IBM Research Report

WSMP: Watson Sparse Matrix Package
Part III – iterative solution of sparse systems
Version 20.12

Anshul Gupta
IBM T. J. Watson Research Center
1101 Kitchawan Road
Yorktown Heights, NY 10598
anshul@us.ibm.com
WSMP: Watson Sparse Matrix Package
Part III – iterative solution of sparse systems
Version 20.12

Anshul Gupta
IBM T. J. Watson Research Center
P. O. Box 218
Yorktown Heights, NY 10598
anshul@us.ibm.com

IBM Research Report RC 24398 (W0711-017)
November 5, 2007
Contents

1 Introduction to Part III ... 4

2 Recent Changes ... 4

3 Obtaining, Linking, and Running WSMP 4
 3.1 Libraries and other system requirements 4
 3.2 License file .. 5
 3.3 Linking on various systems 5
 3.3.1 Linux on x86_64 platforms 5
 3.3.2 Linux on Power 6
 3.3.3 Cygwin on Windows 10 6
 3.3.4 Mac OS .. 6
 3.4 Controlling the number of threads 6
 3.5 The number of MPI ranks per shared-memory unit 7

4 Description of Functionality 7
 4.1 Types of matrices accepted and their input format 9
 4.2 Krylov subspace solvers supported 9
 4.3 Preconditioners and their parameters 9
 4.4 Calling sequence of the WISMP subroutine 9
 4.4.1 N (type I): matrix dimension 11
 4.4.2 IA (type I): row/column pointers 11
 4.4.3 JA (type I or M): column/row indices 11
 4.4.4 AVALS (type I or M): nonzero values of the coefficient matrix 12
 4.4.5 B (type I or O): right-hand side vector/matrix ... 12
 4.4.6 LDB (type I): leading dimension of B 12
 4.4.7 X (type O or I): solution vector/matrix 12
 4.4.8 LDX (type I): leading dimension of X 12
 4.4.9 NRHS (type I): number of right-hand sides .. 13
 4.4.10 RMISC (type I, O, M): double precision output info 13
 4.4.11 CVGH (type O): double precision convergence history output 13
 4.4.12 IPARM (type I, O, M, and R): integer array of parameters 13
 4.4.13 DPARM (type I, O, M, and R): double precision parameter array 23

5 Miscellaneous Routines ... 26
 5.1 WS_SORTINDICES_J (M, N, IA, JA, INFO) S,T 26
 5.2 WS_SORTINDICES_D (M, N, IA, JA, AVALS, INFO) S,T 26
 5.3 WS_SORTINDICES_Z (M, N, IA, JA, AVALS, INFO) S,T 27
 5.4 WSETMAXTHRDS (NUMTHRDS) 27
 5.5 WSYSTEMSCOPE and WSPROCESSSCOPE 27
 5.6 WSETMAXSTACK (FSTK) 27
 5.7 WSETLF (DLF) T,P ... 27
 5.8 WSETNOBIGMAL () ... 28
 5.9 WSMP_VERSION (V, R, M) 28
 5.10 WSMP_INITIALIZE () S,T and PWSMPL_INITIALIZE () T 28
 5.11 WSMP_CLEAR () S,T and PWSMPL_CLEAR () T 28
 5.12 WISFREE () S,T and PWISFREE () T 29

6 Support for Double Complex Data Type 29
1 Introduction to Part III

The Watson Sparse Matrix Package, WSMP, is a high-performance, robust, and easy to use software package for solving large sparse systems of linear equations. WSMP is comprised of three parts. Part I uses direct methods for solving symmetric systems, either through LL^T factorization, or through LDL^T factorization. Part II uses sparse LU factorization with pivoting for numerical stability to solve general systems. This document describes Part III, the iterative solution of sparse systems of linear equations in WSMP. Parts I and II of User’s Guide [5] can be obtained from http://www.research.ibm.com/projects/wsmp, along with some example programs and technical papers related to the software. A current list of known bugs and issues is also maintained at this web site. Unlike the direct solvers, the iterative solvers described in this document are available in a shared-memory parallel environment only. Please disregard any portions of this document that may refer to distributed-memory/message-passing parallelism.

Note 1.1 Although WSMP and PWSP libraries contain multithreaded code, the libraries themselves are not thread-safe. Therefore, the calling program cannot invoke multiple instances of the routines contained in WSMP and PWSP libraries from different threads at the same time.

2 Recent Changes

Versions 18 and later return the elapsed wall clock time for each call in DPARM(1) or dparm[0].

3 Obtaining, Linking, and Running WSMP

The software can be downloaded in gzipped tar files for various platforms from www.research.ibm.com/projects/wsmp.

If you need the software for a machine type or operating system other than those included in the standard distribution, please send an e-mail to wsmp@us.ibm.com.

The WSMP software is packaged into two libraries. The multithreaded library names start with libwsmp and the MPI-based distributed-memory parallel library names start with libpwsmp.

3.1 Libraries and other system requirements

The users are expected to link with the system’s Pthread and Math libraries. In addition, the users are required to supply their own BLAS library, which can either be provided by the hardware vendor or can be a third-party code. The user must make sure that any BLAS code linked with WSMP runs in serial mode only. WSMP performs its own parallelization and expects all its BLAS calls to run on a single thread. BLAS calls running in parallel can cause substantial performance degradation. With some BLAS libraries, it may be necessary to set the environment variable OMP_NUM_THREADS to 1. Many BLAS libraries have their own environment variable, such as MKL_NUM_THREADS or GOTO_NUM_THREADS, which should be set to 1 if available.

On many systems, the user may need to increase the default limits on stack size and data size. Failure to do so may result in a hung program or a segmentation fault due to small stack size and a segmentation fault or an error code (IPARM(64)) of -102 due to small size of the data segment. Often the limit command can be used to increase stacksize and datasize. When the limit command is not available, please refer to the related documentation for your specific system. Some systems have separate hard and soft limits. Sometimes, changing the limits can be tricky and can require
root privileges. You may download the program `memchk.c` from `www.research.ibm.com/projects/wsmp` and compile and run it as instructed at the top of the file to see how much stack and data space is available to you.

3.2 License file

The main directory of your platform contains a file `wsmp.lic`. This license file must be placed in the directory from which you are running a program linked with any of the WSMP libraries. You can make multiple copies of this file for your own personal use. Alternatively, you can place this file in a fixed location and set the environment variable WSMPLICPATH to the path of its location. WSMP first tries to use the `wsmp.lic` from the current directory. If this file is not found or is unusable, then it attempts to use `wsmp.lic` from the path specified by the WSMPLICPATH environment variable. It returns with error -900 in IPARM(64) if both attempts fail.

The software also needs a small scratch space on disk and uses the `/tmp` directory for that. You can override the default by setting the environment variable TMPDIR to another location.

3.3 Linking on various systems

The following sections show how to link with WSMP and PWSMP libraries on some of the platforms on which these libraries are commonly used. If you need the WSMP or PWSMP libraries for any other platform and can provide us an account on a machine with the target architecture and operating system, we may be able to compile the libraries for you. Please send e-mail to wsmp@us.ibm.com to discuss this possibility.

3.3.1 Linux on x86_64 platforms

Many combinations of compilers and MPI are supported for Linux on x86 platforms.

The most important consideration while using the distributed-memory parallel versions of WSMP on a Linux platform is that MPI library may not have the required level of thread support by default. The symmetric solver needs MPI_THREAD_FUNNELED support and the unsymmetric solver needs MPI_THREAD_MULTIPLE support. Therefore, MPI must be initialized accordingly. If MPI_THREAD_MULTIPLE support is not available, then you can use only one thread per MPI process. This can be accomplished by following the instructions in Section 5.4.

Note 3.1 With most MPI implementations, when using more than one thread per process, the user will need to initialize MPI using `MPI_INIT_THREAD (Fortran)` or `MPI_Init_thread (C)` and request the appropriate level of thread support. The default level of thread support granted by using `MPI_INIT` or `MPI_Init` may not be sufficient, particularly for the unsymmetric solver. You may also need to use the `-mt_mpi` flag while linking with Intel MPI for the unsymmetric solver.

Note 3.2 There may be environment variables specific to each MPI implementation that need to be used for obtaining the best performance. Examples of these include `MV2_ENABLE_AFFINITY` with mvapich2 and `IMPI_PIN, IMPI_PIN_MODE, IMPI_PIN_DOMAIN` etc. with Intel MPI.

On all Linux platforms, under most circumstances, the environment variable `MALLOCS_TRIM_THRESHOLD` must be set to -1 and the environment variable `MALLOCS_MMAP_MAX` must be set to 0, especially when using the serial/multithreaded library. However, when using the message passing PWSMP library, setting `MALLOCS_TRIM_THRESHOLD` to -1 can result in problems (including crashes) when more than one MPI process is spawned on the same physical machine or node. Similar problems may also be noticed when multiple instances of a program linked with the serial/multithreaded library are run concurrently on the same machine. In such situations, it is best to set `MALLOCS_TRIM_THRESHOLD` to 134217728. If only one WSMP or PWSMP process is running on one machine/node, then `MALLOCS_TRIM_THRESHOLD = -1` will safely yield the best performance.

The WSMP libraries for Linux need to be linked with an external BLAS library. Some good choices for BLAS are MKL from Intel, ACML from AMD, GOTO BLAS, and ATLAS. Please read Section 3.1 carefully for using the BLAS library.

The x86_64 versions of the WSMP libraries are available that can be linked with Intel’s Fortran compiler `ifort` or the GNU Fortran compiler `gfortran` (not `g77/g90/g95`). Note that for linking the MPI library, you will need to instruct
mpif90 to use the appropriate Fortran compiler. Due to many different compilers and MPI implementations available on Linux on x86_64 platforms, the number of possible combinations for the message-passing library can be quite large. If the combination that you need is not available in the standard distribution, please contact wsmp@us.ibm.com.

Examples of linking with WSMP using the Intel Fortran compiler (with MKL) and gfortran (with a generic BLAS) are as follows:

```fortran
ifort -o <executable> <user source or object files> -Wl,--start-group $(MKL_HOME)/libmkl_intel_lp64.a $(MKL_HOME)/libmkl_sequential.a $(MKL_HOME)/libmkl_core.a -Wl,--end-group -lwsp64 -L<path of libwsmp64.a> -lpthread

gfortran -o <executable> <user source or object files> <BLAS library> -lwsp64 -L<path of libwsmp64.a> -lpthread -lm -m64
```

An example of linking your program with the message-passing library libpwsmp64.a on a cluster with x86_64 nodes is as follows:

```fortran
mpif90 -o <executable> <user source or object files> <BLAS library> -lpwsmp64 -L<path of libpwsmp64.a> -lpthread
```

Please note that use of the sequential MKL library in the first example above. The x86_64 libraries can be used on AMD processors also. On AMD processors, ACML, GOTO, or ATLAS BLAS are recommended.

3.3.3 Cygwin on Windows 10

The 64-bit libraries compiled and tested in the Cygwin environment running under Windows 7 and Windows 10 are available. An example of linking in Cygwin is as follows (very similar to what one would do on Linux):

```fortran
gfortran -o <executable> <user source or object files> -L<path of libwsmp64.a> -lwsp64 -lblas -lpthread -lm -m64
```

Please refer to Section 3.3.4 to ensure that BLAS functions do not use more than one thread on each MPI process.

3.3.4 Mac OS

MAC OS libraries are available for Intel and GNU compilers. The BLAS can be provided by either explicitly linking MKL (preferred) or by using the Accelerate framework. Linking examples are as follows:

```fortran
gfortran -o <executable> <user source or object files> -m32 -lwsp -L<path of libwsmp.a> -lm -lpthread -framework Accelerate

gfortran -o <executable> <user source or object files> -m64 -lwsp64 -L<path of libwsmp64.a> -lm -lpthread -framework Accelerate
```

Once again, it is important to ensure that the BLAS library works in the single-thread mode when linked with WSMP. This can be done by using the environment variables OMP_NUM_THREADS, MKL_NUM_THREADS, or MKL_SERIAL.

3.4 Controlling the number of threads

WSMP (or a PWMP process) automatically spawns threads to utilize all the available cores that the process has access to. The total number of threads used by WSMP is usually the same as the number of cores detected by WSMP. The
unsymmetric solver may occasionally spawn a few extra threads for short durations of time. In many situations, it may be desirable for the user to control the number of threads that WSMP spawns. For example, if you are running four MPI processes on the same node that has 16 cores, you may want each process to use only four cores in order to minimize the overheads and still keep all cores on the node busy. If WSMP_NUM_THREADS or WSMP_RANKS_PER_NODE (Section 3.5) environment variables are not set and WSETMAXTHRDS function is not used, then, by default, each MPI process will use 16 threads leading to thrashing and loss of performance.

Controlling the number of threads can also be useful when working on large shared global address space machines, on which you may want to use only a fraction of the cores. In some cases, you may not want to rely on WSMP’s automatic determination of the number of CPUs; for example, some systems with hyper-threading may report the number of hardware threads rather than the number of physical cores to WSMP. This may result in an excessive number of threads when it may not be optimal to use all the hardware threads.

WSMP provides two ways of controlling the number of threads that it uses. You can either use the function WSETMAXTHRDS (NUMTHRDS) described in Section 5.4 inside your program, or you can set the environment variable WSMP_NUM_THREADS to NUMTHRDS. If both WSETMAXTHRDS and the environment variable WSMP_NUM_THREADS are used, then the environment variable overrides the value set by the routine WSETMAXTHRDS.

3.5 The number of MPI ranks per shared-memory unit

While it is beneficial to use fewer MPI processes than the number of cores on shared-memory nodes, it may not be optimal to use only a single MPI process on highly parallel shared-memory nodes. Typically, the best performance is observed with 2–8 threads per MPI processes. When multiple MPI ranks belong to each physical node, specifying the number of ranks per node by setting the environment variable WSMP_RANKS_PER_NODE would enable WSMP to make optimal decisions regarding memory allocation and load-balancing. If the number of threads per process is not explicitly specified, then WSMP_RANKS_PER_NODE also lets WSMP figure out the appropriate number of threads to use in each MPI process.

In addition, the way the MPI ranks are distributed among physical nodes can have a dramatic impact on performance. The ranks must always be distributed in a block fashion, and not cyclically. For example, when using 8 ranks on four nodes, ranks 0 and 1 must be assigned to the same node. Similarly, ranks 2 and 3, 4 and 5, and 6 and 7 must be paired together.

Note that the WSMP_RANKS_PER_NODE environment variable does not affect the allocation of MPI processes to nodes; it merely informs PWSMP how the ranks are distributed. PWSMP does not check if the value of WSMP_RANKS_PER_NODE is correct.

4 Description of Functionality

WISMP is the primary routine for iterative solution of sparse linear systems and related computations. WISMP can work either on a single CPU or on multiple CPUs with a shared address space. This routine can be used for solving sparse linear systems using preconditioned Krylov subspace methods (CG, GMRES, TFQMR, BiCGStab), for performing sparse matrix-vector multiplication, and for generating and solving with respect to incomplete factorization based preconditioners.

All WSMP routines can be called from Fortran as well as C or C++ programs using a single interface described in this document. As a matter of convention, symbols (function and variable names) are in capital letters in context of Fortran and in small letters in context of C. Please refer to Notes 4.1, 4.2, and 5.1 for more details on using WSSMP with Fortran or C programs.

There are six basic tasks that can be performed by calling the WISMP routine. These are summarized in Table II and described below:

In calls to WISMP, IPARM(2) and IPARM(3) control the subset of the tasks to be performed (see Section 4.4 for more details).
Table 1: The tasks that WISMP can perform depending on the inputs IPARM(2) and IPARM(3).

<table>
<thead>
<tr>
<th>Task 1</th>
<th>Task 2</th>
<th>Task 3</th>
<th>Task 4</th>
<th>Task 5</th>
<th>Task 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyze structure and a sample of values of A</td>
<td>Analyze and load current values of A</td>
<td>Compute Preconditioner M^{-1} such that $M^{-1} \approx A^{-1}$</td>
<td>Iteratively Solve $AX = B$ (approximately compute $X = A^{-1}B$)</td>
<td>Multiply sparse matrix with dense vector/matrix (compute $B = AX$)</td>
<td>Solve w.r.t. preconditioner (compute $X = M^{-1}B$)</td>
</tr>
</tbody>
</table>

1. **Task 1, Symbolic Analysis:** During this step, WISMP primarily analyzes the nonzero pattern of the coefficient matrix and performs compression, reordering, and partitioning. While the emphasis is on the structure of the matrix, WISMP does look at the current values of the matrix in order to choose appropriate heuristics that are used in this step. This step can usually be followed by multiple steps of solving systems with the same nonzero pattern but different values. Depending on the application, either a single symbolic analysis step may suffice for all matrices with the same structure, or this step may need to be repeated after certain intervals as the values of the matrix become more and more different from the ones considered during this analysis phase. Although, the user has the option of performing symbolic analysis as frequently as desired, WISMP usually automatically reanalyzes the matrix when necessary without user intervention.

2. **Task 2, Value Analysis:** This step actually loads the matrix into internal data structures for subsequent preconditioner generation and (Task 3) and matrix-vector multiplication (either as a part of the iterative solution in Task 4, or as the stand-alone Task 5).

3. **Task 3, Preconditioner Generation:** This step computes a preconditioner M^{-1} that is close to the inverse of the original coefficient matrix. This preconditioner is subsequently used either as a part of the iterative solution in Task 4, or as the stand-alone Task 6.

 Please refer to Note 4.4 in the description of IPARM(15) in Section 4.4.12 for some important information related to this task.

4. **Task 4, Solution:** This step computes an approximation to X for a linear system $AX = B$, where A is an $n \times n$ nonsingular matrix and X and B are $n \times m$ matrices, $n \geq 1, m \geq 1$. Currently, CG, GMRES, TFQMR, or BiCGStab algorithms can be used for obtaining the solution.

5. **Task 5, Sparse Matrix-Vector Multiplication:** WISMP can be used to multiply a sparse matrix with a dense vector or matrix.

6. **Task 6, Preconditioning Step:** This task can be used to compute $X = M^{-1}B$, where M^{-1} is a previously computed preconditioner derived from A (using Task 3).

The same routine, WISMP, can perform any of these functions or any valid sequence of these functions depending on the options given by the user via parameter IPARM (see Section 4.4). In addition, a call to WISMP can be used to get the default values of the options without any of the three basic tasks being performed. See the description of IPARM(1), IPARM(2), and IPARM(3) in Section 4.4.12 for more details.

When solving a series of sparse systems with gradually varying coefficient matrices, as is the case in many applications, WISMP permits the use of a complete or an incomplete factorization of one matrix to be used as a preconditioner for subsequent systems without computing a new factorization. This feature often results in time savings in many applications. By an appropriate choice of IPARM(15), DPARM(14), and DPARM(15), Task 3 can be used to generate an exact direct factorization and Task 4 can be used to solve systems with respect to either the factored matrix (when the solution is obtained in a single step), or iteratively with respect to a previously factored nearby matrix. Please refer to the description of IPARM(2), IPARM(15), DPARM(14), DPARM(15) for more details.
Note that the data-structures generated as a result of the analysis of \(A\) during Tasks 1 and 2 and the preconditioner \(M\) generated during Task 3 are stored internally and are not directly accessible to the user.

The WISMP routine performs minimal input argument error-checking and it is the user’s responsibility to call WSMP subroutines with correct arguments and valid options and matrices. In case of an invalid input, it is not uncommon for a routine to hang or to crash with segmentation fault. In the parallel version, on rare occasions, insufficient memory can also cause a routine to hang or crash before all the processes/threads have had a chance to return safely with an error report.

4.1 Types of matrices accepted and their input format

WISMP and ZISMP (Section 6) accept the sparse coefficient matrices in the compressed sparse row (CSR) or compressed sparse column (CSC) formats. Both symmetric and unsymmetric matrices of various types are accepted; please refer to Table 5 and the description of IPARM(7) in Section 4.4.12 for more details. Table 4 under the description of IPARM(4) shows how to indicate the choice of input format to WISMP or ZISMP.

For symmetric matrices, the user has the option of either providing the full matrix as input, or just a triangular portion. Figure 1 illustrates both the full and the triangular storage formats.

WISMP supports both C-style indexing starting from 0 and Fortran-style indexing starting from 1. Once a numbering style is chosen (IPARM(5) in Section 4.4.12), all data structures must follow the same numbering convention which must stay consistent through all the calls referring to a given system of equations.

4.2 Krylov subspace solvers supported

WISMP currently includes implementations of preconditioned conjugate gradient (CG) method, GMRES, TFQMR, and BiCGStab. WISMP’s current focus is on robust high-performance preconditioners. As described in the beginning of Section 4, users can call WISMP’s preconditioner generation (Step 3) and application (Step 6) steps, as well as sparse matrix-vector multiplication (Step 5) in their own implementations of a solver (they must be preceded by Step 1 for each new structure and Step 2 for each set of new values of the sparse matrix).

The type of solver can either be chosen by the user (see IPARM(13)), or can be picked automatically by WISMP depending on the type of input matrix and the preconditioner.

4.3 Preconditioners and their parameters

WISMP currently supports Jacobi (diagonal), Gauss-Siedel (SSOR with relaxation \(\omega = 1\)), and Incomplete Cholesky/\(LDL^T\) preconditioners for symmetric positive definite and mildly indefinite (with very few negative eigenvalues) matrices. It supports Jacobi, Gauss-Siedel, and Incomplete LU factorization based preconditioners for general matrices. The preconditioner type is chosen by means of IPARM(15).

For preconditioners based on incomplete factorization, the choice of two thresholds, \(\tau\) (drop tolerance) and \(\gamma\) (fill factor), is critical to the performance and convergence of the solver. WISMP gives users the option of either letting it determine and tune these thresholds automatically, or using fixed user-determined values. Please refer to the descriptions of IPARM(15), IPARM(28), DPARM(14), and DPARM(15) for more details. In an application that involves repeated preconditioner generation and solution w.r.t. gradually varying coefficient matrices, WISMP, if given the option, WISMP can automatically tune these parameters to suitable values and even dynamically adjust them to fit shifting spectral properties of the coefficient matrices. When solving only one system at a time, WISMP outputs suggested fixed values of the thresholds that the user can use in subsequent runs to improve performance.

4.4 Calling sequence of the WISMP subroutine

There are five types of arguments, namely input (type I), output (type O), modifiable (type M), temporary (type T), and reserved (type R). The input arguments are read by WISMP and remain unchanged upon execution, the output arguments are not read but some useful information is returned via them, the modifiable arguments are read by WISMP and modified to return some information, the temporary arguments are not read but their contents are overwritten by
The storage of this matrix in the A 9 X 9 symmetric sparse matrix.

The input formats accepted by WISMP is shown in the table.

Figure 1: Illustration of the upper triangular CSR and full CSR formats for a symmetric matrix for the serial/multithreaded WISMP routine.
unpredictable values during execution, and the reserve arguments are just like temporary arguments which may change
to one of the other types of arguments in the future serial and parallel releases of this software.

In the remainder of this document, the “system” refers to the sparse linear system of \(N \) equations of the form
\(AX = B \), where \(A \) is a sparse symmetric coefficient matrix of dimension \(N \), \(B \) is the right-hand-side vector/matrix and
\(X \) is the solution vector/matrix, whose approximation \(\bar{X} \) is computed by WISMP.

Note 4.1 Recall that WISMP supports both C-style (starting from 0) and Fortran-style (starting from 1) numbering. The
description in this section assumes Fortran-style numbering and C users must interpreted it accordingly. For example,
\(\text{IPARM}(11) \) will actually be \(\text{IPARM}[10] \) in a C program calling WISMP.

Note 4.2 All user-callable WSMP routines expect their parameters to be passed by reference. Therefore, when calling
WSMP from a C program, the addresses of the parameters described in Section 4.4 must be passed.

The calling sequence and description of the parameters of WISMP is as follows. Note that all arguments are not
accessed in all phases of the solution process. The descriptions that follow indicate when a particular argument is not
accessed. When an argument is not accessed, a NULL pointer or any scalar can be passed as a place holder for that
argument. The example program \texttt{wismp.ex1.f} at the WSMP home page illustrates the use of the WISMP subroutine for
the matrix shown in Figure 1.

\[
\text{WISMP} \ (\text{N, IA, JA, AVALS, B, LDB, X, LDX, NRHS, RMISC, CVGH, IPARM, DPARM}) \\
\text{void wismpr} \ (\text{int *n, int ia[]}, \text{int ja[]}, \text{double avals[]}, \text{double b[]}, \text{int *ldb, double x[]}, \text{int *ldx, int *nrhs, double rmisc[]}, \text{double cvgh[]}, \text{int iparm[]}, \text{double dparm[]})
\]

4.4.1 N (type I): matrix dimension

\[
\text{INTEGER N} \\
\text{int *n}
\]

This is the number of rows and columns in the sparse matrix \(A \) or the number of equations in the sparse linear system
\(AX = B \). It must be a nonnegative integer.

4.4.2 IA (type I): row/column pointers

\[
\text{INTEGER IA} \ (N + 1) \\
\text{int ia[]}
\]

\(IA \) is an integer array of size one greater than \(N \). \(IA(i) \) points to the first row/column index of column/row \(I \) in the
array \(JA \). Note that empty columns (or rows) are not permitted; i.e., \(IA(i + 1) \) must be greater than \(IA(i) \).

Please refer to Figure 1 and description of \(\text{IPARM}(4) \) in Section 4.4.12 for more details.

4.4.3 JA (type I or M): column/row indices

\[
\text{INTEGER JA} \ (\ast) \\
\text{int ja[]}
\]

The integer array \(JA \) contains the column (row) indices of the upper (lower) triangular part of the symmetric sparse
matrix \(A \). The indices of a column (row) are stored in consecutive locations. In addition, these consecutive column
(row) indices of a row (column) must be sorted in increasing order upon input. WSMP provides two utility routines to
sort the indices (see Section 5 for details). The size of array \(JA \) is the total number of nonzeros in the matrix \(A \) or one of
its triangular portions (including the diagonal) if \(A \) is symmetric and \(\text{IPARM}(4) \) is 2 or 3.
4.4.4 **AVALS (type I or M): nonzero values of the coefficient matrix**

```
DOUBLE PRECISION AVALS ( * )
double avals[]
```

The array `AVALS` contains the actual double precision values corresponding to the indices in `JA`. The size of `AVALS` is the same as that of `JA`. See Figure 1 for more details. Please note that, in many cases, `AVALS` is accessed during Task 1 (see description of `IPARM(2..3)` in Section 4.4.12), whose primary aim is analyze the structure of the matrix. The reason for accessing `AVALS` during this phase is to ensure that `WISMP` does not perform any structural rearrangement of the matrix that may turn out to be numerically unstable in subsequent phases. Therefore, `AVALS` must be available to `WISMP` even in the structural analysis phase.

Note 4.3 By default, `IPARM(14)` is 1 (see description of `IPARM(14)`), which means that `AVALS` is overwritten during preconditioner generation and must be passed unaltered to the solution phase when preconditioner type (`IPARM(15)`) is greater than or equal to 3. This can be switched off and `AVALS` can be made read-only by setting `IPARM(14)` to 0.

4.4.5 **B (type I or O): right-hand side vector/matrix**

```
DOUBLE PRECISION B ( LDB, NRHS )
double b[]
```

The $N \times NRHS$ dense matrix B (stored in an $LDB \times NRHS$ array) contains the right-hand side of the system of equations $AX = B$ to be solved. If the number of right-hand side vectors, $NRHS$, is one, then B can simply be a vector of length N. The input B is accessed only in the solution phase (Task 4).

When calling `WISMP` for multiplying a sparse matrix with a dense vector or matrix (task 5), then B is the output product vector or matrix.

4.4.6 **LDB (type I): leading dimension of B**

```
INTEGER LDB
int *ldb
```

LDB is the leading dimension of the right-hand side matrix if $NRHS > 1$. When used, LDB must be greater than or equal to N. Even if $NRHS = 1$, LDB must be greater than 0.

4.4.7 **X (type O or I): solution vector/matrix**

```
DOUBLE PRECISION X ( LDX, NRHS )
double x[]
```

The $N \times NRHS$ dense matrix X (stored in an $LDX \times NRHS$ array) contains the computed solution the system of equations $AX = B$ if task 3 is performed by `WISMP`. If the number of right-hand side vectors, $NRHS$, is one, then X can simply be a vector of length N.

When `WISMP` is called for multiplying a sparse matrix with a dense vector or matrix (task 5), then X is the input vector or matrix.

4.4.8 **LDX (type I): leading dimension of X**

```
INTEGER LDX
int *ldx
```

LDX is the leading dimension of the solution matrix if $NRHS > 1$. When used, LDX must be greater than or equal to N. Even if $NRHS = 1$, LDX must be greater than 0.
4.4.9 NRHS (type I): number of right-hand sides

 INTEGER NRHS
 int *nrhs

NRHS is the second dimension of B and X; it is the number of right-hand sides that need to be solved for. It must be a nonnegative integer.

4.4.10 RMISC (type I, O, M): double precision output info

 DOUBLE PRECISION RMISC (N, NRHS)
 double rmisc[]

If \textit{IPARM(25)} is 0, then \textit{RMISC} is not accessed. If \textit{IPARM(25)} is 1, then on return from the solution phase, \textit{RMISC(I,J)} is set to the \textit{I}-th component of the residual while solving for the \textit{J}-th RHS. If \textit{IPARM(25)} is 2 on input, then the contents of \textit{RMISC} are used as the starting approximation to the solution of the system. By default, the starting solution contains all zeros. However, if the user has access to a good approximation, then using that may require fewer iterations for convergence. If \textit{IPARM(25)} is 3, then the contents of \textit{RMISC} are used as the starting solution on input and are overwritten by the residual on output.

Note that the user needs to provide a valid double precision array of size \textit{N} \times \textit{NRHS} only if \textit{IPARM(25)} is set to a nonzero value; otherwise, \textit{RMISC} can just be a NULL pointer.

4.4.11 CVGH (type O): double precision convergence history output

 DOUBLE PRECISION CVGH (0 : IPARM(6))
 double cvgh[]

Please refer to the description of \textit{IPARM(27)}. The user needs to provide a valid double precision array of size \textit{IPARM(6)} + 1 only if \textit{IPARM(27)} is set to a nonzero value; otherwise, \textit{CVGH} can just be a NULL pointer.

4.4.12 IPARM (type I, O, M, and R): integer array of parameters

 INTEGER IPARM (64)
 int iparm[64]

\textit{IPARM} is an integer array of size 64 that is used to pass various optional parameters to \textit{WISMP} and to return some useful information about the execution of a call to \textit{WISMP}. If \textit{IPARM(1)} is 0, then \textit{WISMP} fills \textit{IPARM(4)} through \textit{IPARM(64)} and \textit{DPARM} with default values and uses them. The default initial values of \textit{IPARM} and \textit{DPARM} are shown in Table 2. \textit{IPARM(1)} through \textit{IPARM(3)} are mandatory inputs, which must always be supplied by the user. If \textit{IPARM(1)} is 1, then \textit{WISMP} uses the user supplied entries in the arrays \textit{IPARM} and \textit{DPARM}. Note that some of the entries in \textit{IPARM} and \textit{DPARM} are of type M or O. It is possible for a user to call \textit{WISMP} only to fill \textit{IPARM} and \textit{DPARM} with the default initial values. This is useful if the user needs to change only a few parameters in \textit{IPARM} and \textit{DPARM} and needs to use most of the default values. Please refer to the description of \textit{IPARM(2)} and \textit{IPARM(3)} for more details. Note that there are no default values for \textit{IPARM(2)} and \textit{IPARM(3)} and these must always be supplied by the user, whether \textit{IPARM(1)} is 0 or 1.

Note that all reserved entries; i.e., \textit{IPARM(37:63)} must be filled with 0’s.

- **IPARM(1)** or iparm[0], type I or M:

 If \textit{IPARM(1)} is 0, then the remainder of the \textit{IPARM} array and the \textit{DPARM} array are filled with default values by \textit{WISMP} before further computation and \textit{IPARM(1)} itself is set to 1. If \textit{IPARM(1)} is 1 on input, then \textit{WISMP} uses the user supplied values in \textit{IPARM} and \textit{DPARM}.
Table 2: The default initial values of the various entries in `IPARM` and `DPARM` arrays. A '-' indicates that the value is not read by `WISMP`. Please refer to the text for details on ordering options `IPARM(16:20)`.

<table>
<thead>
<tr>
<th>Index</th>
<th>IPARM</th>
<th>Description</th>
<th>Type</th>
<th>Default</th>
<th>DPARM</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mandatory I/P</td>
<td>default/user defined</td>
<td>M</td>
<td></td>
<td></td>
<td>Elapsed time</td>
<td>O</td>
</tr>
<tr>
<td>2</td>
<td>mandatory I/P</td>
<td>starting task</td>
<td>M</td>
<td></td>
<td></td>
<td>unused</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>mandatory I/P</td>
<td>last task</td>
<td>I</td>
<td></td>
<td></td>
<td>unused</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>I/P format</td>
<td>I</td>
<td></td>
<td></td>
<td>max. fact. diag.</td>
<td>O</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>numbering style</td>
<td>I</td>
<td></td>
<td></td>
<td>min. fact. diag.</td>
<td>O</td>
</tr>
<tr>
<td>6</td>
<td>1000</td>
<td>max iterations</td>
<td>I</td>
<td>1×10^{-7}</td>
<td></td>
<td>target rel. resid. norm</td>
<td>I</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>matrix type</td>
<td>I</td>
<td>1×10^{-4}</td>
<td></td>
<td>target rel. error norm</td>
<td>I</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>max. matching use</td>
<td>I</td>
<td>0.0</td>
<td></td>
<td>termination criterion</td>
<td>I</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>max. matching frequency</td>
<td>I</td>
<td>0.0</td>
<td></td>
<td>diagonal perturbation</td>
<td>I</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>scaling option</td>
<td>I</td>
<td>10^{-18}</td>
<td></td>
<td>singularity threshold</td>
<td>I</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>thresh. pivoting opt.</td>
<td>I</td>
<td>1×10^{-3}</td>
<td></td>
<td>pivot thresh.</td>
<td>I</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>no. of attempts</td>
<td>I</td>
<td>10^{-5}</td>
<td></td>
<td>small piv. thresh.</td>
<td>I</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>solver choice</td>
<td>M</td>
<td>-</td>
<td></td>
<td>no. of supernodes</td>
<td>O</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>AVALS/JA reuse opt.</td>
<td>I</td>
<td>0.0</td>
<td></td>
<td>threshold τ</td>
<td>M</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>preconditioner choice</td>
<td>I</td>
<td>0.0</td>
<td></td>
<td>threshold γ</td>
<td>M</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>ordering option 1</td>
<td>O</td>
<td>-</td>
<td></td>
<td>number of zero diagonals</td>
<td>O</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>ordering option 2</td>
<td>O</td>
<td>-</td>
<td></td>
<td>number of missing/-ve diagonals</td>
<td>O</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
<td>max imbalance</td>
<td>I</td>
<td>-</td>
<td></td>
<td>unused</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>refinement strategy</td>
<td>I</td>
<td>-</td>
<td></td>
<td>unused</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>matrix characteristics</td>
<td>I</td>
<td>-</td>
<td></td>
<td>unused</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>GMRES restart</td>
<td>I</td>
<td>-</td>
<td></td>
<td>structural symmetry</td>
<td>O</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td># approx. eigenvcs</td>
<td>I</td>
<td>10^{-5}</td>
<td></td>
<td>small piv. repl.</td>
<td>I</td>
</tr>
<tr>
<td>23</td>
<td>-</td>
<td>incomplete fact. size</td>
<td>O</td>
<td>-</td>
<td></td>
<td>incomplete fact. ops.</td>
<td>O</td>
</tr>
<tr>
<td>24</td>
<td>40</td>
<td>max. clique size</td>
<td>I</td>
<td>0.8</td>
<td></td>
<td>min. compression efficiency</td>
<td>I</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>RMISC use</td>
<td>I</td>
<td>1.0</td>
<td></td>
<td>direct solver drop tolerance factor</td>
<td>I</td>
</tr>
<tr>
<td>26</td>
<td>-</td>
<td>number of iterations</td>
<td>O</td>
<td>-</td>
<td></td>
<td>relative residual norm</td>
<td>O</td>
</tr>
<tr>
<td>27</td>
<td>0</td>
<td>CVGH use</td>
<td>I</td>
<td>-</td>
<td></td>
<td>error norm estimate</td>
<td>O</td>
</tr>
<tr>
<td>28</td>
<td>2</td>
<td>τ, γ tuning</td>
<td>I</td>
<td>-</td>
<td></td>
<td>unused</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>nondeterminism</td>
<td>I</td>
<td>-</td>
<td></td>
<td>unused</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td># diags replaced/interchanges</td>
<td>O</td>
<td>-</td>
<td></td>
<td>unused</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>-</td>
<td># entries dropped</td>
<td>O</td>
<td>-</td>
<td></td>
<td>unused</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>precond. repeat use</td>
<td>I</td>
<td>-</td>
<td></td>
<td>unused</td>
<td>-</td>
</tr>
<tr>
<td>33</td>
<td>-</td>
<td>no. of CPU's used</td>
<td>O</td>
<td>-</td>
<td></td>
<td>unused</td>
<td>-</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>symm. enh. dropping</td>
<td>I</td>
<td>-</td>
<td></td>
<td>unused</td>
<td>-</td>
</tr>
<tr>
<td>35-63</td>
<td>0</td>
<td>reserved</td>
<td>R</td>
<td>0.0</td>
<td></td>
<td>reserved</td>
<td>R</td>
</tr>
<tr>
<td>64</td>
<td>-</td>
<td>return error code</td>
<td>O</td>
<td>-</td>
<td></td>
<td>unused</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3: Valid values of `IPARM(2)` (first column) and the corresponding valid values of `IPARM(3)`.
• **IPARM(2) or iparm[1], type M:**

As described in Section 4.4.12 the WISMP routine can be used to perform a subset of several tasks listed in Table 1. This subset of tasks performed is controlled by IPARM(2) and IPARM(3).

On input, IPARM(2) must contain the number of the starting task and IPARM(3) must contain the number of the last task. All tasks from IPARM(2) to IPARM(3) are performed, provided that it is a valid task sequence. Table 3 shows all sets of valid groups of tasks that can be performed by setting IPARM(2) and IPARM(3) appropriately.

If IPARM(2) ≤ 0 or IPARM(2) > 6 or IPARM(2) >, then no tasks are performed; however, if IPARM(1) is 0, then IPARM(4) to IPARM(64) and DPARAM(4) to DPARAM(64) are filled with default values.

On output, IPARM(2) contains 1 + number of the last task performed by WISMP, if any. This is to facilitate users to restart processing on a problem from where the last call to WISMP left it. Also, if WISMP is called to perform multiple tasks in the same call and it returns with an error code in IPARM(64), then the output in IPARM(2) indicates the task that failed. If WISMP performs no task, then, on output, IPARM(2) is set to max(IPARM(2),IPARM(3)+1).

When using WISMP to solve a single system of equations, you would perform Tasks 1–4 in sequence. When solving multiple systems with the same coefficient matrix A, but different RHS vectors/matrices B, you would perform Tasks 1–3, followed by multiple calls to WISMP to perform Task 4. Note that if all the RHS vectors are available at the same time, then it is much more efficient to perform a single instance of Task 4 with all of them bundled in the matrix B and setting NRHS to the number of RHS vectors (which is the number of columns in B). When solving multiple systems with different coefficient matrices, you would perform Tasks 1–4 for the first system, followed by Tasks 2–4 or just Tasks 2 and 4 for the subsequent systems. If the coefficient matrices of the consecutive systems to be solved change gradually, then Task 3 may not be needed for each system. This may gradually increase the number of iterations required by Task 4 to solve the system because the stale preconditioner will be used, but may still result in an overall faster solution because the stale preconditioner may be only slightly worse than the preconditioner computed from the current matrix. The user may perform Task 3 after any number of steps. WISMP also keeps track of the relative amounts of computation in Tasks 3 and 4, and automatically recomputes the preconditioner at optimum (possibly varying from one matrix to another) intervals.

The ability to use a preconditioner generated from an earlier coefficient matrix can also be used in conjunction with WSMP’s direct solvers to obtain fast solutions to a sequence of linear systems with gradually varying coefficient matrices. As described in Section 4.4.12, by choosing appropriate values of DPARAM(14–15), Task 3 can be used to perform a direct factorization. In this case, Task 4 obtains the solution in a single step corresponding to the matrix that is factored. However, this factorization can serve as a preconditioner for subsequent systems, which (hopefully) can be solved in a small number of iterations. After a point, the number of iterations in Task 4 may increase to a level that it may worthwhile recomputing the factors using Task 3. Either the user can explicitly perform Task 3; however, if the user does not, then WISMP can automatically detect where, if at all, it needs to recompute the preconditioner within a repeated sequence of Tasks 2 and 4.

WISMP also provides users stand-alone access to fast parallel sparse matrix-vector multiplication (or multiplication of a sparse matrix with a dense matrix) and preconditioning. The users can call WISMP to provide these functions for their own iterative algorithms other than CG, GMRES, BiCGStab, or TFQMR, currently provided by WISMP. In this case, the user would first perform Tasks 1–2 if preconditioning is not used, or Tasks 1–3 if preconditioning is used. These steps can then be followed by multiple calls to WISMP to perform Tasks 5 and 6 if the user chooses to implement their own iterative method and use WISMP’s fast parallel sparse matrix-vector multiplication and preconditioning algorithms.

Please refer to Note 4.4 in the description of IPARM(15) in Section 4.4.12 for some important information related to Task 3.

• **IPARM(3) or iparm[2], type I:**

IPARM(3) must contain the number of the last task to be performed by WISMP. In a call to WISMP, all tasks from IPARM(2) to IPARM(3) are performed (both inclusive). If IPARM(2) > IPARM(3) or both IPARM(2) and
Input matrix format	IPARM(4)
Compressed Sparse Rows (CSR); full matrix | 1
Compressed Sparse Columns (CSC); full matrix | 2
Upper triangular portion of symmetric matrix in CSR format | 3
Lower triangular portion of symmetric matrix in CSR format | 4

Table 4: Input formats accepted for sparse coefficient matrices and the corresponding values of IPARM(4).

<table>
<thead>
<tr>
<th>Coefficient matrix type</th>
<th>IPARM(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real or complex general unsymmetric</td>
<td>0</td>
</tr>
<tr>
<td>Real or complex unsymmetric diagonally dominant</td>
<td>1</td>
</tr>
<tr>
<td>Real or complex symmetric indefinite</td>
<td>2</td>
</tr>
<tr>
<td>Real or Hermitian symmetric positive-definite</td>
<td>3</td>
</tr>
<tr>
<td>Real symmetric M-matrix</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 5: Types of sparse coefficient matrices and the corresponding values of IPARM(7).

IPARM(3) is out of the range 1–6, then no task is performed. This can be used to fill IPARM and DPARM with default values; e.g., by calling WISMP with IPARM(1) = 0, IPARM(2) = 0, and IPARM(3) = 0.

- **IPARM(4) or iparm[3], type I:**
 IPARM(4) denotes the format in which the coefficient matrix A is stored. Table 4 lists the supported input matrix formats and the corresponding input values for IPARM(4).
 The default value of IPARM(4) is 1.

- **IPARM(5) or iparm[4], type I:**
 If IPARM(5) = 0, then C-style numbering (starting from 0) is used; if IPARM(5) = 1, then Fortran-style numbering (starting from 1) is used. In C-style numbering, the matrix rows and columns are numbered from 0 to $N - 1$ and the indices in IA should point to entries in JA starting from 0.
 The default value of IPARM(5) is 1.

- **IPARM(6) or iparm[5], type I:**
 On input, IPARM(6) should be set to the maximum number of iterations of the Krylov subspace method that the user wishes to perform before terminating if the relative residual has not converged to the desired limit (specified in DPARM(6)). The actual number of iterations required to reach the desired convergence is returned in IPARM(26) after the solve phase of WISMP. Please refer to the description of DPARM(6) for more details.
 The default input value of IPARM(6) is 1000.

- **IPARM(7) or iparm[6], type I:**
 IPARM(7) denotes the the type of coefficient matrix. Table 5 lists the types of sparse systems and the corresponding input values for IPARM(7). The default value of IPARM(7) is 0. It is extremely important that the matrix type is indicated as accurately as possible in IPARM(7).

- **IPARM(8) or iparm[7], type I:**
 IPARM(8) is ignored for matrix types 1, 3, and 4.
 For matrix types 0 and 2, WISMP can use a maximum weight matching on the bipartite graph induced by the sparse coefficient matrix to permute its row such that the product of the absolute values of the diagonal is maximized $9, 1, 7, 6$. By default, indicated by IPARM(8) = 0, WSMP decides whether or not to use this matching depending on the
structure and the values of coefficient matrix. If \(IPARM(8) = 1 \), then this permutation is always performed for non positive-definite matrices, and if \(IPARM(8) = 2 \), then this permutation is not performed. It is recommended that maximum weight matching be turned off by setting \(IPARM(8) = 2 \) for diagonally dominant symmetric indefinite matrices.

- **IPARM(9) or iparm[8], type I:**
 Depending on the input in \(IPARM(8) \), \textit{WISMP} may use a maximum bipartite matching algorithm to permute the rows such that the product of the absolute values of the diagonal entries is maximized. When multiple systems with coefficient matrices of the same structure but gradually varying values are solved, then it may be more economical to not perform the maximum matching each time. The input \(IPARM(9) \) can be used to control the frequency at which such matching is performed. The default value of \(IPARM(9) \) is 10; i.e., the maximum bipartite matching algorithm is used for every 10th matrix and for the others, the last computed row permutation and scaling is applied.

- **IPARM(10) or iparm[9], type I:**
 An input of \(IPARM(10) = 0 \) implies that \textit{WISMP} will not scale the input matrix. \(IPARM(10) = 1 \), which is the default, implies that scaling is performed in an attempt to improve convergence and the numerical properties of incomplete factorization.

- **IPARM(11) or iparm[10], type I:**
 \(IPARM(11) \) is ignored for matrix types 1, 3, and 4 (Table 5, Section 4.4.12 describes matrix types).

 For matrix types 0 and 2, if a preconditioner based on incomplete factorization is chosen, then \(IPARM(11) \) determines whether or not partial pivoting is performed during incomplete LU factorization. If \(IPARM(11) = 0 \), then partial pivoting is turned off. If \(IPARM(11) = 1 \), then partial pivoting is turned on. If \(IPARM(11) = 2 \), which is also the default, then \textit{WISMP} decides whether or not to use partial pivoting based on the characteristics of the matrix.

 The total number of row or column interchanges performed are reported in \(IPARM(30) \).

 Although \(IPARM(11) \) pertains to the preconditioner generation phase (Task 3) when incomplete factorization is used, its value must be set before starting Task 1 because certain data structures that are set up during the structural analysis phase (Task 1) must account for pivoting, if needed.

- **IPARM(12) or iparm[11], type I:**
 \(IPARM(12) \) is ignored for the values of preconditioner type (\(IPARM(15) \)) less than 3. Please refer to the description of \(IPARM(14) \), whose default nonzero setting makes \(IPARM(12) \) ineffective. If \(IPARM(14) \) is set to 0 by the user, then \(IPARM(12) \) has the following effect for incomplete factorization preconditioning.

 When \(IPARM(12) \) is effective and incomplete factorization preconditioning is chosen, then \textit{WISMP} may make up to \(k \) attempts at computing the incomplete factorization, where \(k \) is the absolute value of the input in \(IPARM(12) \).

 In each of the \(k - 1 \) reattempts if the first attempt fails, a preconditioner with progressively tighter thresholds (i.e., a more accurate but expensive preconditioner) is computed. An incomplete factorization is deemed to have failed if the estimated norm of the error is more than 10 times higher than the limit in \(DPARM(6) \) after \(IPARM(6) \) iterations in the previous attempt.

 If \(IPARM(12) \) is positive, then \textit{WISMP} may attempt a complete factorization, depending on the results of the previous incomplete factorization attempts. If \(IPARM(12) \) is negative, then complete factorization is not considered.

 For example, with a 3 or a -3 in \(IPARM(12) \), \textit{WISMP} will make at most 3 attempts to solve the system—one using the incomplete factorization based on the original values of \(\tau \) and \(\gamma \) (\(DPARM(14..15) \)) and at most two more with progressively denser preconditioners. However, with \(IPARM(12) = -3 \), the factorization will be incomplete in all attempts, whereas \textit{WISMP} may decide to perform a complete factorization if \(IPARM(12) = 3 \). \(IPARM(12) = 0 \) is treated as \(IPARM(12) = 1 \).

 The default value of \(IPARM(12) \) is 2. However, the default value of \(IPARM(14) \) is nonzero, which makes the \(IPARM(12) \) input ineffective. So if an automatic reattempt is desirable, then \(IPARM(14) \) must be changed to 0 from its default value.
Table 6: Types of preconditioner supported in WISMP and the corresponding input values in IPARM(15).

<table>
<thead>
<tr>
<th>Preconditioner type</th>
<th>IPARM(15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No preconditioning</td>
<td>0</td>
</tr>
<tr>
<td>Diagonal preconditioner</td>
<td>1</td>
</tr>
<tr>
<td>SSOR preconditioner</td>
<td>2</td>
</tr>
<tr>
<td>Incomplete factorization</td>
<td>3</td>
</tr>
</tbody>
</table>

• IPARM(13) or iparm[12], type I:

If IPARM(13) is 0 (default), then WISMP makes the choice of the solver. If IPARM(13) is 1, then the conjugate gradient method is used. If IPARM(13) is 2, then the GMRES method is used. BiCGStab or TFQMR can be selected by setting IPARM(13) to 3 or 4, respectively. Flexible GMRES (FGMRES) can be chosen by setting IPARM(13) to 6. Note that an input value of 5 is currently unused.

Upon return, IPARM(13) contains the value corresponding to the method that was actually used.

• IPARM(14) or iparm[13], type I:

IPARM(14) can be used to reuse the space in the arrays AVALS and JA during the preconditioner generation for preconditioner type 3 (see description of IPARM(15) for details on preconditioner types). Thus, this option can be used to save memory if user does not need access to the values, or indices, or both values and indices of the coefficient matrix after solving the system.

If IPARM(14) is 0, then AVALS and JA are not altered by WISMP.

If IPARM(14) is 1, which is the default, then AVALS is overwitten during preconditioner generation (Task 3). In this case, the modified AVALS contains preconditioner data, must be passed unaltered to the solve phase (Task 4) after preconditioner generation (Task 3).

If IPARM(14) is 2, then JA is overwitten during preconditioner generation (Task 3).

If IPARM(14) is 3, then both AVALS and JA are overwitten during Task 3 and must be passed unaltered to Task 4.

IPARM(14) is ignored if IPARM(15) is 0, 1, or 2 and AVALS is never overwritten for these preconditioner types.

Note that IPARM(14) must be set to 0 if a preconditioner generated from one matrix is used to solve a system with a different coefficient matrix while solving a sequence of linear systems because filling AVALS and JA with the values and indices of the new matrix will corrupt the preconditioner stored in these arrays. It should also be set to 0 for IPARM(12) to be effective.

• IPARM(15) or iparm[14], type I:

IPARM(15) indicates the type of preconditioning to be performed.

Table lists the types of preconditioning available in WISMP and the corresponding input values for IPARM(15). If IPARM(15) is 0, then no preconditioning is used. If IPARM(15) is 1, then Jacobi preconditioning (diagonal scaling) is used. If IPARM(15) is 2, then SSOR preconditioning is performed (with a value of 1.0 for ω). The default value for IPARM(15) is 3, which results in an incomplete factorization.

An incomplete factorization based on two thresholds, τ and γ is used for preconditioner type 3. During incomplete factorization, all entries in locations (i, j) and (j, i) whose magnitudes are smaller than or equal to τ times the diagonal entry (i, i) are dropped, where i > j. Furthermore, the incomplete factors would contain at most γ times the original number of nonzeros in each row and column, and additional fill may be dropped to satisfy this constraint. The thresholds τ and γ are initially picked based on the user specified inputs in DPARM(14) and DPARM(15), respectively. However, during the incomplete factorization, τ may be reduced and γ increased if the factorization algorithm detects that that is necessary to maintain the stability and accuracy of the incomplete factorization.
Please refer to the description of \textit{DPARM(14)} and \textit{DPARM(15)} for more details. Note that \textit{DPARM(14)} and \textit{DPARM(15)} are ignored if \textit{IPARM(15)} is 0, 1, or 2.

When solving several systems with different coefficient matrices, the user can apply different types of preconditioners to different systems. However, whenever the preconditioner is changed, the user must restart from Task 1 (i.e., perform the symbolic analysis again) because Task 1 uses preconditioner dependent heuristics.

\textbf{Note 4.4} Even if \textit{IPARM(15)} is 0; i.e., no preconditioning is used, Task 3 must still be performed, at least once, because some internal data structures required in subsequent tasks are allocated in this step. In other words, even if preconditioning is not used, Task 3 cannot be skipped and must be performed with \textit{IPARM(15)} = 0, at least for the first coefficient matrix.

- \textbf{IPARM(16) or iparm[15], type I:}

 \textit{WISMP} uses a preordering of the matrix rows and columns to minimize fill during incomplete factorization for preconditioner type. This reordering is performed as a part of Task 2.

 If \textit{IPARM(16)} is -1, the ordering is not performed and the original ordering of columns is used. Note that the rows may still be permuted depending on the input in \textit{IPARM(8)}. If \textit{IPARM(16)} is -2, then reverse Cuthill-McKee ordering \cite{2} is performed. If \textit{IPARM(16)} is 1, 2, or 3, then a graph-partitioning based ordering \cite{3} is performed. In addition, when \textit{IPARM(16)} is positive, the ordering speed and quality is determined by its integer value. \textit{IPARM(16)} = 1 results in the slowest but best ordering, \textit{IPARM(16)} = 3 results in fastest but worst ordering, and \textit{IPARM(16)} = 2 results in an intermediate speed and quality of ordering.

 The default value of \textit{IPARM(16)} is 0, in which case, \textit{WSMP} choses the best ordering automatically.

- \textbf{IPARM(17) or iparm[16], type I:}

 If an incomplete factorization based preconditioner is used, then \textit{IPARM(17)} can be used to choose the partitioning and ordering heuristics that \textit{WISMP} applies to the coefficient matrix. \textit{WISMP} uses a combination of a few such heuristics. If \textit{IPARM(17)} is 0, which is also the default, then \textit{WISMP} chooses the combination of heuristics automatically, based on the characteristics of the matrix.

 Four other combinations are available and can be selected by setting \textit{IPARM(17)} to 1, 2, 3, or 4, respectively. In addition to the default, users are encouraged to experiment with the other four as well to determine which one works best for their problems.

- \textbf{IPARM(18) or iparm[17], type I:}

 \textit{WISMP} uses multilevel graph partitioning algorithms \cite{4} to distribute data and computation among multiple CPUs. The inputs in \textit{IPARM(18:19)} control the partitioning process. \textit{IPARM(18)} specifies the maximum percentage of tolerable load imbalance; default is 3\% (i.e., \textit{IPARM(18)} = 3 by default). Note that only whole number percentages for tolerable imbalance can be specified because \textit{IPARM} is an integer array. Imbalance is computed as the ratio of the weight of the heaviest part to average part weight.

- \textbf{IPARM(19) or iparm[18], type I:}

 \textit{IPARM(19)} specifies the type of refinement to be used during multilevel graph partitioning. If \textit{IPARM(19)} is 0, then \textit{WISMP} chooses the refinement strategy based on the number of CPU’s and the size of the matrix. A value of 11 results in greedy refinement (GR) and a value of 12 results in Kernighan-Lin (KL) refinement. KL is slower than GR, especially for moderate to large number of CPUs. Fortunately, the benefit of using KL over GR is the maximum for small number of partitions, where the run-time penalty is not excessive. For large number of parts, GR does as well as KL and is much faster. For small number of parts relative to the size of the graph, KL is recommended. Please refer to \cite{4} for details on refinement strategies.

 The default value of \textit{IPARM(19)} is 0.
- **IPARM(20)** or iparm[19], type I:
 The input **IPARM(20)** lets the user communicate some known characteristics of the sparse matrix to **WISMP** to aid it in choosing appropriate values of some internal parameters and to chose appropriate algorithms in various stages of partitioning and reordering the matrix. If the user has no information about the type of sparse matrix or if the matrix does not fall into one of the categories below, then the default value 0 should be used.

 Certain sparse matrices have a very irregular structure and have a few rows/columns that are much denser than most of the rows/columns. Many sparse matrices arising from linear programming problems fall in this category.

 For such matrices, the quality and the speed of partitioning can usually be improved by setting **IPARM(20)** to 1. This instructs the partitioning and ordering routines to split the graph based on the high degree nodes before proceeding.

 Sometimes, sparse matrices arise from finite-element graphs in which many or most vertices have more than one degree of freedom. In such graphs, there are a many small groups of nodes that share the same adjacency structure. If the sparse matrix comes from a problem like this, then a value of 2 should be used in **IPARM(20)**. This instructs **WISMP** to construct a compressed graph before proceeding with the partitioning or ordering, which then run much faster as they work on the smaller compressed graph rather than the original larger graph.

 The symbolic factorization phase before incomplete factorization (relevant only for preconditioner type 3) may fail for some matrices with very irregular structure, unless **IPARM(20)** is set to 1.

- **IPARM(21)** or iparm[20], type I:
 IPARM(21) is read only when the GMRES solver is used. If the input in **IPARM(21)** is not 0, then it is used as the restart parameter; i.e., GMRES is restarted after every **IPARM(21)** iterations. If **IPARM(21)** is 0, then **WSMP** chooses the restart parameter based on certain properties of the matrix. The default value of **IPARM(21)** is 0. A small value of the restart parameter may slow down the convergence rate but will reduce memory use and average CPU time per iteration. A higher value may increase the convergence rate at the cost of additional memory and average CPU time per iteration.

- **IPARM(22)** or iparm[21], type I:
 IPARM(22) is read only when the GMRES solver is used. The GMRES method implemented in the **WSMP** library usually adds approximate eigenvectors corresponding to a few smallest eigenvalues of the matrix to the subspace in order to mitigate the impact of restarting on convergence [8]. If the input in **IPARM(22)** is not 0, **IPARM(22)** approximate eigenvectors are used. If **IPARM(22)** is 0, then **WSMP** attempts to choose an appropriate number of eigenvectors. If **IPARM(22)** is -1, then approximate eigenvectors are not used. The default value of **IPARM(22)** is 0.

- **IPARM(23)** or iparm[22], type O:
 If an incomplete factorization preconditioner is used, then after the preconditioner generation phase, **IPARM(23)** contains the number of thousands of double words required to store the incomplete factors.

- **IPARM(24)** or iparm[23], type O:
 In order to improve the efficiency of sparse matrix-vector multiplication and incomplete factorization preconditioning (if opted for), **WISMP** attempts to find groups of rows and columns that have identical nonzero patterns. Each such group is referred to as a supernode. It is often beneficial to group even those rows (and columns) into supernode that do not have an identical structure, but whose structures are nearly identical. This is accomplished by introducing artificial entries with a numerical value of zero into these rows and columns to make their structures identical. **IPARM(24)** and **DPARM(24)** are user inputs that can be used to tell **WISP** how aggressively it should introduce these extra entries in order to maximize the size the supernodes.

 IPARM(24) indicates the maximum size of any supernode that would be used by **WISMP**. The naturally occurring supernodes will be restricted in size to a maximum of **IPARM(24)** and when the size of a naturally occurring supernode is less than **IPARM(24)**, then no artificial entries will be used to increase its size beyond **IPARM(24)**.
DPARM(24), whose default value is 0.8, indicates the minimum fraction of overlap in the nonzero pattern of two row-column pairs needed for them to be a part of the same supernode. In other words, the number of extra entries added to a row or column will not exceed \((1.0 - \text{DPARM}(24))\) times the original number of entries in that row or column.

Increasing \text{IPARM}(24)\) and decreasing \text{DPARM}(24)\) (whose valid range is from 0.0 to 1.0) increases the size and reduces the number of supernodes, while increasing the total number of artificial entries added to the matrix.

- **IPARM(25) or iparm[24]**, type I:

 Please refer to the description of \text{RMISC} in Section 4.4.10.

- **IPARM(26) or iparm[25]**, type O:

 Upon return from the solution phase, \text{IPARM}(26)\) contains the total number of iterations performed. It is always less than or equal to the input in \text{IPARM}(6)\).

- **IPARM(27) or iparm[26]**, type I:

 \text{IPARM}(27) = 0, which is the default, has no effect. If \text{IPARM}(27) = 1 during the solution phase, then the convergence history is returned in \text{CVGH}; i.e., it contains \text{IPARM}(26) + 1 double precision values that correspond to the relative residual after each iteration. \text{CVGH}(0)\) contains initial relative norm of residual before starting the iterations, and is equal to 1.0 if IPARM(25) < 2. If \text{IPARM}(27) = 1, then \text{CVGH} must point to a valid user-supplied double precision array of size \text{IPARM}(6) + 1.

- **IPARM(28) or iparm[27]**, type I:

 If both inputs \text{DPARM}(14)\) and \text{DPARM}(15)\) are 0.0, and the preconditioner type (\text{IPARM}(15)\) is 3, then the solver enters what we will refer to as the automatic threshold tuning mode for solving multiple systems of equations involving repeated preconditioner generation and iterative solution cycles. This scenario is frequently encountered in many applications, including those that involve solving a non-linear system. By default, this mode is turned on because the default values of \text{DPARM}(14)\) and \text{DPARM}(15)\) are 0.0. In this mode, \text{WISMP} chooses appropriate values for \(\tau\) and \(\gamma\) (see description of \text{IPARM}(15)\) for more details) and refines them from iteration to iteration in order to balance the cost of preconditioner generation and iterative solution so that the overall solution time is optimized. \text{WISMP} uses both timing and numerical criteria to adjust the thresholds between iterations.

 While this technique is quite effective in optimizing the solution time, a somewhat undesirable side-effect of using it is that the results may not be replicatable from one run to another for the same input data due to variation in the timings of various steps in different runs. Therefore, \text{WISMP} provides users the option to use automatic threshold tuning with varying degrees of aggressiveness. Setting \text{IPARM}(28)\) to 0 forces \text{WISMP} to completely disregard timing information and use only numerical criteria for the selection and modification of the incomplete factorization thresholds. Thus, setting \text{IPARM}(28)\) to 0 guarantees the same solution for the same problem each time. Other valid values of \text{IPARM}(28)\) are 1, 2, and 3. A higher value of \text{IPARM}(28)\) can potentially result in a higher degree of variation in results between different runs, but usually also an overall faster solution.

 The default value of \text{IPARM}(28)\) is 2.

- **IPARM(29) or iparm[28]**, type I:

 \text{WISMP} may perform certain run time optimizations that may change the results from one run to another on the same problem on the same machine. Multithreading is another possible source of nondeterminism. \text{IPARM}(29)\) can be used to control this behavior.

 The default value of \text{IPARM}(29)\) is 1, which permits nondeterministic behavior for maximizing performance. It can be switched off by setting \text{IPARM}(29)\) to 0, in which case, \text{WISMP} will produce bitwise identical results for a given problem on the same number of MPI ranks with the same number of threads per rank.

 Note that the results will always be different for different combinations of MPI ranks and threads.
• **IPARM(30)** or **iparm[29]**, type O:
 When very small diagonal entries are replaced based on the input in **DPARM(12)** during incomplete Cholesky factorization, then at the end of the preconditioner generation step, **IPARM(30)** contains the number of such replacements performed. Alternatively, if pivoting is selected by using **IPARM(11) = 1** during incomplete LU factorization, then at the end of the preconditioner generation step, **IPARM(30)** contains the number of row and column interchanges.

• **IPARM(31)** or **iparm[30]**, type O:
 At the end of the preconditioner generation step, **IPARM(31)** contains the number of thousands of entries dropped during incomplete factorization preconditioner computation.

• **IPARM(32)** or **iparm[31]**, type I:
 The input in **IPARM(32)** specifies the number of times the preconditioner is expected to be reused. **WISMP** uses this information to spend the appropriate amount of effort in generating the preconditioner. Note that **IPARM(32)** must refer to the expected number of times that **WISMP** would be called for an iterative solution after generating a preconditioner, and must be independent of **NRHS** in these calls.

 The default value of **IPARM(32)** is 1.

• **IPARM(33)** or **iparm[32]**, type O:
 On output, **IPARM(33)** is set to the number of CPU’s that were used on the node/workstation in SMP mode. This is the number of CPU’s physically present on the node/workstation, unless it is overridden. Please refer to Section 3.4 for details on controlling the number of threads in **WSMP**.

• **IPARM(34)** or **iparm[33]**, type I:
 The default value of **IPARM(34)** is 0 and has no effect. When **IPARM(34)** is set 1, the dropping strategy during incomplete factorization (for preconditioner type 3 in **IPARM(15)**) attempts to reduce structural unsymmetry in the factors. This strategy can yield improved convergence rates and/or smaller factors for some matrices that are structurally unsymmetric. The users should experiment with setting **IPARM(34)** to 0 and 1 to determine which option works best for their application if the coefficient matrix is structurally unsymmetric.

• **IPARM(35:63)** or **iparm[34:62]**, type R:
 These are reserved for future use.

• **IPARM(64)** or **iparm[63]**, type O:
 In the event of a successful return from **WISMP**, **IPARM(64)** is set to 0 on output. A nonzero value of **IPARM(64)** upon output indicates that **WISMP** did not complete execution and detected an error condition. There are two types of error codes—negative and positive.

 Negative Error Codes: If an input argument error is detected, then **IPARM(64)** is set to a negative integer whose absolute value is the number of the erroneous input argument. Only minimal input argument checking is performed and a non-negative value of **IPARM(64)** does not guarantee that all input arguments have been verified to be correct. An error in the input arguments can easily go undetected and cause the program to crash or hang.

 If dynamic memory allocation by **WISMP** fails then **IPARM(64)** is set to -102 on return. This is one of the most common error codes encountered by the users. Please refer to Section 3.4 if you get this error in your program.

 An error code of -300 is returned if the current operation is invalid because it depends on the successful completion of another operation, which failed or was not performed by the user. For example, if the preconditioner generation fails and you call **WSMP** to perform a solve phase after the failed call for preconditioner generation, you can expect error -300.

 An output value of -700 for **IPARM(64)** indicates an internal error and should be reported to wsmp@us.ibm.com.

 An error code of -900 is returned if the license is expired, invalid, or missing.
Positive Error Codes: A positive integer value of \texttt{IPARM(64)} between 1 and \textit{N} on output indicates a computational error. In this case, \texttt{IPARM(64)} is the index of the first pivot that was less than or equal to \texttt{DPARM(11)} for incomplete Cholesky factorization or less than or equal to \texttt{DPARM(11)} in magnitude for incomplete LU factorization. If C-style (0-based) indexing is used and \texttt{IPARM(64)} > 0, then \texttt{IPARM(64)} is 1 + the index of the bad pivot.

4.4.13 \textbf{DPARM (type I, O, M, and R): double precision parameter array}

\begin{verbatim}
DOUBLE PRECISION DPARM (64)
double dparm[64]
\end{verbatim}

The entries \texttt{DPARM(37)} through \texttt{DPARM(63)} are reserved. Unlike \texttt{IPARM}, only a few of the first 36 entries of \texttt{DPARM} are used. The description of only the relevant entries of \texttt{DPARM} is given below. Note that all reserved entries; i.e., \texttt{DPARM(37:63)} must contain 0.0.

- \texttt{DPARM(1)} or \texttt{dparm[0]}, type O:
 Returns the total wall clock time in seconds spent in an \textit{WISMP} call. Since this is the elapsed time, it can vary depending on the load on the machine and several other factors.

- \texttt{DPARM(4)} or \texttt{dparm[3]}, type O:
 If an incomplete factorization based preconditioner is used, then at the end of the preconditioner computing phase, \texttt{DPARM(4)} contains the absolute value of the diagonal entry with the largest magnitude of the incomplete factor.

- \texttt{DPARM(5)} or \texttt{dparm[4]}, type O:
 If an incomplete factorization based preconditioner is used, then at the end of the preconditioner computing phase, \texttt{DPARM(5)} contains the absolute value of the diagonal entry with the smallest magnitude of the incomplete factor.

- \texttt{DPARM(6)} or \texttt{dparm[5]}, type I:
 The input in \texttt{DPARM(6)} is used as the target relative norm of the residual. The iterative solver terminates when either number of iterations reaches \texttt{IPARM(6)}, or when the relative norm of the residual becomes smaller than \texttt{DPARM(6)}. Please refer to the description of \texttt{DPARM(8)} for the details on the exact stopping criteria of the conjugate gradient solver.

 The default value of \texttt{DPARM(6)} is 10^{-7}.

 The actual relative residual norm at the termination of iterations is returned in \texttt{DPARM(26)}.

 Note that the quantities in \texttt{DPARM(6)} and \texttt{DPARM(26)} must be interpreted relative to norm of the residual with respect to the initial estimate to the solution. If \texttt{IPARM(25)} is even (0 or 2), then the initial residual norm is always equal to the norm of \textit{B} because \textit{WISMP} chooses \textit{X} = 0 as the initial guess of the solution. However, if \texttt{IPARM(25)} is odd (1 or 3) and the user supplies an initial estimate to the solution in \textit{RMISC}, then the relative residual norm can be large even if the absolute norm is small, depending on the accuracy of the input in \textit{RMISC}. Therefore, an accurate description of \texttt{DPARM(6)} would be that it is the inverse of the factor by which \textit{WISMP} strives to reduce the norm of the residual.

- \texttt{DPARM(7)} or \texttt{dparm[6]}, type I:
 The input in \texttt{DPARM(7)} is used as the target ratio of the estimated Euclidean norm of error to the norm of the computed solution. Please refer to the description of \texttt{DPARM(8)} for the details on the exact stopping criteria.

 The default value of \texttt{DPARM(7)} is 10^{-4}.

 The estimate of the relative error norm at the termination of iterations is returned in \texttt{DPARM(27)}.

 Unlike the residual norms in \texttt{DPARM(6)} and \texttt{DPARM(26)}, which are relative (to the initial residual) quantities, the error norm estimates in \texttt{DPARM(7)} and \texttt{DPARM(27)} are absolute quantities.
• DPARM(8) or dparm[7], type I:
The input in DPARM(8) is used to decide the termination criterion. If DPARM(8) is 0.0, which is the default, then the iterations terminate when the relative norm of the residual becomes smaller than DPARM(6) and the estimated relative Euclidean norm of the error becomes smaller than DPARM(7). If DPARM(8) is 1.0, then the iterations terminate when either the relative norm of the residual becomes smaller than DPARM(6), or the estimated relative Euclidean norm of the error becomes smaller than DPARM(7). Of course, in either case, the number of iterations never exceed the limit specified in IPARM(6)).

• DPARM(9) or dparm[8], type I:
DPARM(9) can be used to minimize the chances of the failure of incomplete Cholesky factorization for symmetric/Hermitian positive definite matrices. Incomplete Cholesky factorization may fail due to a negative diagonal entries. WSMP boosts the diagonal dominance of the original coefficient matrix A by introducing a perturbation that adds DPARM(9) to the diagonal entries of A.

If DPARM(9) is set to 0.0, which is its default value, then WSMP chooses an appropriate value of perturbation, only if needed. If DPARM(9) > 0.0, then the input value of DPARM(9) is used to perturb the matrix. If DPARM(9) < 0.0, then this correction is not applied and the preconditioner is permitted to become indefinite. For some problems, omitting this diagonal perturbation results in a better preconditioner. Note that even after increasing the magnitude of the diagonal by applying this perturbation, a negative entry may be encountered on it. If that happens, the preconditioner is permitted to become indefinite without further corrective action.

If the matrix is equilibrated using IPARM(10) = 1 (i.e., all diagonals are 1.0 prior to incomplete factorization) and you decide to supply a positive value in DPARM(9), then something in the 10^{-2}–10^{-3} range is usually a good value.

• DPARM(10) or dparm[9], type I:
The input in DPARM(10) is relevant only for incomplete factorization preconditioners and is used as the threshold for determining if the preconditioner has become singular. If a leading row or column is encountered in the unfactored part of the matrix such that all its entries are less than or equal to DPARM(10), then the incomplete factor is deemed singular and a correction is applied so that factorization can continue. The default value of DPARM(10) is 10^{-18}. The default value of DPARM(10) is appropriate only if the matrix is scaled. If the matrix is not scaled, then the user must specify an appropriate threshold in DPARM(10) to detect singularity.

• DPARM(11) or dparm[10], type I:
DPARM(11) is used when pivoting is opted for during the computation of a preconditioner based on incomplete LU factorization. This is the lower threshold on the value of a good diagonal entry. If a pivot value is less than or equal to DPARM(11), then a row/column interchange is performed to reduce growth in incomplete LU factorization. DPARM(11) must be non-negative. A value of 0.0 in DPARM(11) has the effect of turning pivoting off, even if IPARM(11) is 1 or 2. The default value of DPARM(11) is 10^{-3}.

• DPARM(12) or dparm[11], type M:
DPARM(12) is ignored for matrix types 0, 1, and 2 (Table[5]).
Let $\alpha = A(i, i)$ just before the i-th step of incomplete Cholesky factorization and let $A(l, i)$, $l > i$, be such that $|A(l, i)| > |A(j, i)|$ for all $j > i$. If $|alpha| < |A(l, i)| \times DPARM(12)$, then $A(i, i)$ is replaced by an entry whose sign is the same as α and whose magnitude is $|A(l, i)| \times DPARM(22)$. For incomplete Cholesky factorization, the perturbed diagonal entry is always positive, irrespective of its pre-perturbation value. DPARM(12) must be non-negative. The default value of DPARM(12) is 10^{-5}.

The total number of diagonals perturbed are reported in IPARM(30).

• DPARM(13) or dparm[12], type O:
After the analysis phase, **DPARM(13)** contains the number of supernodes detected. A small number of supernodes relative to the size of the coefficient matrix indicates larger supernodes and hence, higher potential performance in the numerical steps.

- **DPARM(14) or dparm[13]**, type M:
 The input **DPARM(14)** contains the threshold \(\tau \) for incomplete factorization (used only if **IPARM(15)** is greater than or equal to 3). Please refer to the description of **IPARM(15)** for more details.

 If **DPARM(14)** is 0.0 on input, then **WISMP** selects its own value of \(\tau \) based on its analysis of the input matrix and places it in **DPARM(14)**. The default input value of **DPARM(14)** is 0.0. Please refer to the description of **IPARM(34)** for some important details on the behavior of the solver when **DPARM(14)** is 0.0.

 On output, **DPARM(14)** may have a value different from the input value of **DPARM(14)**. The new value is the suggested value of **DPARM(14)**, which may result in a reduction of the total time spent in Tasks 3 and 4. Since **DPARM(14)** may be modified on output, its value needs to be reset for subsequent preconditioner generations if the user does not want to use the value suggested by **WISMP**.

- **DPARM(15) or dparm[14]**, type M:
 The input **DPARM(15)** contains the threshold \(\gamma \) for incomplete factorization (used only if **IPARM(15)** is greater than or equal to 3). Please refer to the description of **IPARM(15)** for more details.

 If **DPARM(15)** is 0.0 on input, then **WISMP** selects its own value of \(\gamma \) based on its analysis of the input matrix and places it in **DPARM(15)**. The default input value of **DPARM(15)** is 0.0. Please refer to the description of **IPARM(34)** for some important details on the behavior of the solver when **DPARM(15)** is 0.0.

 On output, **DPARM(15)** may have a value different from the input value of **DPARM(15)**. The new value is the suggested value of **DPARM(15)**, which may result in a reduction of the total time spent in Tasks 3 and 4. Since **DPARM(15)** may be modified on output, its value needs to be reset for subsequent preconditioner generation if the user does not want to use the value suggested by **WISMP**.

- **DPARM(16) or dparm[15]**, type O:
 At the end of Task 1 (see Table [1] for description of tasks), **DPARM(16)** returns the number of diagonal entries that are zero in the original matrix. This output is fragile for complex matrices. For positive definite and diagonally dominant matrices, it is assumed without checking that there are no zero-valued diagonal entries.

- **DPARM(17) or dparm[16]**, type O:
 For symmetric indefinite matrices, at the end of Task 1 (see Table [1] for description of tasks), **DPARM(17)** returns the number of diagonal entries that are negative in the original matrix. For general unsymmetric matrices, **DPARM(17)** returns the number of missing diagonal entries. This output is fragile for complex matrices. For positive definite and diagonally dominant matrices, it is assumed without checking that there are no missing or negative diagonal entries.

- **DPARM(21) or dparm[20]**, type O:
 DPARM(21) returns the structural symmetry of the matrix (after various permutations of the original coefficient matrix) that is factored. This is a value between 0.0 and 1.0, where 1.0 indicates perfect structural symmetry and 0.0 indicates that there is no off-diagonal correspondence between the matrix and its transpose.

- **DPARM(22) or dparm[21]**, type I:
 Please refer to the description of **DPARM(12)** for more details. **DPARM(22)** must be non-negative. The default value of **DPARM(22)** is \(10^{-5} \).

- **DPARM(23) or dparm[22]**, type O:
 This contains the number of floating point operations required for incomplete factorization.
• **DPARM(24) or dparm[23], type I:**
 Please refer to the description of *IPARM(24)*. Along with *IPARM(24)*, *DPARM(24)* determines the compression efficiency while generating a supernodal matrix from the original coefficient matrix.

• **DPARM(25) or dparm[24], type I:**
 WISMP partitions the matrix into as many domains as the number of threads. Each thread performs incomplete factorization in its domain. Finally, a Schur complement matrix is formed for the rows and columns corresponding to the separators and fed to a parallel direct solver. The Schur complement matrix is sparsified before the direct solution using a drop tolerance that is derived from \(\tau \) (DPARM(14)). *DPARM(25)* allows the user to control drop tolerance for the sparsification of the Schur complement. The drop tolerance computed by WISMP is multiplied by *DPARM(25)*. The default value of *DPARM(25)* is 1.0. An input value greater that 1.0 would result in a sparser Schur complement and a value less that 1.0 would result in a denser Schur complement.

• **DPARM(26) or dparm[25], type O:**
 After the solution step (Task 4), *DPARM(26)* contains the relative norm of the residual at the termination of the iterations.

• **DPARM(27) or dparm[16], type O:**
 When the conjugate gradient method is used, the the relative estimated norm of the error upon the termination of the iterations is returned in *DPARM(27)*. *DPARM(27)* is not used in the GMRES solver. A return value of 0.0 in *DPARM(27)* indicates that WISMP was not able to estimate the error norm.

5 **Miscellaneous Routines**

In this section, we describe some optional routines available to the users for managing memory allocation, data distribution, and some other miscellaneous tasks. Just like other WSMP routines, these can be called from a C program by passing the arguments by reference (Note 4.2).

Note 5.1 Some routines in this section have underscores in their names, and due to different mangling conventions followed by different compilers, you may get an “undefined symbol” error while using one of these routines. Placing an explicit underscore at the end of the routine name usually fixes the problem. For example, if WS_SORTINDICES_I does not work, then try using WS_SORTINDICES_I_

5.1 **WS_SORTINDICES_I(M, N, IA, JA, INFO)** \(^{S,T}\)

This routine can be used to sort the row indices of each column or the column indices or each row (depending on the type of storage) of an \(M \times N \) sparse matrix. The size of IA is \(M + 1 \) and the range of indices in JA is 0 to \(N - 1 \) or 1 to \(N \). Only JA is modified upon successful completion, which is indicated by a return value of 0 in INFO. The descriptions of IA and JA are similar to those in Section 4.4. The description of INFO is similar to that of IPARM(64).

Please read Note [5.1](#) at the beginning of this section.

5.2 **WS_SORTINDICES_D(M, N, IA, JA, AVALS, INFO)** \(^{S,T}\)

This routine is similar to WS_SORTINDICES_I, except that it also moves the double precision values in AVALS according to the sorting of indices in JA. The descriptions of IA, JA, and AVALS are similar to those in Section 4.4. The description of INFO is similar to that of IPARM(64).

Please read Note [5.1](#) at the beginning of this section.
5.3 **WS_SORTINDICES.Z** (M, N, IA, JA, AVALS, INFO) S,T

This routine is similar to **WS_SORTINDICES.D**, except that the values in AVALS are of type *double complex*. Please read Note 5.1 at the beginning of this section.

5.4 **WSETMAXTHRDS** (NUMTHRDS)

A call to **WSETMAXTHRDS** can be used to control the number of threads that WSMP spawns by means of the integer argument NUMTHRDS. Controlling the number of threads may be useful in many circumstances, as discussed in Section 3.4. As with all other WSMP functions, when calling from C, a pointer to the integer containing the value of NUMTHRDS must be passed. The integer value NUMTHRDS is interpreted by WSMP as follows:

If NUMTHRDS > 0, then WSMP uses exactly NUMTHRDS threads. If NUMTHRDS is 0, then WSMP tries to use as many cores as are available in the hardware. This is the default mode.

Note that if this routine is used, it must be called before the first call to any WSMP or PWSMP computational routine or the initialization routines (Section 5.10). Once WSMP/PWSMP is initialized, the number of threads cannot be changed for a given run.

The environment variable WSMP_NUM_THREADS can also be used to control the number of threads (Section 3.4) and has precedence over WSETMAXTHRDS.

5.5 **WSSYSTEMSCOPE** and **WSPROCESSSCOPE**

A call to **WSSYSTEMSCOPE** can be used to set the contention scope of threads to PTHREAD_SCOPE_SYSTEM. Similarly, **WSPROCESSSCOPE** can be called to set the contention scope of threads to PTHREAD_SCOPE_PROCESS. If these routines are used, they must be called before the first call to any WSMP or PWSMP computational routine or the initialization routines (Section 5.10). Currently, the default contention scope of the threads is PTHREAD_SCOPE_SYSTEM.

5.6 **WSETMAXSTACK** (FSTK)

All threads spawned by WSMP are, by default, assigned a 1 Mbyte stack in 32-bit mode and 4 Mbytes in 64-bit mode. In rare case, for very large matrices, this may not be enough for one or more threads. The user can increase or decrease the default stack size by calling WSETMAXSTACK prior to any computational or initialization routine of WSMP. The double precision input parameter FSTK determines the factor by which the default stack size of each thread is changed; e.g., if FSTK is 2.d0, then each thread is spawned with a 2 Mbyte stack in 32-bit mode and 8 Mbyte stack in 64-bit mode. If this routine is used, it must be called before the first call to any WSMP or PWSMP computational routine or the initialization routines (Section 5.10). In the distributed-memory parallel version, this routine, if used, must be called by all processes (it is effective on only those processes on which it is called).

Note that this routine does not affect the stack size of the main thread, which, on AIX, can be controlled by the -bmaxstack option during linking. Also note that when calling from a C program, a pointer to a double precision value must be passed.

On some systems, the user may need to increase the default system limits for stack size and data size to accommodate the stack requirements of the threads.

5.7 **WSETLF** (DLF) T,P

The WSETLF routine can be used to indicate the load factor of a workstation to WSMP to better manage parallelism and distribution of work. The double precision input DLF is a value between 0.d0 and 1.d0 (0.0 and 1.0, passed by reference in C). The default value of zero (which is used if WSETLF is not called) indicates that the entire machine is available to WSMP; i.e., the load factor of the machine without the application using WSMP is 0. An input value of one indicates that the machine is fully loaded even without the WSMP application. For example, if a 2-way parallel job is already running on a 4-CPU machine, then the input DLF should be 0.5 and if four serial, or two 2-way parallel, or one 4-way parallel job is already running on such a machine, then the input DLF should be 1.0.
If this routine is used, then it must be called before the first call to any WSMP or PWSMP computational routine or the initialization routines (Section 5.10).

5.8 **WSETNOBIGMAL()**

On most platforms, WSMP attempts to allocate as large a chunk of memory as possible and frees it immediately without accessing this memory. This gives WSMP an estimate of the amount of memory that it can dynamically allocate, and on some systems, speeds up the subsequent allocation of many small pieces of memory. However, this sometimes confuses certain tools for monitoring program resource usage into believing that an extraordinarily large amount of memory was used by WSMP. This large malloc can be switched off by calling the routine WSETNOBIGMAL before initializing or calling any computational routine of WSMP or PWSMP.

5.9 **WSMP_VERSION (V, R, M)**

This routine returns the version, release, and modification number of the WSMP or PWSMP library being used in the integer variables V, R, and M, respectively.

Please read Note 5.1 at the beginning of this section.

5.10 **WSMP_INITIALIZ,E()** and **PWSMP_INITIALIZ,E()**

These routines are used to initialize WSMP and PWSMP, respectively. Their use is optional, but if used, a call to one of them must precede any computational routine. However, if any of WSETMAXTHRDS (Section 5.4), WSSYSTEMSCOPE, WSPROCESSSCOPE (Section 5.5), WSETMAXSTACK (Section 5.6), WSETLF (Section 5.7), and WSETNOBIGMAL (Section 5.8) routines are used, they must be called before WSMP_INITIALIZ,E or PWSMP_INITIALIZ,E. PWSMP_INITIALIZ,E, if used, must be called on all nodes in the message-passing parallel mode. WSMP and PWSMP perform self initialization when the first call to any user-callable routine is made.

PWSMP_INITIALIZ,E also performs a global communication using its current communicator, which is MPI_COMM_WORLD by default, unless it has been set to something else using the WSETMPICOMM routine. Therefore, PWSMP_INITIALIZ,E must be called on all the nodes associated with the currently active communicator in PWSMP.

Please read Note 5.1 at the beginning of this section.

5.11 **WSMP_CLEAR()** and **PWSMP_CLEAR()**

Both the serial and the parallel versions of the solver have the context stored internally, which enables them to perform a desired task at any time while using the information from tasks performed earlier, provided that the necessary information was generated at least once. For example, several calls to matrix-vector multiplication or iterative solution can be made with different numerical data (but the same indices) after one step of structural analysis. The solvers are able to perform these operations because they remember the results of the last structural analysis. Similarly, they remember the preconditioner for any number of iterative solves steps until a new preconditioner is generated or a new matrix structure is analyzed to replace the previously stored information. As a result, the solver routines occupy storage to remember all the information that might be needed for a future call to perform any legal task. The user can call a routine WSMP_CLEAR() in the serial/multithreaded mode and PWSMP_CLEAR() in the message-passing parallel mode to free this storage if required. After a call to any of these routines, the solver does not remember any context and the next call must be for performing a structural analysis (Task 1) to start a new context.

WSMP_CLEAR and PWSMP_CLEAR undo the effects of WSMP_INITIALIZ,E and PWSMP_INITIALIZ,E, respectively.

Please read Note 5.1 at the beginning of this section.
5.12 **WISFREE \((s,t)\)** and **PWISFREE \((p)\)**

`WISFREE` and `PWISFREE` release all the memory allocated by the iterative solver at the time of the call. If you need to solve more systems iteratively after a call to `WISFREE` or `PWISFREE`, you must start with analyzing the structure of the matrix (Task 1).

6 **Support for Double Complex Data Type**

The double complex (complex*16) version of the iterative solver can be accessed via routine `ZISMP`. This routine is identical to its double precision real counterpart with the exception that the data type of `AVALS`, `B`, `X`, and `RMISC` in this routine is double complex or complex*16. The WSMP web page at `http://www.research.ibm.com/projects/wsmp` contains example programs illustrating the use of this routine.

7 **Notice: Terms and Conditions for Use of WSMP and PWSMP**

Please read the license agreement in the HTML file of the appropriate language in the `license` directory before installing and using the software. The 90-day free trial license is meant for educational, research, and benchmarking purposes by non-profit academic institutions. Commercial organizations may use the software for internal evaluation or testing with the trial license. Any commercial use of the software requires a commercial license.

8 **Acknowledgements**

The author would like to thank Haim Avron, Thomas George, Rogeli Grima, Mahesh Joshi, Prabhanjan Kambadur, Felix Kwok, Chen Li, and Lexing Ying for their contributions to this project.

References

