify a block by its starting (smallest) index; i.e., block j refers to block
starting at index j. Therefore, in our implementation, we store only the starting index
as the sole identifier of an assembly block, along with supplementary information such
as the size of the assembly block and the number and sizes of its constituent factor
blocks.

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU A311

UA
'
- Primary Factor Blocks
[NN } LiA_t }
Assembly __ i
| = Blocks j
A
B T uj
% / [o
- TR T
z - S ksl
“g Factor
g 7 ~~| anddrop ,
B« S N
EN -
—
AN A
o 1A=t
F_
Ik s
RSN | LA i kkis-1 o jH-1
- S J
L © kkis-1
L
a) Section of Elimination Tree (b) Assembly and Factor Block data—structures

Fic. 3. A section of an elimination tree and related assembly and factor blocks.

The maximum size of the assembly blocks is user-defined. It is currently set to
40, but the algorithm chooses a value close to 40 for each assembly block such that
it contains a whole number of factor blocks. Of course, this maximum applies only
if the number of vertices in a straight portion of the elimination tree exceeds 40.
Figure 3 shows one such assembly block and the typical BILUC dense data structure
corresponding to it in detail. This block of size ¢ starts at row/column index j. The
rows and columns of this block correspond to contiguous vertices j,j+1,...,j+t—1
in the elimination tree. In this assembly block, 13-4 is the number of nonzero entries in
column j after the block has been fully assembled. This assembly requires contribution
from factor blocks containing rows and columns with indices smaller than j. Note that
due to sparsity, only a subset of such rows and columns will contribute updates to this
assembly block. Similarly, uj‘ is the number of nonzeros in row j. The nonzeros in
an assembly block can have arbitrary indices greater than j in the partially factored
coefficient matrix, but the assembly blocks are stored in two dense matrices: (1) l;‘ xt
matrix Lj‘ with columns 7,5+ 1,...,5+t—1, and (2) ¢ x uj‘ matrix UJA with rows
7,7+ 1,...,7+t—1. Note that the ¢t x ¢ diagonal block is a part of both L;-“ and
U]A. In the actual implementation, this duplication is avoided by omitting this block
from UjA. Furthermore, U JA is stored in its transposed form so that elements in a row
reside in contiguous memory locations (assuming column-major format). In addition
to L;‘ and U ;-4, the assembly block data structure includes two integer arrays, I jAL
and [JAU of sizes l;‘ and uf, respectively. These integer arrays store the global indices

of the original matrix corresponding to each row of L;‘ and each column of U]A.

A312 ANSHUL GUPTA

TABLE 1
BILUC data structures and the conventions used for their representation in this paper. Here
j<k<j+t—1landl1<s<t.

Data structure Symbol | Starting Length Width | Index
index array
Assembly block (L part) 7 j 14 ¢ r
Assembly block (U part) U JA i u;‘ t I fU
Primary factor block (L part) LE k l;‘ +j—k s IJAL
Primary factor block (U part) uf k u;‘ +Jj—k s IJAU
Reduced factor block (L part) Lr k iF s IFL
Reduced factor block (U part) uir k uf’ s IFv

The factor blocks are smaller subblocks of the assembly blocks. The factor blocks
can either correspond to natural blocks in the coefficient matrix or can be carved
out of assembly blocks artificially. Some applications yield matrices whose adjacency
graphs have natural cliques. The clique vertices are assigned consecutive indices. For
such matrices, each straight portion of the elimination tree would consist of a whole
number of sets of vertices corresponding to these cliques. The groups of consecutive
rows and columns corresponding to the cliques would then serve as natural factor
blocks. For matrices without natural cliques, each assembly block is artificially parti-
tioned into smaller factor blocks of a user-specified size, which is 4 by default in our
implementation.

Figure 3(b) shows one such factor block, its relationship with its assembly block,
and the BILUC dense data structures corresponding to typical assembly and factor
blocks. The factor block shown in the figure is of size s and corresponds to row and
column indices k,k + 1,...,k + s — 1 of the coefficient matrix. The primary factor
block is a part of the assembly block. It consists of two dense matrices, (ZJA + 37—
k) x s matrix Lf with columns k,k +1,...,k+s—1, and s x (u]A + j — k) matrix
UL with rows k,k+1,...,k+s—1. L} and U} are submatrices of L' and U,
respectively.

After factorization, certain rows of Lf and columns of U} in the primary factor
block are dropped (section 3.3) based on the dropping criteria, and the result is a
reduced factor block. In this reduced factor block, £ is the number of nonzero entries
remaining in column k after the primary factor block has been factored and rows of
Lf with small entries have been dropped. Similarly, ukF is the number of nonzero
entries remaining in row k after factorization and dropping in UkF . As a result of
dropping, Z,I: < lj‘ + 7 — k and ug < uf + 7 — k. Like the assembly and primary
factor blocks, the resulting reduced factor block is stored in two dense matrices: (1)

IF x s matrix LiF with columns k,k+1,...,k+s—1, and (2) s x uf matrix UF" with
rows k,k+1,...,k + s — 1. In the implementation, the transpose of U;! is stored.

Accompanying integer arrays, [,f L and I,f U of sizes Z,I: and ukF , respectively, store
the global indices of the original matrix corresponding to each row of L;CF and each
column of U}F".

Table 1 summarizes the key BILUC data structures and the convention used in
this paper to denote their generic sizes and indices. Note that the table’s convention
applies to the case when factor block k is a part of assembly block j. The lengths
and the index arrays of the primary factor blocks given in this table are not valid for
unrelated assembly and factor blocks.

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU A313

3.2. Incomplete factorization with pivoting. The I arrays described in
section 3.1 store the mapping between the indices of the global sparse coefficient
matrix and the contiguous indices of the dense assembly and factor block matrices.
Therefore, entries in the assembly and factor blocks can be referred to by their local
indices during the factorization and dropping steps. Figure 4 shows the assembly and
factor blocks corresponding to Figure 3(b) with local indices only.

LU factorization within an assembly block proceeds in a manner very similar
to complete supernodal [42] factorization. Partial pivoting is performed based on
a user-defined pivot threshold «. For most matrices that are not strictly diagonally
dominant, pivoting plays an important role in maintaining stability of the ILU process
and, in many cases, may be necessary even if a complete LU factorization of the same
matrix is stable without pivoting [8].

When attempting to factor column 7 (0 < ¢ < t) in an assembly block, the
BILUC algorithm scans this column of L;‘ to determine g = max;<m<¢ |L3»4 (m,i)| and
h = max; ., < |L3“(m, i)|. Now g is the entry with the largest magnitude in column

1 within the lower triangular part of the pivot block of Lj‘ and h is the entry with
the largest magnitude in column ¢ below the pivot block. If ¢ > ah, then a suitable
pivot has been found in column i. The pivot element is brought to the diagonal
position via a row interchange and the factorization process moves to column ¢ + 1.
If a suitable pivot is not found in column ¢, then subsequent columns are searched.
If a suitable pivot element is found within the pivot block, then it is brought to the
diagonal position Lf(i, i) via a column and a row interchange. It is possible to reach
a stage where no suitable pivots can be found within the assembly block. In this

Primary factor blocks

Pivot <---- Previously factored
block
r=---- Just factored
[S~.
. __>> Tobefactored
i
Pivot search 3 Factor and drop N ‘ |FkU
region for : T\
factor block k 1 .] I E
! N U’ k
, = -
F |
L k !
A |
Lj |
N Reduced
L'k Factor block
0 k- t-1
Assembly block —

Fic. 4. A typical assembly and factor block in the BILUC algorithm.

A314 ANSHUL GUPTA

situation, the unfactored rows and columns of the current assembly block are merged
into its parent assembly block. Such delayed pivoting is commonly used in complete
multifrontal factorization and increases the number of rows and columns eligible to
contribute the pivot element. The reason is that some rows of L;‘ and columns of
UJA with global indices greater than or equal to j + ¢ would become part of the pivot
block in the parent assembly block. Any row-column pair can potentially be delayed
until it reaches the root of the elimination tree, where all elements in the remaining
unfactored portion of the matrix are eligible pivots.

Excessive delayed pivoting can increase fill-in and the computation cost of fac-
torization. A smaller pivot threshold a can reduce the amount of delayed pivoting
at the cost of higher pivot growth. In WSMP’s BILUC implementation, we use two
pivoting thresholds in order to strike a balance between minimizing growth and fill-in
due to delayed pivoting. A secondary pivot threshold (is defined to be equal to
0.1a. The pivot search within the pivot block proceeds as described earlier with the
threshold . However, while searching for the first pivot that satisfies the o threshold,
the algorithm keeps track of the largest magnitude element encountered in the pivot
block that satisfies the relaxed § threshold. If the end of the pivot block is reached
without any element satisfying the « threshold, then the largest entry satisfying the
[threshold is used as a pivot, if such an entry is encountered at all. The algorithm
resorts to delayed pivoting only if the 8 threshold too cannot be satisfied within the
current pivot block. In our experiments, we observed that the fill-in resulting from
this dual threshold pivoting strategy was close to the fill-in when only 8 was used as
a single pivoting threshold. However, the quality of the preconditioner with the dual
threshold preconditioner was significantly better and was only slightly worse than the
case where only a was used as a single threshold.

Factorization in an assembly block takes place in units of factor blocks. After
a primary factor block is fully factored, it undergoes sparsification via the dropping
strategy discussed in section 3.3 to yield a reduced factor block. New column and
row index sets I¥' and I™V which are subsets of the corresponding I4F and I4Y,
respectively, are built. Finally, the data structure for the reduced factor block is
stored for future updates and for use in the preconditioning steps of the iterative
solver. After all the factor blocks in an assembly block are factored and any delayed
pivots are merged with the parent assembly block, the memory associated with the
current assembly block is released.

3.3. Dropping and downdating. The factorization process described in sec-
tion 3.2 is essentially the same as the one used is used in WSMP’s general direct
solver [27]. Tt is used in the BILUC algorithm in conjunction with the dropping and
downdating strategy described below.

WSMP implements a dual dropping strategy of the form introduced by Saad [47].
Two user-defined thresholds 7 and «y are used. Threshold 7 determines which entries
are dropped from the factor blocks based on their magnitudes. Threshold + is the
desired fill factor; i.e., the BILUC algorithm strives to keep the size of the incomplete
factor close to « times the number of nonzeros in the original matrix.

After factoring the rows and columns corresponding to a factor block, the BILUC
algorithm performs a dropping and downdating step before moving on to the next
factor block in the same assembly block. The s x s diagonal block is kept intact.
Beyond the diagonal block, a drop score dscry, (i) is assigned to each row i of L and
dscry (i) to each column i of U in the primary factor block. Specifically,

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU A315

1
(3.1) dserp (i) = - > |LE G m)| s <i <t = (k-)
m=0,s—1
and
, 1 Ub(m,i) .
(3.2) dscry (i) = B UM ,s§z<uf—(k‘—j).
m=0,s—1 4 ’

An entire row i of L,f is dropped if dscrp (i) < 7. Similarly, an entire column
i of Ul is dropped if dscry (i) < 7. Essentially, rows of L¥ and columns of U} in
the primary factor block k are dropped if the average relative magnitude of these
rows and columns is below drop tolerance 7. Note that, for computing the contri-
bution of an element of a factored row or column to the drop score, we consider
its magnitude relative to that of the corresponding diagonal entry. Since factoriza-
tion is performed columnwise, each diagonal entry LY (m,m) in the context of (3.1)
is 1; therefore, dscrp(i) is simply the average magnitude of entries in row i of Lf .
On the other hand, dscry (i) for column i of UF is the average of the magnitude
of UF(m,i)/UEF (m,m) for 0 < m < s. Other dropping strategies have been used
for incomplete factorization. These include dropping based on the magnitude of an
element relative to the 2-norm or co-norm of its column [47, 49] or dropping based
on Munksgaard’s criterion [44]. We found dropping based on magnitude relative to
the corresponding diagonal entry to be slightly better than the other two on aver-
age for the problems in our test suite. Any of these dropping strategies are easy to
incorporate in the BILUC framework. The BILUC algorithm, because of its Crout for-
mulation, is also well-suited for dropping based on the growth of inverse of triangular
factors [3].

After dropping rows and columns based on drop scores, the number of remaining
rows and columns in the primary factor block may still exceed v times the number of
entries in row and column k of the original matrix. If this is the case, then additional
rows and columns with the smallest drop scores are dropped from LkF and U ,f .

Note that even though factorization is performed in steps of factor blocks of size
s, the pivot search spans the entire remaining assembly block, which typically extends
beyond the boundary of the current factor block. Therefore, columns of the assembly
block beyond the boundary of the current factor block must be updated after each
factorization step if entries from these columns are to serve as pivot candidates. Since
small entries are not dropped until the entire factor block is factored, the columns of
the assembly block beyond the boundary of the factor block may have been updated
by entries that eventually end up being dropped. As Chow and Saad [8] point out,
dropping after the updates results in a higher error in the incomplete factors than
dropping before the updates. Therefore, BILUC needs to undo the effects of the
updates by the dropped entries.

In WSMP’s BILUC implementation, rows of Lf and columns of U} that are
eligible for dropping are first tagged. Then, the portion of assembly block L;‘ that
has been updated by the factor block L is downdated by the rows of Lf that are
tagged for dropping. This ensures that only those entries that are present in the
final incomplete factors effectively participate in the factorization process. After the
downdating step, reduced factor block L' is constructed from the primary factor
block L by copying only the untagged rows from the latter to the former. The U;F
matrix of the reduced factor block is constructed similarly from Uf". Index arrays I}F'L
and [,f U are constructed as subsets of I]AL and [JAU, respectively, containing indices

A316 ANSHUL GUPTA

of the rows and columns of the primary factor block retained in the reduced factor
block. The reduced factor block comprising L;CF , U ,’CF , 1 ,f L and I ,f U is stored as part
of the incomplete factor and for future updates of the ancestral supernodes.

Dropping entire rows and columns of factor blocks instead of individual entries
has an impact on both the size and the quality of the preconditioner because the drop
tolerance is applied inexactly in BILUC. We look at this impact experimentally in
section 3.6. For the same drop tolerance 7, if fill factor is disregarded, then BILUC
results in slightly larger factors than ILUC without blocking. The reason for the extra
nonzeros in the incomplete factors is that the block columns may retain a substantial
number of zero or small entries, which are discarded in the nonblocked version of
incomplete factorization with the same drop tolerance. Small or zero entries, for
example, can be retained in a row of a supernode that has a drop score greater than
the drop tolerance due to a single large entry. Similarly, BILUC may drop entries
whose magnitude exceeds the drop tolerance by a factor up to s because a row or
column in a primary factor block with a single entry of magnitude s7 will be dropped
if all other entries in that row or column are zero.

The use of small factor blocks (4 or the size of the natural clique, whichever is
larger) is important for maintaining the precision of dropping. A small s ensures
that large entries are not dropped and too many small entries are not retained. In
contrast, large assembly blocks (up to size 40 by default) provide a bulk of the benefit
of dense computations and permit pivot search over a larger area of the matrix to
minimize costly delayed pivoting. This is the rationale behind BILUC’s two-tier
blocking scheme.

3.4. Constructing assembly blocks. As mentioned previously, BILUC is a
recursive algorithm. It follows the elimination tree in depth-first order. So far, we have
described the various steps involved in processing an assembly block, i.e., factorization
with pivoting, dropping, downdating, and constructing the reduced factor blocks. In
this section, we describe how new assembly blocks are constructed using previously
computed reduced factor blocks.

Once the elimination tree is constructed, the global indices of the pivot block of
each assembly block are known; for example, the pivot block of the assembly block
shown in Figure 3 includes indices 7,5 + 1,...,7 +t — 1. However, the sizes l;‘ and
uf and the indices in I JAL and [jAU are determined only when the assembly block
is actually constructed, which happens just before it is factored. The reason is that
the indices in I** and I:'V depend on the indices of the reduced factor blocks that
update the assembly block j, and the sizes and indices of these reduced factor blocks
cannot be predicted in advance due to dynamic pivoting and dropping.

If the starting index j of an assembly block is a leaf in the elimination tree,
then the assembly block simply consists of the corresponding rows and columns of the
coefficient matrix. I]AL is simply the union of row indices of columuns j, j+1,...,7+t—1
of A and IJAU is the union of column indices of rows j,j + 1,...,5+t—1 of A. All
entries in Lf and U, JA that are not in A are filled with with zeros.

Each assembly block that does not start at a leaf has a linked list of contributing
reduced factor blocks associated with it. At the beginning of the BILUC algorithm,
all lists are empty. Consider a factor block k that is a part of an assembly block j
of size t. Let v = I{L(ql) be the smallest index greater than or equal to j 4+t in
IFL and w = IFY(r;) be the smallest index greater than or equal to j + ¢ in IFU.
When the reduced factor block k is created, then it is placed in the linked list of the
ancestor assembly block whose pivot block contains the index z = min(v, w). Here z
is the smallest index greater than the pivot indices of assembly block j. The ancestor

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU A317

assembly block is the first assembly block that will be updated by factor block k. Let
the starting index of the ancestor block be j; and its size be t;. Then j; < z < j1 +1t71.

When the BILUC process reaches a nonleaf assembly block 77 (i.e., j1 is ancestor
of at least one other assembly block) of size 1, the first step is to construct I ﬁL and
IﬁU. I]‘-?L is the union of (1) {j1,71+1,...,j1 +t1 — 1}, (2) all indices greater than or
equal to ji + ¢ in columns j1,71 +1,...,71 +t1 — 1 of A, and (3) all indices greater
than or equal to j; in I ,f L for all k such that the reduced factor block k is in the linked
list of assembly block j;. Similarly, I]‘»‘IU is the union of (1) {j1,71+1,...,51 +t1 — 1},
(2) all indices greater than or equal to j; +¢; in rows ji,j51 +1,...,41 +¢1 — 1 of A,
and (3) all indices greater than or equal to j; in IF'V for all k such that the reduced
factor block k is in the linked list of assembly block j;.

Once I]‘?L and []’-‘}U have been constructed, the size of assembly block j; is known.
It is then allocated and is populated with corresponding entries from A, while the
remaining entries are initialized to zeros. Next, contribution matrices from each of
the reduced factor blocks in its linked list are computed and are subtracted from Lﬁ
and U J‘»‘l‘. Figure 5 shows how the contribution matrices are computed from a reduced
factor block. Let g and 79 be such that I,fL(qg) is the first index in I,fL greater
than or equal to j1 + t1, and IF'U(rq) is the first index in I}V greater than or equal
to j1 + t1. As shown in the figure, q1, g2 and rq, 79 identify the portions of L;CF and
U ,'fF that would be multiplied to create the contribution matrices to be subtracted
from Lﬁ and U Jf‘l‘. The darker shaded portion of L;CF is multiplied with the lighter
shaded portion of U,’CF to compute the contribution matrix for Uﬁ. Similarly, the
darker shaded portion of U,’ﬁF is multiplied with the lighter shaded portion of L;cF
to compute the contribution matrix for Lﬁ . In general, the global row and column
indices associated with the contribution matrices are subsets of the index sets I ﬁL and
I ﬁU associated with Lﬁ and Ufl‘, respectively. Therefore, the contribution matrices
are expanded to align their global row and column index sets with I ﬁL and [J‘»‘}U before
subtraction.

expand and subtract

B t R

L 0 1 -
0 0~ :
FU . !
I |
A | up
s 1 i
: A !
YT - mat-mult R
_____ 1
q t----
2 expand
and
subtract
mat-mult "~~~ -
a
FL 1
Ik
Contributing Reduced Factor Block o _
(starting at index k) Contribution Matrices

Ancestor Assembly Block starting atj1 >k

F1G. 5. Reduced factor block k updating its first ancestor assembly block j1.

A318 ANSHUL GUPTA

After extracting the contribution from reduced factor block k, if both ¢o and rs,
as described above, exist (i.e., both I,f L and I,f U have at least one index greater
than or equal to j; + 1), then the reduced factor block is placed in the linked list
of assembly block jz of size t such that zo = min(IF%(gs), IFY (rs)) lies in the pivot
block of j3. Assembly block jo would be the second assembly block to be updated
by factor block k. This update would take place when the BILUC process reaches
J2 during its DFS traversal of the elimination tree. Figure 6 illustrates this update
process, which is very similar to the first update by factor block k shown in Figure 5,
except different portions of Ljf" and U} are used.

When all the reduced factor blocks in the linked list of the assembly block being
constructed are processed, then the assembly block is ready for the factorization
process described in section 3.2. Some of these contributing factor blocks end up in
the linked lists of other assembly blocks. For other contributing blocks, this may be
the last assembly block. After factorization, dropping, and downdating, the current
assembly block yields its own fresh set of reduced factor blocks which are placed in
the appropriate linked lists.

3.5. BILUC—putting it all together. Figure 7 summarizes the BILUC al-
gorithm whose various steps are described in detail in sections 3.2-3.4. The recursive
algorithm has the starting index of an assembly block as its primary argument. It
is first invoked simultaneously (in parallel) in each domain with the root assembly
block of the elimination tree corresponding to the respective submatrix. The starting
index of an assembly block either is a leaf of the elimination tree or has one or more
children. It has exactly one child in the straight portion of the elimination tree, and
when it has more than one child, then the tree branches.

The first key step in the BILUC algorithm for a given assembly block j is to
recursively invoke itself for all the children assembly blocks of j. It then assembles
the row and column index sets I]AL and [jAU, followed by actually constructing the

expand and subtract

0 2 =
r r 0 .
sk \ ‘
| k :
: : I A
- D : Uj
1 = I 2
L1 Uk A :
\ \/ﬂ mat-mult N 1
| » pid 2
k- | expand
\ and
Q- o subtract
E \\\\\:\\ I
L'k mat-mult~- 2.
N
L L LA
FL 2
Ik
Contributing Reduced Factor Block
(starting at index k) o))))
Contribution Matrices Ancestor Assembly Block starting at index i

FiG. 6. Reduced factor block k updating its second ancestor assembly block ja.

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU A319

begin function BILUC (j)
for each assembly block ¢ that is a child of assembly block j
BILUC (i);
end for

1

2

3

4

5. Initialize row and col index sets I jAL and
6

7

8

9

1 AU;
Allocate Lf and UJA based on sizes of IfL and IfU;
Initialize L;‘ and UJA by copying entries from A;
for each k', such that reduced factor block k' is in j’s linked list
. Remove k' from j’s linked list;
10. Compute contribution matrices from L;j and UﬁJ and update L? and UJA;
11. Insert k" in linked list of its next assembly block, if any;
12. end for

13. for each k, such that k is a primary factor block in j

14. Perform factorization with pivoting on block k;

15. Create reduced factor block k after dropping and downdating;

16. Let v be the smallest index > j +t in I,fL and I,fU;

17. Insert k in linked list of assembly block containing index v in its pivot block;
18. end for

19. Merge unfactorable portions of Lf and U jA in j’s parent assembly block.

20. return;

21. end function BILUC

Fic. 7. Outline of the recursive BILUC algorithm. Invoking BILUC with the root assembly
block of an elimination subtree computes a block ILU factorization of the submatriz associated with
the subtree.

assembly block Lf and U]’-47 as described in section 3.4. Lj‘ and U JA are constructed
from the entries of A that lie within these blocks and from the contribution matrices
from reduced factor blocks of some of j’s descendants in the elimination tree. A
reduced factor block k' contributes to assembly block j if and only if I5% or IEV
contains at least one index within 7,5 +1,...,7+¢t—1. All such reduced factor
blocks would have already been placed in the linked list of assembly block j by the
time the BILUC algorithm reaches this stage. After the contribution from reduced
factor block k in the linked list of assembly block j is used in the construction of Lf
and U. 7‘-4, the factor block is placed in the linked list of the next assembly block that it
will contribute to, if such an assembly block exists. When contributions from all factor
blocks in the assembly block j’s linked list have been absorbed, the assembly block is
factored in units of its own factor blocks. The end result of this process, described in
detail in sections 3.2 and 3.3, is a set of fresh reduced factor blocks. These are placed
in the linked lists of their respective first target assembly blocks that they will update.
Finally, any unfactorable portions of Lj‘ and U]A where a suitable pivot could not be
found are merged with the assembly block that is the parent of j in the elimination
tree. This completes the BILUC process for a given assembly block identified by its
first index j.

3.6. Experimental results. We now describe the results of our experiments
with the BILUC algorithm highlighting the impact of blocking and block sizes on
memory consumption, convergence, factorization time, solution time, and overall per-
formance. Table 2 lists the matrices used in our experiments. Most of these matrices
are from the University of Florida sparse matrix collection [10]. The remaining ones

A320 ANSHUL GUPTA

TABLE 2
Test matrices and their basic information.

H Matrix [Dimension [Nonzeros [Application H
1. Jacobian 137550 9050250 | Circuit simulation
2. af23560 23560 484256 | CFD
3. bbmat 38744 1771722 | CFD
4. ecl32 51993 380415 | Semiconductor device simulation
5. eth-3dm 31789 1633499 | Structural engineering
6. fullJacobian 137550 | 17500900 | Circuit simulation
7. matrix-3 125329 2678750 | CFD
8. mixtank 29957 1995041 | CFD
9. nasasrb 54870 2677324 | Structural engineering
10. opti_andi 41731 542762 | Linear programming
11. poisson3Db 85623 2374949 | 3D Poisson problem
12. venkat50 62424 1717792 | Unstructured 2D Euler solver
13. xenon2 157464 3866688 | Material science
14. matrix12 2757722 | 38091058 | Semiconductor device simulation
15. matrixTest2_10 1035461 5208887 | Semiconductor device simulation
16. seid-cfd 35168 | 14303232 | CFD

are from some of the applications that currently use WSMP’s general sparse direct
solver [27]. The experimental setup is described in section 1.4. Recall that we use
Morgan’s GMRES variant [43] that augments the saved subspace with approximate
eigenvectors corresponding to a few smallest eigenvalues of the matrix. For our imple-
mentation, GMRES(%,!) denotes restarted GMRES with at least k subspace vectors
and at most [eigenvectors. The total space allocated for subspace and approximate
eigenvectors is m = k + 2l. The reason why [eigenvectors require 2/ space is that
each eigenvector can have a real and an imaginary part. Unused eigenvector space
is used for storing additional subspace vectors; therefore, the actual number of inner
GMRES iterations before a restart is triggered is between k and m. The default for
the maximum number [of approximate eigenvectors is set to vk — 1 in WSMP.

For our first experiment, we solved systems using the matrices in Table 2 and
RHS vectors containing all ones. Other than the maximum factor block sizes, default
values of all other parameters were used. We first turned blocking off by setting
the maximum factor block size to 1, which would result in an algorithm similar to
Li, Saad, and Chow’s ILUC algorithm [38]. We then solved the systems with the
maximum factor block size set to 2, 3, 4, and “unlimited.” In the “unlimited” case,
natural cliques are used as factor blocks if they contain more than 4 vertices; otherwise,
factor blocks of size 4 are used. In WSMP, the assembly block size is chosen to be the
smaller of 40 and 10 times the size of the maximum factor block. Note that in the
case of maximum factor block size of 1, which we use as our ILUC emulation, WSMP
would still use assembly blocks of size 10 and is likely to be somewhat faster than
the original unblocked ILUC algorithm. As a result, BILUC’s performance advantage
over conventional unblocked incomplete factorization may be even bigger than what
our experiments show.

We use GMRES(100,9) with at least 100 subspace vectors and at most 9 approx-
imate eigenvectors. We observed the preconditioner generation (incomplete factoriza-
tion), solution (GMRES iterations), and the total time, as well as factorization fill-in
and the number of GMRES iterations. For each of these metrics, we computed the
ratio with respect to the unblocked case. Figure 8 shows the average of these ratios
over the 16 test matrices.

Blocking has the most significant impact on preconditioner generation time, as
shown by the blue bars in Figure 8. During incomplete factorization, blocking helps

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU A321

111 . Factor time
10— e T T T T T Solve time
0.9+ . Total time
— Fill=in
— lter. count

Mean ratio to the unblocked case

2 3 4 natural clique size

Maximum factor block size

Fic. 8. Some performance metrics as functions of mazximum block size relative to the unblocked
case.

in two ways. First, the use of blocks reduces the overhead due to indirect addressing
because a single step of indirect addressing affords access to a whole block of nonzeros
instead of a single element. Since a static symbolic factorization cannot be performed
for incomplete factorization, updating a sparse row (column) with another requires
traversing the index sets of both rows (columns). Consider the updating of an as-
sembly block of width ¢ by a reduced factor block of width s. This would require a
single traversal of a pair of sets of indices. The same set of updates in a conventional
nonblocked incomplete factorization can require a traversal of up to st pairs of index
sets because each of the ¢t rows and columns of the assembly block could potentially
be updated by all s rows and columns of the factor block. The second benefit of
blocking is that it permits the use of higher level BLAS [12,; 13], thus improving the
cache efficiency of the implementation. Note that when we refer to the use of higher
level BLAS, we do not necessarily mean making calls to a BLAS library. Typically,
the blocks in sparse incomplete factors are too small for BLAS library calls with high
fixed overheads to be efficient. The key here is to use the blocks to improve spatial
and temporal locality for better cache performance, which we achieve through our
own implementation of lightweight BLLAS-like kernels, instead of making calls to an
actual BLAS library. Figures 5 and 6 show how matrix-matrix multiplication is the
primary computation in the update process.

Blocking has a less dramatic effect on GMRES iteration time. Some gains in
efficiency are offset by increase in operation count due to slightly larger factors that
result from blocking. On the other hand, the total iteration count tends to drop
slightly as blocks get larger because more nonzeros are stored. In our experiments,

A322 ANSHUL GUPTA

the net effect of all these factors was that solution time increased for very small blocks,
for which the bookkeeping overhead associated with blocking seems to have more than
offset the small gains. For larger block size, the solution time fell. The overall time
to solve the systems recorded almost 50% reduction on an average in our test suite.

Within limits, there is a trade-off between incomplete factorization time and the
iterative solution time in a typical preconditioned Krylov method. Denser, costlier
preconditioners would generally result in fewer iterations, and vice versa, as long as
the added density reduces error due to dropping and the increase in solution time with
respect to the denser preconditioner does not dominate the time saved due to fewer
iterations. There would be an optimum preconditioner density (and a corresponding
optimum drop tolerance) for which the total of factorization and solution time would
be minimum. Since blocking can significantly reduce incomplete factorization time,
but has a more muted effect on GMRES iterations’ time, it has the potential to change
the optimum drop tolerance and preconditioner density for achieving the least overall
factorization and solution time.

In our next set of experiments, we compare ILUC and BILUC for different drop
tolerance values. For these experiments, we chose seven drop tolerance (7) values in
the range of 1072 and 1075. For each of these drop tolerance values, the bars in Fig-
ure 9 show the average of the 16 matrices’ incomplete factorization times normalized
with respect to the ILUC factorization time with 7 = 1073 on the logarithmic scale
on the left. The line graphs show the total factorization and solution time relative to
the total ILUC time with 7 = 1073 on the linear scale on the right. The numbers of
cases out of 16 in which the algorithms failed to converge are shown at the top.

The results show that BILUC factorization is typically two or three times faster
than ILUC and its speed advantage over ILUC is more pronounced at smaller drop
tolerances. The figure also shows that BILUC can typically use a drop tolerance that
is at least an order of magnitude lower and still compute an incomplete factorization

#Failures 87 65 4 4 12 00 00 00
I BILUC
10. :E —— factorizatior
7.0 I ILuc
50 15 factorizatior
R et
20 BILUC
total
©
€ 20—+
= ILUC
S total
E = r 2
<
N 1.0 ©
<] 1
got W E
©
2os4 N s
g 04T 2
4 | Frl1s
03 . <
14
0.2 —
0.1 —

le-2 3e-3 le-3 3e-4 le-4 3e-5 le-5

Drop tolerance

Fi1c. 9. Relative factorization times of ILUC and BILUC algorithms as functions of drop
tolerance.

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU A323

in about the same time as ILUC. The impact of this can be seen on the robustness and
the total of factorization and solution time of the preconditioners. A drop tolerance of
1073 results in the best overall time for ILUC with a 1200-iteration limit on restarted
GMRES. However, it can solve only 75% of the problems in the test suite with this
drop tolerance. Both ILUC and BILUC are able to solve 100% of the problems with
tav = 10~%. However, ILUC is about 50% slower at this value of 7 compared to
tau = 1073. On the other hand, for our test suite, tau = 10™* coincides with the
smallest total time for BILUC, which is more than twice as fast as ILUC for this value
of 7.

Using smaller drop tolerances, which BILUC is well-suited for, can reduce the
number of iterations and help some hard-to-solve problems converge. However, re-
ducing the drop tolerance increases the size of incomplete factors and total memory
consumption. The BILUC algorithm’s ability to efficiently work with small drop tol-
erances has interesting implications for restarted GMRES [50], which is most often
the Krylov subspace method of choice for solving general sparse linear systems. Con-
sider a sparse n X n coefficient matrix A with nnz, nonzeros. Let d be the average
row-density of A, i.e., nnzay = dn. Let v be the effective fill factor, i.e., the number
of nonzeros in the incomplete factor, nnzp = ynnzy = ydn. The number of words
of memory M required to solve a system Az = b using GMRES(m) preconditioned
with the incomplete factor of A, where m is the restart parameter (or the number of
subspace vectors stored) can roughly be expressed as

(3.3) M=nx(K+m+d+~d).

Here K is a small constant, typically around 3 in most implementations. Now the
drop tolerance can be changed to obtain a denser or a sparser incomplete factorization
with a different effective fill factor of 4/ while keeping the overall memory consumption
M unchanged if we alter the restart parameter of GMRES to m’ such that

nXx (K4+m+d+vyd) =nx(K+m' +d++'d)
or
(3.4) m' =m+d(y—7+").

Similarly, if we change the restart parameter from m to m’, then we can keep the
overall memory constant by changing the effective fill factor to 7' given by

(3.5) Y =7+ (m—m')/d.

We conducted two sets of experiments to study the trade-off between fill-in and the
restart parameter. For these experiments, we measured the number of iterations and
factorization, solve, and total times while adjusting the drop tolerance (and therefore,
the effective v) and the GMRES restart parameter according to (3.4) and (3.5) so
that the total memory remained unchanged. For these experiments, we control the
fill-in by changing only the drop tolerance. The total memory allocated for subspace
and approximate eigenvectors is m = k + 2[, and this is the m that corresponds to
the one in (3.3)—(3.5).

In addition to GMRES with different restart parameters, our experiments also
include short recurrence methods such as BiCGStab [54] and TFQMR [19] that do not
store the subspace explicitly and use only a small fixed number of vectors for working
storage. We use m = 3 for BiCGStab and TFQMR. For one set of experiments, we

A324 ANSHUL GUPTA

determined the drop tolerance that (roughly) led to the best overall time for BiCGStab
for each matrix and measured the corresponding effective fill factor. We then ran
TFQMR with the same preconditioner that BICGStab used and GMRES(k,!) for six
different restart values m’ while adjusting the drop tolerance such that ~' satisfied
(3.5). The results were normalized with respect to BiCGStab results. Figure 10 shows
a plot of the geometric means of these normalized values over all 16 test cases. The
results indicate that denser preconditioners combined with small restart parameter
values, or even a short-recurrence method, resulted in significantly faster convergence
and overall solution compared to the combination of sparser preconditioners and larger
restart parameter values.

For our next experiment, we started with the best drop tolerance for GMRES
(100,9) and used the corresponding effective fill factor as our base v. We then re-
duced restart parameter and the drop tolerance it such that the effective fill factor v/
satisfied (3.5). The results of this experiment are shown in Figure 11. Once again, the
results indicate that investing in a denser ILU preconditioner rather than subspace
vectors is a better use of memory. In fact, BICGStab seems to work almost as well as
GMRES when memory for storing the subspace vectors is diverted to create denser
ILU preconditioners. Among GMRES variants, moderate restart values dramatically
outperform large restart values when memory is taken into account.

In both sets of constant-memory experiments, after bottoming out at m = 46 (i.e.,
k = 36,1 = 5), GMRES iteration count starts increasing as more memory is diverted
to the incomplete factors from subspace vectors to the factors. This is probably

No. of iterations
Factor time

Solve time

Total time

GMRES GMRES GMRES GMRES GMRES GMRES BiCGStab TFQMR
(1009) (818 (647) (496) (365 (254

Fi1c. 10. Relative performance of restarted GMRES variants, BiCGStab, and TFQMR under
constant total preconditioner and solver memory.

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU A325

because very small subspaces are ineffective in advancing the GMRES algorithm even
with good preconditioners. As a result, BICGStab usually outperforms GMRES with
a small restart parameter in the constant-memory scenario.

4. Selective transposition. The BILUC algorithm performs threshold partial
pivoting, as described in section 3.2. The worst-case pivot growth for Gaussian elim-
ination with partial pivoting is 2"~! for an n x n dense matrix [32]. For incomplete
factorization of a sparse matrix, the worst case would be 2!~!, where [is the maximum
number of nonzeros in a row of L or column of U. When using a threshold a < 1,
the worst-case pivot growth could be higher by another factor of ﬁ Recall that
threshold « permits an entry Lf(i,i) in the diagonal position as long as its magni-
tude is greater than « times the largest magnitude of any entry in column 7 of L;‘. In
practice, factoring a matrix from a real problem is unlikely to result in pivot growth
anywhere close to the worst-case bounds; however, it is reasonable to expect that a
smaller ratio of [LZ'(,7)| to the largest magnitude of any entry in column i of LJA is
likely to result in higher growth. This ratio is likely to be lower for matrices with
a smaller degree of diagonal dominance along the columns. Smaller diagonal domi-
nance along columns is also likely to increase the number of row interchanges to meet
the pivoting threshold and therefore result in higher fill-in and overall factorization
time.

We conjectured that row pivoting (i.e., scanning columns to search for pivots and
interchanging rows) would yield smaller and more effective incomplete factors for ma-
trices with higher average diagonal dominance along the columns than along the rows.

50 —+
-—— No. of iterations
45 — .
2 Factor time
40 —+ 4—— Solvetime
35 Total time

GMRES GMRES GMRES GMRES GMRES GMRES BiCGStab TFQMR
(1009) (81,8) (647) (496) (365) (254)

Fi1c. 11. Relative performance of GMRES wvariants, BiCGStab, and TFQMR under constant
total preconditioner and solver memory.

A326 ANSHUL GUPTA

Similarly, column pivoting (i.e., scanning rows to search for pivots and interchanging
columns) would be more effective if the average diagonal dominance was higher along
the rows than along columns. We verified the conjecture experimentally. Not surpris-
ingly, it turned out to be valid for both complete and incomplete LU factorization
with threshold partial pivoting. Section 4.1 describes how this observation was used
in WSMP to improve the computation time and the quality of the preconditioners.

4.1. Methodology. Recall from Figure 1 that if the coefficient matrix is insuf-
ficiently diagonally dominant, then the first preprocessing step is to reorder it via
an unsymmetric permutation based on MWBP [30] to maximize the product of the
magnitudes of the diagonal entries. Let ¢ = |Aiil/ 32,2 1Aij| be the measure of

diagonal dominance of row i and let ¢f = |Az;|/ > i |Aji| be the measure of diago-
nal dominance of column 4 of an irreducible nonsingular coefficient matrix A. If the
minimum of all ¢f’s and ¢¢'’s is less than 0.1 or if their geometric mean is less than
0.25, then we consider the matrix to be insufficiently diagonally dominant, and the
unsymmetric permutation in step 1 of the algorithm in Figure 1 is performed. If the
matrix is thus reordered, then ¢ and gi)ic values are recomputed for all 0 < ¢ < n
after the reordering.

Next, we compare the product of min(¢f) and the geometric mean of all qbf’s with
the product of min(¢{) and the geometric mean of ¢¢’s. If the former is smaller, then
we proceed with the conventional ILU factorization with row pivoting. If the opposite
is true, then we simply switch to using columns of A to populate the block rows U4
of the assembly blocks and the rows of A to populate the block columns L# of the
assembly blocks. Thus, without making any changes to the underlying factorization
algorithm or the software, we factor A” instead of A, effectively interchanging columns
of A for pivoting when needed. To summarize, we use the same row-pivoting-based
algorithm on either A or A”, depending on which orientation we expect to result in
fewer interchanges and smaller growth.

Skeel [53] showed that column pivoting with row equilibration satisfies a similar
error bound as row pivoting without equilibration. The same relation holds between
row pivoting with column equilibration and column pivoting without equilibration.
Therefore, in theory, it may be possible to achieve the same effect as factoring the
transpose by performing column equilibration, followed by standard ILU factorization
with row pivoting. We did not explore selective equilibration, partly because our
Crout-based implementation incurs no cost for switching between A and A7 and
yields excellent results, as shown in section 4.2.

4.2. Experimental results. Table 3 shows the impact of selective transposi-
tion on the size and effectiveness of BILUC factors of the 16 test matrices in our suit
of diverse test matrices. BILUC factorization of each matrix was computed, both
with and without transposition, and used in restarted GMRES. Number of GMRES
iterations, number of nonzeros in the incomplete factor, factorization time, and so-
lution time were measured and tabulated. For the experiments in this section, an
RHS vector with random numbers between 0.0 and 1.0 was used. The results of the
configuration with the fastest combined factorization and solution are shown in bold.
The middle “N or T” column indicates the choice that the solver made based on the
heuristic discussed in section 4.1. The cases in which the choice led to the better
configuration are marked with an *. The results show that in 13 out of the 16 cases,
our heuristic made the correct choice. Moreover, it averted all three failures. In the
cases in which the heuristic led to an increase in overall time, the difference between
factoring the original or the transpose of the coefficient matrix was relatively small.

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU A327

TABLE 3
Impact of selective transposition on number of GMRES iterations, incomplete factor size (mil-
lion nonzeros), factorization time (seconds), and solution time (seconds) for matrices in Table 2.

N: No transpose T: Transpose

Matrix Iter. | Factor | Factor | Solve NorT Iter. | Factor | Factor | Solve
count size time time count size time time

1 44 70.4 7.3 4.4 T* 39 63.5 6.4 3.4
2 10 4.69 .33 .05 N* 11 4.78 .34 0.06
3 55 17.7 5.6 1.9 N* fail - - B
4 25 4.31 .38 .20 T 27 5.51 57 .31
5 22 29.9 12.3 1.0 T* 28 30.4 11.6 1.2
6 49 79.0 8.3 6.0 T* 43 67.1 6.2 4.4
7 fail - - - T* 28 14.0 1.1 1.2
8 14 27.7 7.6 .62 T* 14 24.6 6.7 .54
9 260 12.9 .75 6.0 N 260 12.8 72 5.1
10 6 27.5 9.2 .73 T* 5 26.3 8.4 .60
11 26 16.4 1.12 .88 N* 26 16.3 1.12 91
12 10 11.6 .59 21 T* 9 11.9 .58 .20
13 26 41.2 4.5 1.9 N* 26 41.2 4.5 1.9
14 285 493. 94. 327. T* 260 533. 101. 288.
15 fail - - - T* 57 44.2 3.90 9.9
16 31 126. 18 4.5 N 33 116. 14.5 4.9

TABLE 4

FIELDAY matrices and their basic information.

H Matrix [Dimension [Nonzeros H
1. case2 44563 661778
2. m32bitf 194613 2225869
3. matrix12 2757722 | 38091058
4. matrixTest2_1 345150 2002658
5. matrixTest2_10 1035461 5208887
6. matrixTest2_19 2070922 | 10774594
7. matrixTest3_1 231300 1364278
8. matrixTest3_10 693904 3500181
9. matrix-0 64042 326339
10. matrix-11 384260 1687754

The test matrices used in Table 3 come from a variety of applications, and in
many cases, the difference between rowwise and columnwise diagonal dominance in
the coefficient matrix was not substantial. In order to demonstrate the effectiveness
of selective transposition more conclusively, we gathered another set of matrices from
an electrothermal semiconductor device simulation tool FIELDAY [5], which solves
six coupled PDEs governing carrier mass and energy transport in three-dimensional
(3D) semiconductor structures. The details of these matrices can be found in Ta-
ble 4. We chose this application because it often tends to generate matrices for which
transposition is critical for the success of ILU preconditioning.

Table 5 shows the effect of selective transposition on BILUC preconditioning on 10
linear systems derived from FIELDAY’s application on real 3D semiconductor device
simulation problems. FIELDAY matrices seem to have an overwhelming preference
for transposition. Our heuristic not only made the correct choice in 80% of the test
cases but it also avoided all the failures. Note that it may be possible to use column
equilibration to achieve performance and robustness improvement similar to that of-
fered by selective transposition for these matrices [53]. However, a reliable predictor

A328 ANSHUL GUPTA

TABLE 5
Impact of selective transposition on number of GMRES iterations, incomplete factor size (mil-
lion nonzeros), factorization time (seconds), and solution time (seconds) of FIELDAY problems.

N: No transpose T: Transpose

Matrix Iter. | Factor | Factor | Solve NorT Iter. | Factor | Factor | Solve
count size time time count size time time

1 fail - - - T* 280 2.99 0.12 1.33
2 fail - - - T* 40 8.48 0.95 1.60
3 285 493. 94. 327. T* 260 533. 101. 288.
4 26 18.5 1.26 1.64 T 25 18.5 1.27 1.83
5 fail - - - T* 57 44.2 3.90 9.9
6 fail - - - T* 59 89.7 8.13 20.8
7 39 11.7 0.79 1.56 N 40 11.8 0.80 1.49
8 fail - - - T* 50 26.1 2.13 5.07
9 17 2.51 0.18 0.10 T* 17 2.50 0.18 0.10
10 fail - - - T* 36 12.8 1.42 2.10

for when to use column equilibration would still be required, and it seems that our
general-purpose heuristic based on the product of the smallest and the geometric
mean of diagonal dominance in each orientation would be effective.

5. Comparison with contemporary ILU preconditioners. Section 3.6 con-
tains an extensive comparison between BILUC and our implementation of the ILUC
[38] algorithm. Since Li, Saad, and Chow [38] compare ILUC with conventional
threshold-based ILU factorization (ILUT) [2], the results in section 3.6 also serve as
an indirect comparison with ILUT. In this section, we present a brief direct or indi-
rect comparison with other recently published ILU algorithms for which either specific
performance data is available or the software is available to obtain performance data
experimentally. The following solvers are compared:

e VBARMS by Carpentieri, Liao, and Sosonkina [6], who compare it with
ARMS [51] in their paper. VBARMS is also introduced in section 1.

e HSL_MI30 by Scott and Tuma [52], who compare it with SYM-ILDL [23] in
their paper. HSL_MI30 and SYM-ILDL are two state-of-the-art precondition-
ers for symmetric indefinite systems that require pivoting. Although BILUC
is designed for unsymmetric matrices and unlike HSL_MI30 and SYM-ILDL
does not take advantage of symmetry to reduce factorization operation count
by half, we include this comparison to show that BILUC’s efficiency makes it
competitive even for symmetric indefinite systems.

e SuperLU’s threshold-based incomplete factorization by Li and Shao [39], who
compare SuperLU with ILUPACK [4] and SPARSKIT [46]. This precondi-
tioner is introduced in section 1.

From the papers [6, 52] on VBARMS and HSL_MI30, we picked the best reported
results for a few of the largest or the hardest (as reported by the authors) problems and
put them in Table 6 along with the corresponding results obtained by using the best
drop tolerance in the BILUC algorithm under our experimental setup. For BILUC’s
data in this section, we used a single thread and an RHS such that the solution is a unit
vector to match the experimental scenarios under which the other solvers were used.
Although the factorization and solution times in the first seven rows in Table 6 come
from different machines, these machines are similar in speed. For SuperLU [39], exact
performance statistics on specific matrices were unavailable; however, we could obtain
the software. We compared its supernodal threshold-based incomplete factorization

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU A329

TABLE 6
Comparison of BILUC with other contemporary ILU preconditioners based on incomplete factor
size (millions of nonzeros), factorization time (seconds), preconditioned restarted GMRES time
(seconds), and iteration count. T: best of VBARMS [6] and ARMS2 [51]; t: best of HSL_MI30 [52]
and SYM-ILDL [23]; ¢: SuperLU [39].

WSMP’s BILUC preconditioner Other ILU preconditioners
Matrix Factor | Factor | Solve Iter. Factor | Factor | Solve Iter. Com-

size time time count size time time count ment
nasasrb 4.59 2.02 3.30 52 6.46 13.9 11.0 94
venkatO1 5.11 0.52 0.45 12 0.81 0.19 0.51 40 T
xenonl 3.86 1.36 1.20 25 5.21 10.5 12.2 220
c-71 2.86 2.05 1.02 33 1.64 1.10 1.53 53
c-big 8.30 4.01 7.94 59 5.96 5.00 16.3 56 i
darcy003 19.2 2.40 1.75 9 6.64 3.39 4.09 35
stokes128 9.51 1.50 0.65 13 0.85 0.33 1.83 149
ML_Laplace 92.7 21.6 67.0 90 176. 679. 15.4 13
Transport 133. 24.4 134. 95 199. 3241 77.0 37
atmosmodd 113. 27.0 3.6 31 81.0 1088 229. 190 o
cagel3 35.0 34.8 2.04 5 54.8 1.3E4 3.48 7
largebasis 9.0 0.93 1.65 10 6.68 2.31 2.77 22

with WSMP’s [28] BILUC on a single thread of the same Power 6 machine with
default values of drop tolerance and other options for both solvers. The GMRES
restart parameter was set to 100 for both solvers and augmentation of the subspace
vectors with estimates of eigenvectors corresponding to the smallest eigenvalues was
turned off in WSMP.

The comparison with VBARMS shows that other than the smallest problem,
venkat0l, BILUC generates sparser preconditioners that are faster to compute and
are much more effective, presumably because of pivoting. To test this hypothesis,
we resolved nasasrb and zenonl using BILUC with pivoting turned off. The factor-
ization and solution times for zenonl were mostly unchanged, but nasasrb took 272
iterations and 20.8 seconds to solve without pivoting. Although the sum of BILUC’s
factorization and solution time was still smaller than that of VBARMS, this shows
that BILUC’s ability to perform unrestricted pivoting plays a significant role in mak-
ing it an effective preconditioner.

The comparison with HSL_MI30 and SYM-ILDL shows that although BILUC
computes an ILU factorization of the full matrix, its blocking and pivoting schemes
make it competitive with state-of-the-art incomplete LDL” factorization algorithms
that factor only triangular portions of symmetric indefinite matrices.

The last five rows of Table 6 show a comparison with SuperLU’s threshold-based
incomplete factorization for relatively large problems from the Florida Sparse Matrix
Collection [10]. BILUC uses large assembly blocks in order to maximize the com-
putational benefits of blocking and uses smaller blocks for factoring to maintain the
precision of dropping entries during incomplete factorization. SuperLLU uses the same
supernodes for each type of operation and therefore faces a trade-off between effective
blocking and effective dropping. In order to avoid dropping larger entries when entire
rows of supernodes are dropped, it must use a conservative dropping scheme, which
can lead to costly and dense factors. SuperLU’s pivot search is also confined to the
supernodes. The benefits of BILUC’s two-tier blocking with unconstrained pivoting
are apparent from results of solving some of the larger systems, for which it is more
than an order of magnitude faster than SuperLU.

A330 ANSHUL GUPTA

Table 6 and Figure 9 show that BILUC is competitive with or outperforms most
currently available preconditioners based on ILU factorization. As expected, BILUC’s
advantage over other ILU-based preconditioners increases as the problems get larger.

6. Concluding remarks and future work. We have introduced techniques
to improve the reliability and performance of ILU factorization-based preconditioners
for solving general sparse systems of linear equations. Along with its sister publica-
tion [29] for symmetric systems, this paper presents a comprehensive block framework
for incomplete factorization preconditioning. This framework almost invariably leads
to faster and more robust preconditioning. In addition, it goes a long way in alleviat-
ing the curse of fill-in, whereby, in the absence of blocking, incomplete factorization
time grows rapidly as the density of the preconditioner increases [29]. Blocking makes
it practical to compute denser and more robust incomplete factors. Blocking is also
likely to render incomplete factorization-based preconditioning more amenable to mul-
ticore and accelerator hardware.

In conventional ILU factorization preconditioning, drop tolerance and fill factor
are the typical tuning parameters that control the trade-offs between memory, run
time, and robustness. Since the block version of ILU factorization permits efficient
computation of preconditioners with a wider range of densities (Figure 9), it enables
the inclusion of the GMRES restart parameter among the parameters to be tuned
simultaneously to optimize the overall solution time as well as memory consumption.
To the best of our knowledge, this is the first attempt to study the impact of split-
ting a fixed amount of memory in different ratios between restarted GMRES and its
preconditioner. We find that if the memory for storing GMRES’s subspace vectors is
diverted toward computing denser and stronger ILU preconditioners, then BiCGStab
performs almost as well as restarted GMRES on our suite of test problems. BiCGStab
and restarted GMRES delivering similar overall performance for the same amount of
memory may have important implications for the choice of Krylov subspace method
on highly parallel computers, on which the orthogonalization step of GMRES could
be a scalability bottleneck [56].

The selective transposition heuristic proposed in this paper could extend the
results of Almeida, Chapman, and Derby [11], who observed that in many cases,
judicious use of equilibration could help to preserve the original ordering of the sparse
matrix by reducing the amount of pivoting. Combined with Skeel’s results [53] on the
relation between the direction of pivoting and the type of equilibration, we think that
it is possible to give more precise guidance on how to use scaling beneficially while
factoring general sparse matrices.

Acknowledgments. The author would like to thank Haim Avron, Thomas
George, Rogeli Grima, Felix Kwok, and Lexing Ying. Pieces of software written
by them over the years are included in WSMP’s iterative solver package.

REFERENCES

[1] M. BENzZI, Preconditioning techniques for large linear systems: A survey, J. Comput. Phys.,
182 (2002), pp. 418-477.

[2] M. BOLLHOFER, A robust ILU with pivoting based on monitoring the growth of the inverse
factors, Linear Algebra Appl., 338 (2001), pp. 201-213.

[3] M. BOLLHOFER, A robust and efficient ILU that incorporates the growth of the inverse trian-
gular factors, SIAM J. Sci. Comput., 25 (2003), pp. 86-103.

[4] M. BOLLHOFER, Y. SAAD, AND O. SCHENK, ILUPACK V2.2., https://www.math.tu-berlin.de/
ilupack (2006).

https://www.math.tu-berlin.de/ilupack
https://www.math.tu-berlin.de/ilupack

24]

(28]

29]

(30]

(31]

32]

E.

ENHANCING PERFORMANCE AND ROBUSTNESS OF ILU A331

BuTURLA, J. JOHNSON, S. FURKAY, AND P. COTTRELL, A new 3D device simulation for-
mulation, in Proceedings of Numerical Analysis of Semiconductor Devices and Integrated
Circuits, 1989.

B. CARPENTIERI, J. LIAO, AND M. SOSONKINA, VBARMS: A wariable block algebraic recur-

\%

<~

()

—

—

—

—

stwe multilevel solver for sparse linear systems, J. Comput. Appl. Math., 259 (2014),
pp. 164-173.

. CHOwW AND M. A. HEROUX, An object-oriented framework for block preconditioning, ACM
Trans. Math. Software, 24 (1998), pp. 159-183.

. CHOW AND Y. SAAD, Ezperimental study of ILU preconditioners for indefinite matrices, J.
Comput. Appl. Math., 86 (1997), pp. 387-414.

. CUuTHILL AND J. MCKEE, Reducing the bandwidth of sparse symmetric matrices, in Proceed-
ings of the 24th National Conference of the ACM, 1969, pp. 152-172.

. A. Davis, The University of Florida sparse matriz collection, Tech. report, Department of
Computer Science, University of Florida, 2007, https://www.cise.ufl.edu/research/sparse/
matrices.

. F. DE ALMEIDA, A. M. CHAPMAN, AND J. J. DERBY, On equilibration and sparse factoriza-
tion of matrices arising in finite element solutions of partial differential equations, Numer.
Methods Partial Differential Equations, 16 (2000), pp. 11-29.

. J. DONGARRA, J. D. CrOZ, S. HAMMARLING, AND 1. S. DUFF, A set of level 3 basic linear

algebra subprograms, ACM Trans. Math. Software, 16 (1990), pp. 1-17.

. J. DONGARRA, J. D. CrOZ, S. HAMMARLING, AND R. J. HANSON, An extended set of FOR-

TRAN basic linear algebra subprograms, ACM Trans. Math. Software, 14 (1988), pp. 1-17.
S. Durr, A. M. ERISMAN, AND J. K. REID, Direct Methods for Sparse Matrices, Oxford
University Press, Oxford, UK, 1990.
S. DUFrF AND J. KOSTER, On algorithms for permuting large entries to the diagonal of a
sparse matriz, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 973-996.

. S. DUFF AND G. A. MEURANT, The effect of ordering on preconditioned conjugate gradient,

BIT, 29 (1989), pp. 635-657.

. S. Durr AND J. K. REID, The multifrontal solution of indefinite sparse symmetric linear

equations, ACM Trans. Math. Software, 9 (1983), pp. 302-325.

. Fan, P. A. ForsyTH, J. R. F. MCMACKEN, AND W.-P. TANG, Performance issues for
iterative solvers in device simulation, SIAM J. Sci. Comput., 17 (1996), pp. 100-117.

. W. FREUND, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear
systems, STAM J. Sci. Statis. Comput., 14 (1993), pp. 470-482.

. GEORGE AND J. W.-H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

. GEORGE, A. GUPTA, AND V. SARIN, An empirical analysis of iterative solver performance
for SPD systems, ACM Trans. Math. Software, 38 (2012).

. R. GILBERT AND S. TOLEDO, An assessment of incomplete-L U preconditioners for nonsym-

metric linear systems, Informatica, 24 (2000), pp. 409-425.

. GrEIF, S. HE, aAND P. Liu, SYM-ILDL: C++ Package for Incomplete Factorization of
Symmetric Indefinite Matrices, https://github.com/inutard /matrix-factor (2013).

. GupTA, Improving performance and robustness of incomplete factorization preconditioners,
presented at STAM Conference on Applied Linear Algebra, Valencia, Spain, 2012.

. GuPTA, Improved symbolic and numerical factorization algorithms for unsymmetric sparse
matrices, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 529-552.

. GuUPTA, Fast and effective algorithms for graph partitioning and sparse matriz ordering,
IBM J. Research Development, 41 (1997), pp. 171-183.

. GupTA, WSMP: Watson Sparse Matriz Package Part 11—Direct Solution of General Sys-
tems, Tech. report RC 21888, IBM T. J. Watson Research Center, Yorktown Heights, NY,
2000, http://www.research.ibm.com/projects/wsmp.

A. GuptA, WSMP: Watson Sparse Matriz Package Part 111—Iterative Solution of Sparse

Systems, Tech. report RC 24398, IBM T. J. Watson Research Center, Yorktown Heights,
NY, 2007. http://www.research.ibm.com/projects/wsmp.

. GupTA AND T. GEORGE, Adaptive techniques for improving the performance of incomplete
factorization preconditioning, SIAM J. Sci. Comput., 32 (2010), pp. 84-110.

A. Gupra AND L. YING, On Algorithms for Finding Mazximum Matchings in Bipartite

Graphs, Tech. report RC 21576, IBM T. J. Watson Research Center, Yorktown Heights,
NY, 1999.

. HENON, P. RAMET, AND J. ROMAN, On finding approzimate supernodes for an efficient
block-ILU (k) factorization, Parallel Comput., 34 (2008), pp. 345-362.

N. J. HiGHAM AND D. J. HIGHAM, Large growth factors in Gaussian elimination with pivoting,

SIAM J. Matrix Anal. Appl., 10 (1989), pp. 155-164.

https://www.cise.ufl.edu/research/sparse/matrices
https://www.cise.ufl.edu/research/sparse/matrices
https://github.com/inutard/matrix-factor
http://www.research.ibm.com/projects/wsmp
http://www.research.ibm.com/projects/wsmp

A332 ANSHUL GUPTA

(33]

(34]

[35]

[41]

[56]

D. HysoM AND A. POTHEN, A scalable parallel algorithm for incomplete factor preconditioning,
SIAM J. Sci. Comput., 22 (2000), pp. 2194-2215.

C. JANNA, M. FERRONATO, AND G. GAMBOLATI, A block FSAI-ILU parallel preconditioner for
symmetric positive definite linear systems, SIAM J. Sci. Comput., 32 (2010), pp. 2468—
2484.

M. T. JOoNEs AND P. E. PLASSMANN, Blocksolve95 Users Manual: Scalable Library Software
for the Parallel Solution of Sparse Linear Systems, Tech. report ANL-95/48, Argonne
National Laboratory, Argonne, 11, 1995.

I. E. KAPORIN, L. Y. KoLOTILINA, AND A. Y. YEREMIN, Block SSOR preconditionings for
high-order 3D FE systems. 11 Incomplete BSSOR preconditionings, Linear Algebra Appl.,
154-156 (1991), pp. 647-674.

G. KARYPIS AND V. KUMAR, Parallel Threshold-Based ILU Factorization, Tech. report TR
96-061, Department of Computer Science, University of Minnesota, 1996.

N. L1, Y. SaaDp, AND E. CHOW, Crout versions of ILU for general sparse matrices, SIAM J.
Scit. Comput., 25 (2003), pp. 716-728.

X. S. Lt AND M. SHAO, A supernodal approach to incomplete LU factorization with partial
pivoting, ACM Trans. Math. Software, 37 (2011).

J. W.-H. Liu, The role of elimination trees in sparse factorization, STAM J. Matrix Anal.
Appl., 11 (1990), pp.134-172.

J. W.-H. L1u, The multifrontal method for sparse matriz solution: Theory and practice, STAM
Rev., 34 (1992), pp. 82-109.

J. W.-H. Liu, E. G.-Y. NG, AND B. W. PEYTON, On finding supernodes for sparse matriz
computations, STAM J. Matrix Anal. Appl., 14 (1993), pp. 242-252.

R. B. MORGAN, A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix
Anal. Appl., 16 (1995), pp. 1154-1171.

N. MUNKSGAARD, Solving sparse symmetric sets of linear equations by preconditioned conjugate
gradients, ACM Trans. Math. Software, 6 (1980), pp. 206—219.

E. G.-Y. Ng, B. W. PEYTON, AND P. RAGHAVAN, A blocked incomplete cholesky preconditioner
for hierarchical-memory computers, in Iterative Methods in Scientific Computation IV,
IMACS Series in Computational and Applied Mathematics, D. R. Kincaid and A. C. Elster,
eds., Elsevier, Amsterdam, 1999, pp. 211-221.

Y. SaAD, SPARSKIT: A Basic Tool Kit for Sparse Matriz Computations, Tech. report 90-20,
Research Institute for Advanced Computer Science, NASA Ames Research Center, Moffet
Field, CA, 1990.

Y. SAAD, ILUT: A dual threshold incomplete LU factorization, Numerical Linear Algebra with
Applications, 1 (1994), pp. 387-402.

Y. SAAD, Finding exact and approximate block structures for ILU preconditioning, SIAM J.
Sci. Comput., 24 (2003), pp. 1107-1123.

Y. SAAD, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
Y. SaAD AND M. H. ScuuLTZ, GMRES: A generalized minimal residual algorithm for solving
non-symmetric linear systems, STAM J. Sci. Statis. Comput., 7 (1986), pp. 856-869.

Y. SAAD AND B. SUCHOMEL, ARMS: An algebraic recursive multilevel solver for general sparse
linear systems, Numer. Linear Algebra Appl., 9 (2002), pp. 359-378.

J. ScoTT AND M. TUMA, On signed incomplete Cholesky factorization preconditioners for
saddle-point systems, SIAM J. Sci. Comput., 36 (2014), pp. A2984-A3010.

R. D. SKEEL, Effect of equilibration on residual size for partial pivoting, STAM J. Numer. Anal.,
18 (1981), pp. 449-454.

H. A. VAN DER VORST, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992),
pp. 631-644.

N. VANNIEUWENHOVEN AND K. MEERBERGEN, IMF: An incomplete multifrontal LU-
factorization for element-structured sparse linear systems, SIAM J. Sci. Comput., 35
(2013), pp. A270-A293.

1. YamAzAkI, H. AnzT, S. ToMov, M. HOEMMEN, AND J. DONGARRA, Improving the perfor-
mance of CA-GMRES on multicores with multiple GPUs, in Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium, 2014.

	Introduction
	Benefits of blocking
	Related work
	Selective transposition
	Experimental setup
	Organization

	Overview of preconditioning scheme
	Preprocessing
	Numerical factorization

	The BILUC algorithm
	Block data structures
	Incomplete factorization with pivoting
	Dropping and downdating
	Constructing assembly blocks
	BILUC—putting it all together
	Experimental results

	Selective transposition
	Methodology
	Experimental results

	Comparison with contemporary ILU preconditioners
	Concluding remarks and future work
	References

