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ABSTRACT

Direct methods for solving sparse systems of linear equa-
tions have a high asymptotic computational and memory
requirements relative to iterative methods. However, sys-
tems arising in some applications, such as structural analy-
sis, can often be too ill-conditioned for iterative solvers to be
effective. We cite real applications where this is indeed the
case, and using matrices extracted from these applications
to conduct experiments on three different massively parallel
architectures, show that a well designed sparse factoriza-
tion algorithm can attain very high levels of performance
and scalability. We present strong scalability results for test
data from real applications on up to 8,192 cores, along with
both analytical and experimental weak scalability results for
a model problem on up to 16,384 cores—an unprecedented
number for sparse factorization. For the model problem,
we also compare experimental results with multiple analyti-
cal scaling metrics and distinguish between some commonly
used weak scaling methods.

1. INTRODUCTION

The core computation in a large number of applications
in science, engineering, and optimization involves solving
large sparse systems of linear equations of the form Az = b,
where A € CV*V is the sparse coefficient matrix, b € CV
is the right hand-side vector, and x € CV is the vector of
unknowns for which a solution is sought. These systems are
typically solved using two classes of methods: (1) iterative
methods that start with an initial approximation of the so-
lution and iteratively refine it until the desired accuracy is
achieved, and (2) direct methods that compute a factoriza-
tion A = LU, where L,U € CV*¥ are lower and upper tri-
angular, respectively, and the solution x can be obtained by
trivially solving the triangular systems Ly = b and Uz = y.

A practically important class of sparse linear systems is
one in which A is Hermitian and positive definite (referred
to as symmetric positive-definite or SPD when A is real). A
symmetric matrix can be regarded as the adjacency matrix
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of a graph. It is well known [12, 32] that the total work
involved in factoring the adjacency matrix of an N-node
graph whose n-node subgraphs have O(n2/ 3)-node separa-
tors is O(N?) with a nested-dissection [12] ordering. The
corresponding memory requirement is O(N 4/ 3). Matrices
that arise from finite-element or finite-difference discretiza-
tions of partial differential equations over three-dimensional
(3D) domains belong to this class. Similar lower bounds
for the time and space requirements in the two-dimensional
case are O(N*2) and O(N log(N)), respectively. Clearly,
both the time and the memory requirements grow superlin-
early with the size of the system being solved. On the other
hand, there are preconditioners for Krylov subspace itera-
tive methods that, at least in theory, can solve such systems
in O(N) space and O(N) time. In practice however, the
sparse systems arising in many applications can be too ill-
conditioned for the iterative solvers to be effective. Also, in
practice, O(N) time is rarely achieved with an O(INV)-space
preconditioner because the number of iterations required for
satisfactory convergence invariably grows with the size of
the system. Finally, despite a higher asymptotic complex-
ity, direct solvers turn out to be much faster than iterative
solver for moderately sized systems arising in many practi-
cal applications [11, 13, 14]. This is primarily because (1)
a relatively inexpensive symbolic factorization phase com-
putes the static structure of the factors to enable the sub-
sequent numerical factorization phase to proceed with mini-
mal use of expensive integer and pointer operations, and (2)
supernodal [12] and multifrontal [8, 34] techniques ensure
that practically all floating-point computation is performed
by cache-friendly level 2 and level 3 basic linear algebra sub-
programs (BLAS) [7]. Direct solvers are extremely efficient
in situations where several systems need to be solved with
the same coefficient matrix. Direct solvers and the associ-
ated algorithms can also be useful in the context of itera-
tive solvers; for example, as coarse-grid solvers for multigrid
methods [35] or for computing preconditioners based on in-
complete factorization [36]. Therefore, a high-performance
and scalable parallel direct solver is an invaluable scientific
computing tool.

In this paper, we experimentally and analytically explore
the performance and scalability properties of the direct solver
for symmetric positive definite (SPD) matrices in Watson
Sparse Matrix Package (WSMP) [17]. Using matrices ex-
tracted from real applications that currently rely on direct
solvers due to their robustness, we show that well designed
algorithms for factorization [19] and triangular solution [25]
can attain very high levels of performance and scalability.



We present strong scalability results on up to 8,192 CPUs
for test data from real applications on three different mas-
sively parallel architectures. We observed sparse factoriza-
tion speeds up to 4.6 Teraflops for a problem for which the
factors require less than 3% of the memory of the machine.
We also present both analytical and experimental weak scal-
ability results for a model problem on up to 16,384 cores of
a Blue Gene/P (BG/P) [29] machine. For our largest test
case, the factorization required less than 2% of the available
memory and attained 7.05 Teraflops. To the best of our
knowledge, this is the highest performance and the utiliza-
tion of the maximum number of cores for sparse matrix fac-
torization reported to date. For the model problem, we also
compare experimental results with multiple analytical scal-
ing metrics and distinguish between some commonly used
weak scaling methods.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces our experimental set up. In Section 3, we
present our experience with iterative solvers on our suite of
test problems. In Section 4, we compare the performance
and scalability of three distributed-memory parallel direct
solvers. In Section 5, we present performance and scala-
bility results for WSMP’s symmetric direct solver on Cray
XT4 and IBM BG/P computers. In Section 6, we present
performance and scalability results for a comprehensive set
of matrices derived from a model 3D problem on the BG/P.
In Section 7, we present weak scalability analyses of sym-
metric sparse factorization algorithm under various criteria
for increasing the problem size with the size of the machine
and compare analytical and experimental results. Section 8
contains concluding remarks.

2. EXPERIMENTAL SETUP

In this section, we introduce the test matrices, the solver
packages tried, and the hardware platforms used.

Table 1: SPD test matrices with their order (N) and
number of non-zeros (NNZ).

Matrix N NNZ | Application
Brim6 665,017 | 107,514,163 | Structural analysis
Mtrac 1,112,625 69,476,853 | Structural analysis

Nastran-b | 1,508,088 | 111,614,436 | Structural analysis
Sgi_ 1M 1,522,431 | 125,755,875 | Structural analysis
Ten-b 1,371,166 | 108,009,680 | 3D Metal forming

A large portion of the experiments reported in this paper
are performed on five test matrices extracted from real appli-
cations that currently use a direct solver. Table 2 gives some
basic details of these matrices. In addition to these matrices,
we have used matrices derived from cubic 3-dimensional 7-
point stencil finite-difference grids of varying sizes to present
weak scaling results in Section 6.

Following is a brief description of the various iterative
and direct solver packages used in this study. Hypre [9]
(version 2.0.0), developed at Lawrence Livermore National
Laboratory, is an iterative solver package designed for solv-
ing large, sparse systems on massively parallel computers.
Hypre includes parallel preconditioners based on incomplete
factorization or IC(k) (Euclid [24]), sparse approximate in-
verses or SAI (ParaSails [6]), and algebraic multigrid or
AMG (BoomerAMG [23]). MUMPS [4, 5] (version 4.7.3)
is a distributed-memory parallel direct solver package for
symmetric and unsymmetric systems and is based on the

parallel multifrontal method [8]. SuperLU__DIST (30, 31]
(version 2.3) is the distributed-memory parallel version of
the SuperLU family of solvers. It is based on supernodal
right-looking LU factorization and is designed for general
systems. Unlike symmetric solvers, it computes separate
lower and upper triangular factors. Therefore, in practice,
it would typically not be used to solve symmetric positive
definite systems, which are the focus of our study. We have
included SuperLU in our experiments to compare the scal-
ability of various direct factorization algorithms. WSMP
or Watson Sparse Matrix Package [17] (version 8.7) con-
tains hybrid distributed- and shared-memory parallel direct
solvers based on the multifrontal algorithm for both sym-
metric [18, 19] and unsymmetric [15] systems.

We used three very different hardware platforms to test
the performance and scalability of WSMP’s direct solver for
SPD matrices. These are a Blue Gene/P (BG/P) system
with four 850 MHz 32-bit PowerPC 450 and 4 GB memory
per node, a Cray XT4 system with a 2.3 GHz quad-core
Opteron microprocessor and 4 or 8 GB memory per node,
and two IBM pb5-575 clusters with eight 1.9 GHz dual-core
Power5+ microprocessors and 32 GB memory per node. The
BG/P is system is located at IBM T.J. Watson Research
Center, the Cray XT/4 is at University of Bergen’s Cen-
ter for Computational Science, and the two p5-575 clusters
are located at at Texas A&M University and at the Na-
tional Center for Supercomputing Applications (NCSA) in
Illinois. Both p5-575 clusters have the same nodes; however,
the cluster at Texas A&M University has a faster switch.
The experiments comparing the direct and iterative solvers
reported in Section 3 were performed on the Texas A&M
cluster, while those comparing the scalability of different
direct solvers reported in Section 4 were performed on the
NCSA cluster.

3. COMPARISON WITH ITERATIVE SOL-
VERS

Table 2: Hypre preconditioners and their parameter
configurations used in the experiments.

Precond. | Ordering | Parameters No. of
Configs.
o | o [T |
oM, | s s
G |, | oyt |
o | S ol
ROM, é\’fulri@l;er of levels:
SAI ND, g:hgeg{l,oédl, -0.75, -0.9 81
NONE g:lléf?&-')l’ 0.05, -0.9

In this section, we explore how WSMP’s direct solver com-
pares with the best-case scenario for iterative solvers for solv-
ing systems with the five coefficient matrices listed in Ta-
ble 2. George et al. [13] have conducted a fairly rigorous



Table 3: Memory and time statistics for the Hypre iterative and WSMP direct solvers on 64 processors.

. Failure | Median Min. Max. Median | Min. | Max.
Matrix Solver . . .

rate memory | memory | memory time time | time

hypre-IC(k) 1/12 1.9e+10 | 4.1e409 | 3.9e+10 137. 45.1 | 378.

Nastran-b hypre-AMG 2/72 1.7e4+09 | 1.0e+09 | 2.8e+10 109. 79.7 | 948.
hypre-SAI 52/81 | 4.6e+09 | 2.3e+09 | 7.5e+09 156. 28.8 | 384.
wsmp-DIRECT 0/1 9.1e4+09 | 9.1e409 | 9.1e4-09 20.7 20.7 | 20.7
hypre-1C(k) 0/12 2.0e+10 | 4.2e4+09 | 5.1e+10 110. 33.9 | 585.

Sgi 1M hypre-AMG 0/72 2.0e+09 | 1.2e4+09 | 4.4e+10 66.5 46.4 | 783.
- hypre-SAI 15/81 | 2.8e+09 | 2.4e+09 | 8.8e+09 29.7 16.3 | 399.
wsmp-DIRECT 0/1 1.6e410 | 1.6e410 | 1.6e+10 32.2 32.2 | 32.2

Table 4: Memory and time statistics

for the Hypre iterative and WSMP

direct solvers o

n 256 processors.

- Failure | Median Min. Max. Median | Min. | Max.
Matrix Solver . - )

rate memory | memory | memory time time | time

hypre-IC(k) 0/2 4.0e+09 | 4.0e+09 | 4.0e+09 5.95 5.95 5.96

Nastran-b hypre-AMG 0/4 1.2e409 | 1.0e+09 | 2.3e+09 32.5 24.2 39.9

hypre-SAT 0/4 5.8e4+09 | 5.8e4+09 | 5.8e+09 5.85 5.24 | 6.76

wsmp-DIRECT 0/1 8.7e4+09 | 8.7e+09 | 8.7e409 7.03 7.03 7.03

hypre-1C(k) 0/2 4.2e409 | 4.2e+09 | 4.2e409 3.83 3.81 3.86

Sgi 1M hypre-AMG 0/4 1.4e4+09 | 1.2e4+09 | 2.7e+10 17.6 14.6 19.7

- hypre-SAI 0/4 5.9e4+09 | 5.9e4+09 | 5.9e+09 4.02 3.38 5.07

wsmp-DIRECT 0/1 1.6e+10 | 1.6e410 | 1.6e+10 11.1 11.1 11.1

comparison of the implementations of several state-of-the-
art preconditioning methods for SPD systems in a num-
ber of iterative solver packages. From the results of that
study, we concluded that the level-of-fill based incomplete
Cholesky factorization or IC(k [24]), sparse approximate in-
verse preconditioner or SAI [6], and the algebraic multigrid
preconditioner or AMG [23] available in the Hypre [9] pack-
age offered the best chances of providing a most robust,
high-performance, and memory efficient solution in a highly
parallel distributed-memory environment.

The performance and effectiveness of most precondition-
ers is not only problem dependent, but is also highly sen-
sitive to various tunable parameters of the preconditioner
as well as the choice of matrix preprocessing steps such as
ordering and scaling etc. Having chosen the “best” [13] iter-
ative solver package for SPD systems, we attempted to use
the best configurations of its preconditioners for each ma-
trix for a comparison with the direct solver. Using different
combinations of various parameters, as shown in Table 3,
we crafted 12 configurations for the IC(k) preconditioner,
72 for BoomerAMG, and 81 for ParaSails'! and attempted
to solve all five systems on 64 processors of an IBM pb-575
cluster. The conjugate gradient (CG) solver was used. Diag-
onal scaling was performed on all matrices and a right-hand
side vector of all 1’'s was used. A maximum of 2000 iter-
ations were permitted and were stopped when the relative
norm of residual dropped below 107>,

None of the configurations of any of the three precondi-
tioners could solve systems with Brim6, Mtrac, and Ten-b as
coefficient matrices. The statistics for the memory and time
used by various preconditioners for the other two matrices
on 64 CPUs are shown in Table 3. The table shows that
for Nastran-b, Hypre-AMG had the most significant mem-
ory advantage over the direct solver. Both the median and

!Not all combinations of parameters shown in Table 3 were
used because some were not practical.

the minimum memory was small and only two of its 72 con-
figurations failed. However, even its best configuration was
about four times slower than the direct solver. Hypre-SAI
had a large number failures. Although its best configura-
tion performed well, the median value was much worse. For
Sgi__1M, all preconditioners worked reasonably well.

Based on the results of our 64-CPU experiments, we chose
the best configurations with respect to time and memory for
both Nastran-b and Sgi__1M and tried them on 256 CPUs.
The 256-processor memory and time results are summarized
in Table 3. Since these were the best configurations for
64 CPUs, they performed very well compared to the direct
solver. Two trends could be observed from these tables.
First, going from 64 to 256 processors, all three precondi-
tioners scale better than the direct solver. In fact, IC(k)
tends to show superlinear speedup, for which we do not
have an explanation yet (the number of iterations actually
increased with the number of processors). The second obser-
vation is that the total memory usage of Hypre-SAI creeps
up with the number of processors. As a result, it does not
have a significant memory advantage over the direct solver
on 256 CPUs, although, by virtue of its better scalability,
the solution time of at least its best configuration is smaller
than that of the direct solver for both the matrices.

To summarize the results of this section, iterative solvers
are effective for only one or two of the five matrices, de-
pending on the preconditioner and the number of processors
used. Even in these cases, a careful selection of parameters
is necessary, and it may not always be practical to perform
extensive experimentation to select the best set of param-
eters in real-life situations. Note that these results are not
meant to be indicative of iterative solvers’ performance in
general. The test data is not random, but is obtained from
hand-picked applications that use direct solvers. The pur-
pose of these experiments is to show that a preference for
direct solvers in these applications is justified and that di-



rect solvers, despite their cost, are indispensable for many
applications. Therefore, it is desirable to develop highly par-
allel algorithms for them and study their performance and
scalability properties.

4. COMPARISON WITH OTHER DIRECT
SOLVERS

In this section, by means of experiments on an IBM p5-575
cluster, we compare WSMP’s symmetric direct solver with
two well known distributed-memory parallel direct solvers,
namely MUMPS [4, 5] and SuperLU_DIST [30, 31]. These
three direct solvers use different parallelization approaches
for sparse factorization. Two types of parallelism are avail-
able for factoring sparse matrices. The first, task parallelism,
views the entire computation as a task-dependency graph
and seeks to perform independent tasks in parallel. The task
dependency graph for factoring symmetric sparse matrices
happens to be a tree, which is known as the elimination
tree [33]. Data parallelism is the second type of parallelism
available and pertains to multiple processes performing a
computational task such as panel factorization or an update
operation in parallel with the data involved in the operation
distributed among the processes. Gupta et al. [19] analyti-
cally showed that one of the factors that determines the scal-
ability of parallel sparse factorization is whether task par-
allelism, or data parallelism, or both are exploited. When
data parallelism is exploited, the scalability is quite sensitive
to data distribution. A two-dimensional distribution, where
both the rows and the columns of the matrix or its subma-
trices are partitioned, leads to more scalable parallel formu-
lations than a one-dimensional distribution involving parti-
tioning of either rows or columns only. WSMP uses both
task and data parallelism, gradually switching from the for-
mer to the latter as the number of independent tasks declines
and their size increases. In the data parallel part, it uses a
two-dimensional distribution. MUMPS also uses both task
and data parallelism; however, with the exception of the root
supernode of the elimination tree, it uses a one-dimensional
partitioning in the data-parallel part. SuperLU_ DIST uses
data parallelism only with a two-dimensional distribution of
data. Another recent distributed-memory parallel symmet-
ric direct solver PaStiX [10, 22] is based on data parallelism
with a two dimensional partitioning. We have not fully eval-
uated PaStiX yet, but expect its scalability to be similar to
that of SuperLU__DIST due to the similarity of their paral-
lelization approaches.

MUMPS and SuperLU_DIST are pure distributed-
memory parallel solvers and perform best if the number of
MPI processes is the same as the number of CPUs. WSMP
and PaStiX, on the other hand, can use multithreaded MPI
processes. As a result, a given number of CPUs can be
utilized via multiple combinations of MPI processes and
threads. We experimented with four such combinations for
WSMP and show the results of using 1, 2, 4, and 8 threads
per MPI process in this section.

Figures 1 and 2 show the performance of WSMP, Su-
perLU, and MUMPS for factoring the five test matrices? on
up to 1024 CPUs of the p5-575 cluster. The data columns
and the bars corresponding to WSMP-kT in these figures
denote that k threads were used by each of the p/k MPI

2In most cases, MUMPS did not finish factoring Ten-b
within the two-hour limit specified for the batch jobs.

processes for utilizing p CPUs. Prior to factorization, the
matrices were permuted using the default ordering scheme
for each package. By default, WSMP uses its native or-
dering [16], SuperLU uses AMD [3], and MUMPS uses
PORD [37]. Note that unlike WSMP and MUMPS, which
factor only a triangular part of the symmetric matrix, Su-
perLU performs an LU factorization of the entire matrix be-
cause it has been designed for general sparse matrices. As a
result, it performs twice the number of operations needed to
factor a symmetric matrix, and its performance should be
viewed in the light of this. However, the focus of the exper-
iments in this section is to study the relative scalability of
the solvers; i.e., their capacity to deliver increasing speedups
with increasing number of CPUs.

The results in Figures 1 and 2 show that WSMP’s factor-
ization scales the best, followed by that of SuperLU_ DIST.
The highest factorization speed of nearly 2.2 Teraflops was
obtained for the Ten-b matrix with 512 MPI processes us-
ing two threads each. The number of threads per process
affects the performance, and using multiple threads per pro-
cess is almost always beneficial. In most cases, using 2 or 4
threads per MPI process delivers better performance than
using single threaded processes. Performance appears to be-
gin declining when 8 or more threads are used.

5. PERFORMANCE ON CRAY XT/4 AND
BLUE GENE/P

Having observed the speedups on up to 1024 CPUs of a
p5-575 cluster, we tested the solver on two other massively
parallel platforms, the Cray XT4 and IBM Blue Gene/P,
on which we could access an even higher number of proces-
sors. On both these machines, each node consists of four
cores in an SMP configuration—AMD Opteron on the XT4
and PowerPC 450 on BG/P. Therefore, we used one multi-
threaded MPI process on each node and allowed it to use all
four CPUs.

Figure 3 shows the factorization times and speed in Gi-
gaflops for each of the five matrices in our test suite on the
Cray XT4 on logarithmic scales. All experiments were con-
ducted with 4 GB memory per node on 32 or more nodes
and with 8 GB per node on fewer nodes. As the figure
shows, with the exception of the smallest matrix Mtrac, the
speedup continues to increase all the way up to 1024 nodes
(4096 CPUs). The highest performance of 4.6 Teraflops was
obtained for the largest matrix Ten-b.

Figure 4 depicts the same data for the BG/P. Once again,
with the exception of Mtrac, the factorization time continues
to decline up to 2048 nodes (8192 CPUs). Since BG/P nodes
are slower than the XT4 nodes, the performance is propor-
tionally lower. On an average, on the same number of nodes,
the factorization code seems to run about three times faster
on the XT4 than on BG/P. A peak performance of just over
2 Teraflops was obtained for Ten-b on 2048 nodes. The scal-
ability of the code, however, seems to be similar on both
machines. For example, Table 5 shows the speedups of go-
ing to 1024 nodes from 32 nodes on both machines for all
five matrices. These are the maximum and the minimum
number of nodes for which we have data for all matrices on
both machines, and the speedup numbers are quite close.

6. WEAK SCALING FOR A MODEL
PROBLEM
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Figure 1: Factorization times and speeds of four different configurations of WSMP, SuperLU, and MUMPS
for matrices Brim6, Mtrac, and Nastran-b on Power5+ cluster.
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Figure 2: Factorization times and speeds of four different configurations of WSMP, SuperLU, and MUMPS

for matrices Sgi 1M and Ten-b on Power5+ cluster.

Table 5: Ratio of factorization time on 32-nodes to
that on 1024 nodes of IBM BG/P and Cray XT4.

In the previous sections, we used five fixed matrices to
study the performance and scalability of WSMP’s symmet-
ric sparse factorization. Solving a fixed problem using an
increasing number of processors almost always results in
diminishing efficiencies (typically defined as the ratio of
speedup to the number of processors). In this section, we use
matrices derived from artificial cubic 3-dimensional 7-point
stencil finite-difference grids of varying sizes for a more in-
depth investigation of the scaling properties of this solver.
Note that, unlike the matrices used earlier in the paper, the
model finite difference problem is easily solvable using it-
erative methods and a direct solver would not be used in
practice. The purpose of the experiments described in this

section is simply to use a set of matrices with varying size
but similar structure.
Table 6 shows the performance of the factor and solve

1]\3457}1131116 Blrém26 l\gt{gc Nasitlr in_b SgllgéM ’lle; _5b phases of WSMP’s symmetric sparse direct solver over a
XT4 105 6.99 .65 11.3 13.2 fairly comprehensive set of matrices derived from the model

cubic 3D finite difference problem. The experiments were
performed on a BG/P system. Each row of data corresponds
to a given number p of BG/P nodes, where p ranges from 1
to 4096. WSMP uses as many MPI processes as the number
of nodes used, and each multithreaded process uses all the
four CPUs on each node. The table contains five columns of
data corresponding to increasing values of n, the dimension
of the 3D cubic grid. Each major column of data (separated
by double vertical lines) contains three subcolumns: the first
one shows the value of n in bold font and the factorization
efficiency F in a smaller font, the second one shows factor-
ization time in seconds and speed in Gigaflops or Teraflops,
and the third one shows the time and speed of the triangular
solution phase for a single right-hand side vector. The values
of n used in the table range between 20 and 232. Successive
values of n are chosen such that the number of operations
required for factorization increases by a factor of 2v/2 (ex-
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scales on IBM Blue Gene/P.

planation to follow in Section 7.2). The problem size or the
total amount of work for the triangular solution phase grows
as O(p) along the columns. Five values of n were tried for
each p. The values of n used in each row are shifted so that
strong scalability results can be viewed along top-right to
bottom-left diagonals and weak scalability results with the
factorization problem size growing as O(pl's) can be viewed
along the columns of the table.

Table 6 shows that factorization times for a fixed problem
continue to decline up to 4096 nodes (16,384 cores) and the
solve operation, which always takes well under a second to
complete, continues to speed up until 2048 nodes. For the
largest matrix (corresponding to n = 232) and the largest
BG/P configuration with p = 4096, a maximum sustained
speed of 7.05 Teraflops was obtained. To the best of our
knowledge, this is the highest performance for sparse ma-
trix factorization reported to date. A triangular factor of the
matrix corresponding to n = 232 contains about 28 billion
nonzeros. This amounts to less than 2% of the memory of a
4096-node BG /P with 4 Gbytes of memory per node. Hence,
our largest test case is relatively small for a machine of this
size, which can potentially handle much larger problems and
deliver significantly higher speeds and efficiency for sparse
matrix factorization. Currently, WSMP’s preordering phase

1M, and Ten-b on logarithmic

requires gathering all indices of the sparse matrix on a sin-
gle node, which limits its ability to handle the matrix cor-
responding to the next value of n = (2v/2 x 232°)'/¢ ~ 276.
This limitation could have been overcome by using a fully
distributed ordering such as ParMETIS [26]. Another con-
sideration in using relatively small problem sizes for the large
number of experiments required to gather the data for Ta-
ble 6 was to conserve computational resources.

Just below each value of n in Table 6 is a fraction that
represents the efficiency of factoring the matrix of dimension
N = n® using the number of nodes p associated with that
row of the table. Traditionally, parallel efficiency is defined
as the ratio of parallel speedup to the number of processors.
However, while scaling the problem size with the number of
processors (or nodes), it is usually not possible to measure
the speedup, which is the ratio of the parallel execution time
to the best serial time for solving the same problem. The
reason is that the problem attempted on p nodes may be too
large to fit in the memory of a single node. In order to over-
come this difficulty, we solved systems with increasing values
of n on a single node and measured the speed si(n) in Gi-
gaflops. The largest system that could be solved on a single
node corresponded to n = 74. The speed s1(74) was clocked
at about 7.4 Gigaflops, which is little more than half of the



Table 6: Performance of factor and solve steps for various BG/P node counts (p) and matrix sizes (n?). The matrices are derived from an
n X n x n 7-point stencil 3D finite difference mesh for several values of n ranging from 20 to 232.

D m Factor Solve m Factor Solve m Factor Solve m Factor Solve m Factor Solve
) 20 [ 125s [ 014s [ 24 ] 028s [ 0.03s [ 29 [ 0.74s [ 0.05s || 34 [ 1.64sT | 0.08s || 41 [ 457s | 0.15s
29 1 210GF | 25 GF || 4 | 297TGF |03GF || % |359GF|04GF| % |453GF|04GF | % |507GF|0.5GF
5 24 | 185s | .015s [[ 29 | 046s | 0.03s || 34 | 1.11sf | 0.04s || 41 | 2.72s | 0.07s || 48 | 6.09s | 0.13s
SLAVAB50GF |05 GF || 3 | 5.74GF | 0.7GFE || °2 | 770 GF |09 GF | ® | 868GF | 1.1GF | % | 102 GF | 1.2GF
4 20 | 033s | 015s || 34 | 069s | 003s || 41 | 1.80s | 0.05s || 48 | 4.02s | 0.08s || 58 | 109s | 0.14s
29 1844 GF | 12GF || 2% |107GF | 13GF || % |131GF|15GF || % |16.1GF |21GF || % |19.2GF | 25GF
3 34 | 048s | 0.02s || 41 | 1.17s | 0.04s || 48 | 258s§ | 0.06s || 58 | 7.13s | 0.10s || 69 | 17.7s | 020s
26\ 155GF |16 GF || 3 | 206 GF |21 GF || *2 | 249GF |28 GF | 9 | 29.7GF | 33GF || °7 | 33.6 GF | 3.7 GF
6 | 4 0.77s | 003s || 48 | 1.66sf | 0.04s || 58 [ 382s# | 006s || 69 | 9.71s | 0.09s || 82 | 240s | 0.19s
25 1292 GF | 27GF || 33 | 380GF |41GF || 4 |482GF |55 GF | * | 56.8GF |76 GF || 5 |63.7GF | 7.6 GF
50 | 48 111s3 | 004s || 58 | 264s | 0.05s || 69 | 5.95s | 0.07s || 82 | 138s | 0.11s || 97 | 365s | 0.18s
24 1 571GF | 41GF || 39 | 704GF | 73GF || 2 [ 929GF |96 GF || % |107. GF | 13. GF | 3 | 124. GF | 17. GF
61 || 38 1.75s | 0.04s || 69 [ 3.81s# | 0.06s | 82 | 946s | 0.09s | 97 | 21.9s$ | 0.14s | 116 | 56.6s | 0.22s
25 | 117. GF [ 86 GF || 33 | 155. GF [ 12. GF || 29 | 182. GF | 17. GF | 47 | 221. GF | 23. GF || 3 | 251. GF | 29. GF
1og || 69 ] 258 s§ | 0.06s || 82 | 593s | 0.08s || 97 | 134s | 0.11s [[116] 348s | 0.17s [[138] 88.0s | 0.27s
2519232, GF | 13. GF || 3! |293. GF | 19. GF || 39 |366. GF | 28. GF || % |424. GF | 40. GF || °° | 470. GF | 48. GF
o6 || 82 3.80s# | 0.07s || 97 | 832s | 0.10s |[116 ] 206s | 0.14s [[138] 50.2s | 0.22s |[ 164 ] 127.s | 0.33s
231 436. GF | 21. GF || 3 | 579. GF | 31. GF || 8 |712. GF | 45. GF || % |838. GF | 64. GF || %0 | 941. GF | 79. GF
519 97 | 586s | 0.10s [|[116] 134s | 0.14s [[138| 314s | 0.20s ||164| 75.1s | 0.27s ||195| 199.s | 0.43s
2L 1081 TF | .03TF || 2 |1.07TF | .05 TF || *° |131TF | .07 TF | 4 | 158 TF | .10 TF | 46 | 1.74 TF | .12 TF
1094 116 | 105s | 0.14s [[138] 22058 | 0.19s [[164| 49.1s | 0.26s || 195| 116.s | 0.38s | 232] 280. s | 0.56s
91 142 TF | O5TF || 2 | 1.92TF | O7TTF || 32 | 244 TF | .10 TF || 3 | 296 TF | .13 TF | 4 | 3.40 TF | .18 TF
5048 || 138 173s [ 020s [164] 355s [ 027s [195] 81.6s [ 0.37s [232] 185. s [ 0.52s
A6 1930 TF | O7TTF || 2 |331TF | .09TF || 2 |422TF | .13 TF | 3 | 5.04 TF | .19 TF
1006 || 164 30.7s | 029s [[195] 63.0s | 0.39s |[232] 139.s | 0.57s
A3 1 302TF | 09 TF || 8 | 533TF | 13 TF || 2 | 7.05 TF | .18 TF




theoretical peak for a BG/P node. We assume that s;(74) is
the maximum speed that a single BG/P node can deliver on
this problem. We then computed the factorization efficiency
for each (p, n) pair as sp(n)/ps1(74), where sp(n) is the mea-
sured speed in Gigaflops of factoring the matrix correspond-
ing to the n x n x n grid on p nodes. This efficiency compu-
tation also mitigates, to some extent, a usual complication
in reconciling experimental and analytical performance and
scalability results. The analysis typically considers factors
like communication overhead and load-imbalance, but does
not usually account for the fact that the speed at which
computations are performed can change with the number of
processors. Sometimes, the speed of computation improves
with an increasing number of processors due to a larger net
cache size; however, in most numerical applications, includ-
ing sparse and dense matrix factorization, the computation
speed declines with an increasing number of processors be-
cause of progressively shorter temporal and spatial streams
of computation and data between the communication steps.
As a result of computing the efficiency relative to the max-
imum obtainable speed on a single node, the single node
efficiencies for n < 74 are less than the ideal value of 1.0,
thus capturing the impact of smaller blocks of data. This
makes it fairer to compare these with the efficiencies when
the number of processors and n are increased.

7. WEAK SCALING ANALYSIS OF THE
3D MODEL PROBLEM

In this section, we review some prior analytical scalabil-
ity results for solving sparse systems arising from problems
involving discretization of 3D domains, derive scalability re-
sults for additional scaling criteria, and compare the an-
alytical results with the experimental results presented in
Section 6.

7.1 Definitions and assumptions

We start by introducing the following terminology, which
will be used in the remainder of the section. Number of
processes (p), which is equivalent to the number of nodes
in the context of this paper, is the number of MPI pro-
cesses used to solve a given instance of the problem. Due
to the hierarchical nature of parallelism used in the sparse
factorization implementation being studied, we will use the
number of processes or nodes in lieu of the number of pro-
cessors, which is often used in the analysis of parallel algo-
rithms. Each node may have multiple CPUs that are uti-
lized by means of a multithreaded single-node code in our
implementation. We regard a node as the basic processing
element that hosts a single MPI process and communicates
with other nodes. Problem size (W) is a measure of total
amount of work required to solve the problem and is usually
expressed in terms of the number of basic operations needed
to solve the problem. When expressed in order terms, it is
the sequential time complexity of the problem. Since the
problem size is related to the serial execution time by a con-
stant, we also use W to denote the execution time on a
single process. A coefficient matrix of dimension N = n?
resulting from an n x n x n grid requires O(N?) or O(n®)
operations [12, 32]. Similarly, the problem size for the trian-
gular solution phase is O(N*/?) or O(n*). (assuming that
the heuristic used for computing the nested-dissection or-
dering indeed generates O(nQ/ 3)—node separators for n-node

subgraphs). Parallel Ezecution Time (I'p) is the time to
solve a problem in parallel and is a function of the number
of processes p and the problem size W. When the problem
size is expressed as a function of a parameter of the input
size, such as the matrix dimension N in our case, then Tp
can be expressed as a function of p and N. Gupta et al. [19]
have shown that for the model problem being considered in
this section, a lower bound on Tp of WSMP’s sparse fac-

Nf/is) The first term is due

to the computation that each node performs and the second
term is a lower bound on the time spent in communication.
Total Parallel Overhead (To) is the sum of all the overhead
incurred due to parallel processing by all the processes. In
our case, a lower bound on the total overhead due to the
communication term in I’» would be Q(N*/® /D). Speedup
(S) is the ratio of the serial execution time W of the fastest
serial algorithm to the parallel execution time 1'p. Efficiency
(E) is usually expressed as the ratio of speedup (S) to the

number of processors (p). Thus, E = m = 1+—'

torization algorithm is Q(NT2 +

7.2 Scalability analysis

It is well known that for a problem instance of a fixed
size, the speedup of a parallel algorithm does not continue
to increase with increasing number of processes and tends
to saturate or peak at a certain value. The size of the prob-
lem must be increased with the number of processes for an
increasing number of processes to be utilized efficiently—a
concept loosely known as weak scaling. Various criteria have
been studied for determining the rate at which the problem
size must be increased (many of these are surveyed by Ku-
mar and Gupta [27]). In this section, we discuss a few of
these in the context of factorization of sparse symmetric ma-
trices resulting from discretizing 3D domains.

Fixed efficiency scaling: Kumar and Rao [28] developed
a scalability metric relating the problem size to the number
of processors necessary for a speedup increase proportional
to the number of processors. This metric is known as the
isoefficiency function. Gupta et al. [19] have shown that the
problem size must increase at least as Q(p'®) for WSMP’s
sparse Cholesky factorization to maintain a fixed efficiency.
Fixed memory scaling: Increasing the problem size with
the number of processes such that the memory requirement
for each process remains constant [39, 40] is a practical way
to scale the problem size since the total available memory
is proportional to the number of processes, at best. For the
problem at hand, the total memory requirement is O(N 4/ 3)
and the problem size W is O(N?). Incidentally, N3
p implies N2 o p'5. Therefore, fixed-memory scaling is
equivalent to the fixed-efficiency scaling.

Fixed workload scaling: Gustafson et al. [20, 21] were
the the first to experimentally demonstrate that by scal-
ing up the problem size, near-linear speedup could be ob-
tained on up to 1024 processors. They introduced the scaled
speedup metric, which is defined as the speedup obtained
when the problem size is increased linearly with the num-
ber of processes. Scaled speedup increases linearly with the
number of processes only when the isoefficiency function is
linear, which is not the case for parallel sparse factorization.

In this case, E = —2— = —L__ for some constant K be-
’ (+32)  1+Kp'/O

cause T, N4/3\/;5 and W x N2 x p. Thus, the efficiency
can be expected to progressively decline as the problem is
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Figure 5: Example of congestion that cannot be al-
leviated by adaptive routing on BG/P while embed-
ding an 8 x 8 2D mesh in a 4 x4 x4 torus. Boundaries
of the original mesh are shown in solid lines.

scaled in proportion to p.

Fixed time scaling: Under fixed time scaling, first stud-
ied in detail by Worley [42], the problem size is increased
with p such that the parallel execution time 7Tp remains
constant. Sun and Gustafson [38] describe a similar concept,
called sizeup, which is the ratio of the size of the problem
solved on the parallel computer to the size of the problem
solved on the sequential computer in a given fixed amount
of time. For our problem, the expression for Tp has two

asymptotic terms, NTQ and &1/)3. None of these should grow

asymptotically in order to keep 1p fixed. The more re-
strictive of the two conditions on problem size growth with
respect to p results from the second term and dictates that
N3 /P, or the problem size W N? grows no faster

than O(p*/*) to keep Tp from increasing.

Fixed speed scaling: Sun and Rover [41] define isospeed
or fixed-speed scaling, where the problem size is increased
with p such that the average unit speed of computa-
tion remains constant. The isospeed metric for a parallel
algorithm-machine combination can only be determined ex-
perimentally by means of data of the form shown in Table 6.

7.3 Worst casescalability analysison BG/P

The various weak scalability analyses presented in Sec-
tion 7.2 are based on Gupta et al’s [19] Q(N*/3,/p) lower
bound on the total communication overhead. These anal-
yses represent the best-case scenario for two main reasons.
First, Gupta et al’s derivation assumes a hypercube or a
two-dimensional (2D) mesh interconnection for the target
parallel computer. In our case, however, the BG/P ma-
chine employs a 3D torus network. Secondly, they consider
communication overhead only and do not account for the
overhead due to load-imbalance. The latter, unfortunately,
is hard to analyze because it depends on the permutation
generated by the fill-reducing ordering heuristic.

In Sections 7.2 and 7.3, we have It may be possible to reor-
ganize the communication in the algorithm to make optimal

use of the torus network; however, in our current implemen-
tation, the communication overhead is O(N*/? \/P) only on
a hypercube interconnect, or on a network in which message
traversal time is independent of the source and destination
nodes, as long as there is sufficient bandwidth to handle all
the communication volume. We use a recursive bisection
based mapping of MPI processes to the BG/P nodes such
that the subtree-to-subcube mapping [19] of the elimination
tree works naturally on the 3D submeshes of the machine.
However, within the nodes of a k x k X k 3D submesh, the
communication pattern for the factorization steps is that of
a k2 x k*/? 2D mesh. Folding a k*? x k3/2 2D logical mesh
inside a k x k x k 3D physical mesh or torus causes congestion
by a factor of kt/6 along some edges of the physical mesh, as
shown in Figure 5. BG/P uses adaptive routing for messages
longer than a certain limit. However, the adaptive routing
algorithm can choose only one of the shortest paths between
the communicating nodes. While folding a 2D logical mesh
into a 3D mesh or torus, the congestion occurs along paths
between pairs of nodes that share two of the three spatial
coordinates. Since there is only one shortest path between
such pairs of nodes, adaptive routing is ineffective. This
congestion could potentially increase the total overhead by
a factor of O(p*/®) and make it O(N*/3p*/?). Note that,
this is the worst case scenario because it assumes that com-
putation and communication are perfectly synchronized on
all nodes and all k/¢ messages along the paths with po-
tential congestion overlap completely. In reality, the extra
overhead due to congestion is likely to be probabilistic in
nature, with virtually all messages getting through without
much congestion for small values of k, but experiencing in-
creasing collisions as k increases.

The bounds for various weak scaling methods under the
worst-case communication overhead assumption can be de-
rived along the lines of the analyses in Section 7.2. To
maintain a fixed efficiency, the ratio of T, and W must con-
stant, which leads to an isoefficiency function of O(p®) when
T, = O(N*Y3p?/3). If the O(N?) problem size is increased
as O(p?) in order to maintain a fixed efficiency, then the
O(N*?) memory requirement grows as O(P*?) and the
superlinearly growing memory requirement makes it impos-
sible to maintain fixed efficiency within fixed memory per
process. Scaling the problem with fixed workload per pro-
cess will result in a efficiency decline at the rate of ﬁ

+Kp
for some constant K. Finally, for fixed time scaling, the
problem size can be increased only as O(,/p).

7.4 Comparison of empirical and analytical
results

In Sections 7.2 and 7.3, we have derived expressions for
several weak scaling metrics under the best- and the worst-
case communication overhead assumptions. In this section,
we compare these analytical results with the experimental
data collected in Table 6.

Figure 6 shows three isoefficiency plots based on the (p,n)
pairs that we could find in Table 6 with almost the same
efficiency values. The figure also shows two hypothetical
isoefficiency curves starting from the point with the small-
est p of each observed curve. These curves, represented by
dashed and dotted lines, correspond to isoefficiency func-
tions of O(p"*) and O(p?), respectively, which are the isoef-
ficiency functions derived from the worst- and the best-case
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Figure 6: Some observed isoefficiency curves from
the data in Table 6. The dashed and dotted lines
show hypothetical curves corresponding to isoeffi-
ciency functions of O(p"®) and O(p?), respectively.

expressions for communication overhead. The figure shows
that the observed rate at which the problem size increases
with p to maintain a fixed efficiency lies between O(p'-®) and
O(p®). A close observation of the efficiency numbers along
the columns of Table 6 (where the problem size is increasing
at the rate of p'®) reveals that efficiency stays mostly con-
stant or declines very slowly in the middle rows of the table.
These rows roughly correspond to values of p between 8 and
512, and the observed isoefficiency appears to be close to the
best-case O(pl's) growth rate of problem size in this range
of p. For p > 1024, the isoefficient problem size growth rate
appears to approach the worst-case of O(pZ), possibly due
to increased congestion, as discussed in Section 7.3.

Recall that we have computed the efficiency values shown
in Table 6 by dividing the observed per process speed by
7.4 Gigaflops, the highest speed observed on a single pro-
cess. Therefore, the isospeed and isoefficiency scalings are
identical.

Figure 7 shows how the efficiency declines as the problem
size is increased in proportion to the number of processes p,
such that each process performs the same amount of work.
The top curve corresponds to (p,n) values of (8,69), (64,97),
(512,138), and (4096,195) and the bottom curve corresponds
to (8,58), (64,82), (512,116), and (4096,164). These points
represent a fixed work load per process because as p increases
by a factor of 8, n increases by a factor of v/2. Recall that
W o N? = nS. Sections 7.2 and 7.3 give the best- and the
worst-case rates of efficiency declines, which the figure de-
picts by the dashed and the dotted lines, respectively. Once
again, the observed data lies between the best- and worst-
case analytical values.

To observe fixed time scaling, we chose (p,n) pairs from
Table 6 with almost the same factorization times (see un-
derlined factorization times in the table). The factorization
time is 1.11 seconds for (2,34) and (32,48), it is roughly 3.8
seconds for (16,58), (64,69), and (256,82), and it is 2.58 sec-
onds for (8,48) and (128,69). More groups like this can be
found and it can be verified easily that in each case, the prob-
lem size increases at the rate of p3/ 4. For example, for the
1.11 and 2.58 second case, a 16-fold increase in p is accom-
panied by an 8-fold increase in the problem size. Similarly,
for the 3.8 second case, each 4-fold increase in p is accom-
panied by an increase in problem size by a factor of 2v/2.
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Figure 7: Efficiency as a function of 3D grid dimen-
sion n when the problem size is scaled in proportion
to the number of nodes p. The dashed and dotted
lines correspond to the analytical best- and worst-
case rates of efficiency declines in the fixed workload
per node scaling.

Note that an O(p®/*) fixed time rate of problem size increase
was predicted by the analysis in Section 7.2. If we observe
any (p,n) pairs corresponding to the worst-case fixed time
analysis of Section 7.3, say (64,116) and (4096,164), we see
that the factorization Tp reduces from 56.6 seconds to 30.7
seconds. This suggests that the problem size can increase
at a rate faster than O(,/p) to maintain a fixed Tp, even for
the highest values of p used.

8. CONCLUDING REMARKS

We have presented a fairly comprehensive set of exper-
imental and analytical performance and scalability results
for a direct sparse linear solver, with particular emphasis
on sparse factorization—the dominant phase of the solver in
terms of time and memory consumption. We have demon-
strated unprecedented levels of both performance and scal-
ability for this problem. This performance was obtained
without any architecture-specific tuning of the software. In
fact, we have shown similar scalability results on three very
different massively parallel computers. In the future, we
plan to investigate the performance and scalability of this
solver on commodity and popular x86_64 clusters as well
as on Petascale systems, such as NCSA’s upcoming Blue
Waters [1] system.

9. ACKNOWLEDGEMENTS

We would like to thank Ritske Huismans, Eirik Thorsnes,
Halvor Utby, and the University of Bergen for providing
access to the Cray XT4, NCSA and the Texas A&M Super-
computing Center for access to the p5-575 clusters, and IBM
for access to the BG/P. This work was partly supported by
King Abdullah University of Science and Technology.

10. REFERENCES

(1] Blue Waters: Sustained Petascale Computing. National
Center for Supercomputing Applications, University of



3]

[4]

[6]

(10]

(11]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

20]

Ilinois. http://www.ncsa.uiuc.edu/Blue Waters.

MSC Software Products: Engineering Analysis. MSC
Software Corporation, Santa Ana, CA.
hitp://www.mscsoftware.com/products.

P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate
minimum degree ordering algorithm. SIAM Journal on
Matriz Analysis and Applications, 17(4):886-905, 1996.

P. R. Amestoy, 1. S. Duff, J. Koster, and J. Y. L’Excellent.
A fully asynchronous multifrontal solver using distributed
dynamic scheduling. SIAM Journal on Matriz Analysis and
Applications, 23(1):15-41, 2001.

P. R. Amestoy, I. S. Duff, and J. Y. L’Excellent.
Multifrontal parallel distributed symmetric and
unsymmetric solvers. Computational Methods in Applied
Mechanical Engineering, 184:501-520, 2000.

E. Chow. Parallel implementation and practical use of
sparse approximate inverse preconditioners with a priori
sparsity patterns. International Journal of High
Performance Computing Applications, 15(1):56-74, 2001.
J. J. Dongarra, J. D. Croz, S. Hammarling, and 1. S. Duff.
A set of level 3 Basic Linear Algebra Subprograms. ACM
Transactions on Mathematical Software, 16(1):1-17, 1990.
I. S. Duff and J. K. Reid. The multifrontal solution of
indefinite sparse symmetric linear equations. ACM
Transactions on Mathematical Software, 9(3):302-325,
1983.

R. D. Falgout and U. M. Yang. hypre, High Performance
Preconditioners: Users manual. Technical report, Lawrence
Livermore National Laboratory, 2006. Paper appears in
ICCS 2002.

M. Faverge and P. Ramet. Dynamic scheduling for sparse
direct solver on NUMA architectures. In Proceedings of
PARA’2008, Trondheim, Norway.

J. Fettig, S. Koric, and N. Sobh. A comparison of direct
and iterative linear sparse solvers in computational solid
mechanics. In International Conference on Preconditioning
Techniques for Large Sparse Matrixz Problems, Napa, CA,
2003.

A. George and J. W.-H. Liu. Computer Solution of Large
Sparse Positive Definite Systems. Prentice-Hall, NJ, 1981.
T. George, A. Gupta, and V. Sarin. An empirical analysis
of iterative solver performance for SPD systems. Technical
Report RC 24737, IBM T. J. Watson Research Center,
Yorktown Heights, NY, January 2009.

J. R. Gilbert and S. Toledo. An assessment of
incomplete-LU preconditioners for nonsymmetric linear
systems. Informatica, 24(3):409-425, 2000.

A. Gupta. A shared- and distributed-memory parallel
sparse direct solver. Applicable Algebra in Engineering,
Communication, and Computing, 18(3):263-277, 2007.

A. Gupta. Fast and effective algorithms for graph
partitioning and sparse matrix ordering. IBM Journal of
Research and Development, 41(1/2):171 183,
January/March, 1997.

A. Gupta. WSMP: Watson sparse matrix package (Part-I:
Direct solution of symmetric sparse systems). Technical
Report RC 21886, IBM T. J. Watson Research Center,
Yorktown Heights, NY, November 2000.
hitp://www.cs.umn.edu/ ~agupta/wsmp.

A. Gupta, M. Joshi, and V. Kumar. WSMP: A
high-performance serial and parallel symmetric sparse
linear solver. In B. Kagstrom, J. J. Dongarra, E. Elmroth,
and J. Wasniewski, editors, PARA’98 Workshop on Applied
Parallel Computing in Large Scale Scientific and Industrial
Problems. Springer Verlag, 1998.

A. Gupta, G. Karypis, and V. Kumar. Highly scalable
parallel algorithms for sparse matrix factorization. IEEE
Transactions on Parallel and Distributed Systems,
8(5):502-520, May 1997.

J. L. Gustafson. Reevaluating Amdahl’s law.
Communications of the ACM, 31(5):532-533, 1988.

[21]

(22]

(23]

[24]

[25]

[26]

27]

28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

J. L. Gustafson, G. R. Montry, and R. E. Benner.
Development of parallel methods for a 1024-processor
hypercube. SIAM Journal on Scientific and Statistical
Computing, 9(4):609-638, 1988.

P. Hénon, P. Ramet, and J. Roman. PaStiX: A
high-performance parallel direct solver for sparse symmetric
definite systems. Parallel Computing, 28(2):301-321, 2002.
V. E. Henson and U. M. Yang. BoomerAMG: A parallel
algebraic multigrid solver and preconditioner. Applied
Numerical Mathematics: Transactions of IMACS,
41(1):155-177, 2002.

D. Hysom and A. Pothen. A scalable parallel algorithm for
incomplete factor preconditioning. SIAM Journal on
Scientific Computing, 22(6):2194-2215, 2000.

M. Joshi, A. Gupta, G. Karypis, and V. Kumar.
Two-dimensional scalable parallel algorithms for solution of
triangular systems. In Proceedings of the 1997
International Conference on High Performance Computing
(HiPC), 1997.

G. Karypis and V. Kumar. ParMETIS: Parallel graph
partitioning and sparse matrix ordering library. Technical
Report TR 97-060, Department of Computer Science,
University of Minnesota, 1997.

V. Kumar and A. Gupta. Analyzing scalability of parallel
algorithms and architectures. Journal of Parallel and
Distributed Computing, 22(3):379-391, 1994.

V. Kumar and V. N. Rao. Parallel depth-first search, part
II: Analysis. International Journal of Parallel
Programming, 16(6):501-519, 1987.

G. Lakner and C. P. Sosa. IBM System Blue Gene
Solution: Blue Gene/P Application Development. IBM,
2008.
http://www.redbooks.ibm.com/abstracts/sg247287. html.

X. S. Li and J. W. Demmel. Making sparse Gaussian
elimination scalable by static pivoting. In Supercomputing
’98 Proceedings, 1998.

X. S. Li and J. W. Demmel. A scalable sparse direct solver
using static pivoting. In Proceedings of the Ninth SIAM
Conference on Parallel Processing for Scientific
Computing, 1999.

R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized
nested dissection. STAM Journal on Numerical Analysis,
16:346 358, 1979.

J. W.-H. Liu. The role of elimination trees in sparse
factorization. SIAM Journal on Matriz Analysis and
Applications, 11:134-172, 1990.

J. W.-H. Liu. The multifrontal method for sparse matrix
solution: Theory and practice. STAM Review, 34(1):82 109,
1992.

J. W. Ruge and K. Stiiben. Multigrid methods. In S. F.
McCormick, editor, Frontiers in Applied Mathematics,
volume 3, pages 73—-130. SIAM, Philadelphia, PA, 1987.
Y. Saad. Iterative Methods for Sparse Linear Systems, 2nd
edition. STAM, 2003.

J. Schulze. Towards a tighter coupling of bottom-up and
top-down sparse matrix ordering methods. Bit Numerical
Mathematics, 41(4):800-841, 2001.

X.-H. Sun and J. L. Gustafson. Toward a better parallel
performance metric. Parallel Computing, 17(2):1093-1109,
1991.

X.-H. Sun and L. M. Ni. Another view of parallel speedup.
In Supercomputing 90 Proceedings, pages 324-333, 1990.
X.-H. Sun and L. M. Ni. Scalable problems and
memory-bounded speedup. Journal of Parallel and
Distributed Computing, 19(1):27 37, 1993.

X.-H. Sun and D. T. Rover. Scalability of parallel
algorithm-machine combinations. IEEE Transactions on
Parallel and Distributed Systems, 5(6):599-613, 1994.

P. H. Worley. The effect of time constraints on scaled
speedup. SIAM Journal on Scientific and Statistical
Computing, 11(5):838-858, 1990.



