
The Metronome: A Simpler Approach to Garbage
Collection in Real-Time Systems

David F. Bacon, Perry Cheng, and V.T. Rajan

IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, U.S.A.

dfb@watson.ibm.com
{perryche,vtrajan}@us.ibm.com

Abstract. With the wide-spread adoption of Java, there is significant interest in
using the language for programming real-time systems. The community has gener-
ally viewed a truly real-time garbage collector as being impossible to build, and has
instead focused its efforts on adding manual memory management mechanisms to
Java. Unfortunately, these mechanisms are an awkward fit for the language: they
introduce significant run-time overhead, introduce run-time memory access ex-
ceptions, and greatly complicate the development of library code. In recent work
we have shown that it is possible to build a real-time collector for Java with highly
regular CPU utilization and greatly reduced memory footprint. The system cur-
rently achieves 6 ms pause times with 50% CPU utilization (MMU) and virtually
no “tail” in the distribution. We show how this work can be incorporated into a
general real-time framework, and extended to systems with higher task frequen-
cies. We argue that the community should focus more effort on such a simple,
orthogonal solution that is true to the spirit of the Java language.

1 Introduction

Garbage collected languages like Java are making significant inroads into domains with
hard real-time concerns, such as automotive command-and-control systems. However,
the engineering and product life-cycle advantages consequent from the simplicity of
programming with garbage collection remain unavailable for use in the core functionality
of such systems, where hard real-time constraints must be met. As a result, real-time
programming requires the use of multiple languages, or at least (in the case of the Real-
Time Specification for Java [4], or RTSJ) two programming models within the same
language. Therefore, there is a pressing practical need for a system that can provide
real-time guarantees for Java without imposing major penalties in space or time.

In previous work [2,1], we presented the design and evaluation of a uniprocessor
collector that is able to achieve high CPU utilization during collection with far less
memory overhead than previous real-time garbage collectors, and that is able to guarantee
time and space bounds provided that the application can be accurately characterized in
terms of its maximum live memory and average allocation rate over a collection interval.

In this position paper, we begin by describing the weakness of the programming
model introduced by the RTSJ, both in terms of usability by the programmer and in
terms of burdens it places on the virtual machine.

R. Meersman and Z. Tari (Eds.): OTM Workshops 2003, LNCS 2889, pp. 466–478, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



The Metronome: A Simpler Approach to Garbage Collection in Real-Time Systems 467

We then provide a brief overview of the features of our collector, describe how it
can be applied to create a far simpler real-time programming interface, and discuss how
to improve its resolution so that it can be used to program systems that require reponse
times in the tens of microseconds.

2 Problems with RTSJ

The Real-Time Specifiaction for Java (RTSJ) is a standard for extending Java to meet
the needs of real-time applications. The specification identifies seven areas of interest.
The two areas relevant to this paper are thread scheduling and memory management.
The design of RTSJ memory management is heavily influenced by a desire to “allow
the allocation and reclamation of objects outside of any interference by any GC algo-
rithm”. This policy arose from the expert group’s belief that garbage collection alone
could not sufficiently meet real-time needs. Instead, real-time threads (NoHeapReal-
TimeThreads) can allocate and manipulate objects only from two new memory areas
(the immortal heap and manually programmed scoped memory regions) which are free
from GC interference. The (regular) heap is still managed by the garbage collection.
To maintain the separation between these regimes, there are restrictions on references
between objects from different memory regions. The goal is to enable the collection of
scoped memory regions independent of the heap and for the real-time threads to always
be able to pre-empt the GC thread.

In this section, we will examine the aspects of the RTSJ design that relate to memory
management and evaluate the design’s effectiveness in providing an overall real-time
solution to the problem of memory management.

2.1 Description

RTSJ provides two additional types of real-time threads. Running at the lowest priorty
are traditional Java threads which are subject to the pauses introduced by the garbage
collector. RTSJ’s RealTimeThread run at a higher priority than the garbage collector
but because it can access the heap, cannot arbitrarily pre-empt the GC. Instead it must be
delayed for up to the GC-induced latency. The standard does not require this latency to be
low. In the case that a stop-the-world collector is used, a RealTimeThread is no better
than a regular thread. Finally, RTSJ’s NoHeapRealTimeThread can pre-empt the GC
at any moment and any encountered latency is due to the cost of context switching and
scheduler computations. To support this, it is illegal for such threads to manipulate or
refer to any object in the heap.

The severe restrictions on NoHeapRealTimeThread is ameliorated by the intro-
duction of additional memory areas. We focus on the immortal heap and scoped memory
regions. Objects allocated into the immortal heap have lifetimes for the remaining dura-
tion of the program. It is possible for objects allocated in the immortal heap to become
inaccessible but they remain alive simply by virtue of residing in this region. Secondly,
scoped memory regions support objects whose lifetimes are shorter in duration than the
duration of the entire application and follow a LIFO pattern. A scoped memory region
supports memory allocation but does not necessarily support garbage collection. The



468 D.F. Bacon, P. Cheng, and V.T. Rajan

scoped memory’s size is chosen at its creation time. The set of all scoped memory re-
gions form a tree with the immortal region and the heap as the implicit root. This graph
is dynamically implied by the stack-like order in which different threads enter and exit
these scoped regions.A thread will, by default, allocate objects in the scope it is currently
in. Objects residing in scoped regions can only refer to objects residing in an outer scope
(i.e., an ancestral scope). Since the immortal region and the heap form the root node,
objects in a scope can refer to an object in the immortal region or the heap, but not vice
versa. The overall effect of the scopes is that once all threads leave a scope, the entire
scoped memory region can be recycled without tracing through the region.

2.2 Barriers

To enforce the pointer restrictions above, RTSJ uses runtime checks that will throw either
an IllegalAssignmentError or a MemoryAccessError if an operation is about to violate
the conditions. Specifically, whenever a reference is about to be loaded, a read barrier
will throw the MemoryAccessError exception if the executing thread is a NoHeapRe-
altimeThread and the loaded value resides in the heap. Secondly, whenever object X is
being stored into object Y, a write barrier will throw the IllegalAssignmentError if the
scope of X is not an outer scope of the scope of Y [7].

This particular read barrier is hard to optimize. First, coalescing nearby read barriers
on the same object is difficult because the barrier is field-dependent. That is, if different
fields of an object X are accessed, the read barrier must be applied repeatedly to each
access since the exception is dependent not on where X resides but on the contents of
the fields. Second, since a method can be executed by both regular threads and No-
HeapRealTimeThreads, the read barrier must check the thread type at each barrier.
Even coalescing thread checks within a single method is difficult without affecting the
other part of barrier.

The write barrier suffers from two factors. Even if the source and target objects of the
assignment are not in scoped regions, a dynamic test to ensure this is required. In cases
where the objects are in scoped areas, the test must first determine the object’s scopes
and then determine whether one scope is an outer scope of another scope. The over-
all write barrier will likely include several memory operations and several conditional
instructions.

It is worth emphasizing that these barriers are imposed by the RTSJ and are entirely
separate from the barriers, if any, that a particular garbage collector might impose.

2.3 Difficult Usage

In RTSJ, only the NoHeapRealTimeThread is guaranteed true pre-emption. However,
it is unclear how to program such a thread if it needs to allocate objects whose lifetimes are
unclear. That is, objects that are neither immortal nor follow the LIFO pattern of scoped
regions. However, RTSJ does provide wait-free queues that allow real-time thread to
safely synchronize with other threads without priority inversion problems.

Consider a real-time server where the high-priority NoHeapRealTimeThread han-
dles incoming queries and sends the request to a lower priorty regular thread via a wait-
free queue. Assuming that the request is a String object, choosing where to allocate the



The Metronome: A Simpler Approach to Garbage Collection in Real-Time Systems 469

String object is problematic. Clearly the object is not immortal and allocating it from the
immortal region will lead to a memory leak if the server is up for any appreciable time.
If one were to allocate the object in a scoped region, the leakage problem becomes when
the scope would be exited because it is possible that the scope would always contain
at least the most recent request. It is probably possible to overcome this scenario by
appropriate synchronization on when to enter and exit scopes along with data-copying.
However, it seems clear there are programming patterns (for example, FIFO) that are
inexpressable or hard to express with scoped memory regions.

Aside from the problem of expressability, there is also the pragmatic problem of
existing library code. The vast majority of library code does not use RTSJ features and
therefore allocate objects in the regular heap.As a result, any NoHeapRealTimeThread
that uses the library code will result in an exception being thrown at run-time.

2.4 Fragmentation

The separation of memory into scoped regions also burdens the programmer with deter-
mining the maximum size of the each scoped memory area necessary for execution. In
contrast, a regular Java program needs to determine only a single parameter for the heap
size. The need to determine memory usage in such a fine-grained manner may require
over-provisioning. Consider a thread that enters an outer scope A and an inner scope
B and will allocate a total of 100 KB among the two scopes. If the distribution of the
100 objects is unknown until the scopes are entered, then both scopes must be able to
accomodate 100 KB, resulting in a total memory usage of 200 KB. On the other hand,
allocating the objects in the heap would require only 100 KB. This overhead is above
and beyond the wastage associated with not garbage collecting a region.

3 Overview of the Metronome

We begin by summarizing the results of our previous work [2,1] and describing the
algorithm and engineering of the collector in sufficient detail to serve as a basis for
understanding the work described in this paper.

Our collector, the Metronome, is an incremental uni-processor collector targeted
at embedded systems. It uses a hybrid approach of non-copying mark-sweep (in the
common case) and copying collection (when fragmentation occurs).

The collector is a snapshot-at-the-beginning algorithm that allocates objects black
(marked). While it has been argued that such a collector can increase floating garbage,
the worst-case performance is no different from other approaches and the termination
condition is easier to enforce. Other real-time collectors have used a similar approach.

Figures 1 and 2 show the real-time performance of our collector. Unlike previous
real-time collectors, there is no “tail” in the distribution of pause times, CPU utilization
remains very close to the target, and memory overhead is low — comparable to the
requirements of stop-the-world collectors. In this section we explain how the Metronome
achieves these goals.



470 D.F. Bacon, P. Cheng, and V.T. Rajan

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

900

1000

Pause Time(ms)

C
ou

nt

javac.u50.time.opt: Distribution of pause time

Fig. 1. Pause time distributions for javac in the Metronome, with target maximum pause time of
6 ms. Note the absence of a “tail” after the target time.

3.1 Features of Our Collector

Our collector is based on the following principles:

Segregated Free Lists. Allocation is performed using segregated free lists. Memory is
divided into fixed-sized pages, and each page is divided into blocks of a particular
size. Objects are allocated from the smallest size class that can contain the object.

Mostly Non-copying. Since fragmentation is rare, objects are usually not moved.
Defragmentation. If a page becomes fragmented due to garbage collection, its objects

are moved to another (mostly full) page.
Read Barrier. Relocation of objects is achieved by using a forwarding pointer located in

the header of each object [5]. A read barrier maintains a to-space invariant (mutators
always see objects in the to-space).

Incremental Mark-Sweep. Collection is a standard incremental mark-sweep similar
to Yuasa’s snapshot-at-the-beginning algorithm [8] implemented with a weak tri-
color invariant. We extend traversal during marking so that it redirects any pointers
pointing at from-space so they point at to-space. Therefore, at the end of a marking
phase, the relocated objects of the previous collection can be freed.

Arraylets. Large arrays are broken into fixed-size pieces (which we call arraylets) to
bound the work of scanning or copying an array and to bound external fragmentation
caused by large objects.

Since our collector is not concurrent, we explicitly control the interleaving of the
mutator and the collector. We use the term collection to refer to a complete mark/sweep/
defragment cycle and the term collector quantum to refer to a scheduler quantum in
which the collector runs.



The Metronome: A Simpler Approach to Garbage Collection in Real-Time Systems 471

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Time (s)

U
til

iz
at

io
n

javac.u50.time.opt: Variable−Window Utilization vs time

Fig. 2. CPU utilization for javac under the Metronome. Mutator interval is 6 ms, collector interval
is 6 ms, for an overall utilization target of 50%; the collector achieves this within 3% variation.

3.2 Read Barrier

We use a Brooks-style read barrier [5]: each object contains a forwarding pointer that
normally points to itself, but when the object has been moved, points to the moved object.

Our collector thus maintains a to-space invariant: the mutator always sees the new
version of an object. However, the sets comprising from-space and to-space have a large
intersection, rather than being completely disjoint as in a pure copying collector.

While we use a read barrier and a to-space invariant, our collector does not suffer
from variations in mutator utilization because all of the work of finding and moving
objects is performed by the collector.

Read barriers, especially when implemented in software, are frequently avoided
because they are considered to be too costly. We have shown that this is not the case
when they are implemented carefully in an optimizing compiler and the compiler is able
to optimize the barriers.

We apply a number of optimizations to reduce the cost of read barriers, including
well-known optimizations like common subexpression elimination, as well as special-
purpose optimizations like barrier-sinking, in which we sink the barrier down to its point
of use, which allows the null-check required by the Java object dereference to be folded
into the null-check required by the barrier (since the pointer can be null, the barrier can
not perform the forwarding unconditionally).

This optimization works with whatever null-checking approach is used by the run-
time system, whether via explicit comparisons or implicit traps on null dereferences.
The important point is that we usually avoid introducing extra explicit checks for null,
and we guarantee that any exception due to a null pointer occurs at the same place as it
would have in the original program.



472 D.F. Bacon, P. Cheng, and V.T. Rajan

Fig. 3. Tuning the performance of an application (mutator) with the collector. The mutator and
collector each have certain intrinsic properties (for the mutator, the allocation rate over the time
interval of a collection, and the maximum live memory usage; for the collector, the rate at which
memory can be traced). In addition, the user can select, at a given time resolution, either the
utilization or the space bound (the other parameter will be dependent).

The result of our optimizations is that for the SPECjvm98 benchmarks, read barriers
only have a mean cost of only 4%, or 9.6% in the worst case (in the 201.compress
benchmark).

3.3 Time-Based Scheduling

Our collector can use either time- or work-based scheduling. Most previous work on
real-time garbage collection, starting with Baker’s algorithm [3], has used work-based
scheduling. Work-based algorithms may achieve short individual pause times, but are
unable to achieve consistent utilization.

The reason for this is simple: work-based algorithms do a little bit of collection work
each time the mutator allocates memory. The idea is that by keeping this interruption
short, the work of collection will naturally be spread evenly throughout the application.
Unfortunately, programs are not uniform in their allocation behavior over short time
scales; rather, they are bursty. As a result, work-based strategies suffer from very poor
mutator utilization during such bursts of allocation.

In fact, we showed both analytically and experimentally that work-based collectors
are subject to these problems and that utilization often drops to 0 at real-time intervals.

Time-based scheduling simply interleaves the collector and the mutator on a fixed
schedule. While there has been concern that time-based systems may be subject to space
explosion, we have shown that in fact they are quite stable, and only require a small
number of coarse parameters that describe the application’s memory characteristics in
order to function within well-controlled space bounds.

3.4 Provable Real-Time Bounds

Our collector achieves guaranteed performance provided the application is correctly
characterized by the user. In particular, the user must be able to specify the maximum



The Metronome: A Simpler Approach to Garbage Collection in Real-Time Systems 473

amount of simultaneously live data m as well as the peak allocation rate over the time
interval of a garbage collection a�(∆GC). The collector is parameterized by its tracing
rate R.

Given these characteristics of the mutator and the collector, the user then has the
ability to tune the performance of the system using three inter-related parameters: total
memory consumption s, minimum guaranteed CPU utilization uT , and the resolution at
which the utilization is calculated ∆t.

The relationship between these parameters is shown graphically in Figure 3. The
mutator is characterized by its allocation rate over the interval of a garbage collection
a�(∆GC) and by its maximum memory requirement m. The collector is characterized
by its collection rate R. The tunable parameters are ∆t, the frequency at which the
collector is scheduled, and either the CPU utilization level of the application uT (in
which case a memory size s is determined), or a memory size s which determines the
utilization level uT .

Note that in either case both space and time bounds are guaranteed.

4 Integrating the Metronome with a Real-Time System

As we showed in Section 2, the RTSJ treats garbage collection as a foreign entity, outside
of the normal scheduling and priority mechanisms of the system. This in turn leads
to the requirement to create various different types of memory regions, with complex
restrictions on which regions and thread types can reference other regions. The end result
is a system which lacks orthogonality, introduces unpredictable run-time exceptions, and
makes development and understanding of library code extremely difficult.

We advocate a different approach: integrating collection into the run-time system,
and particularly, into the scheduler, in such a way that garbage collection is a real-time
task like all others.

The benefits of this approach are enormous in terms of simplification of the pro-
gramming model. Since one of the major benefits of Java is its reliability and simplicity,
we believe this is fundamental to the spirit of a real-time implementation of Java.

A model based on a truly real-time collector is simpler in the following ways:

– only a single memory space;
– no run-time exceptions on memory accesses;
– ability to share objects between real-time and non-real-time threads; and
– ability of real-time threads to call standard library routines.

In the previous section we presented an overview of the Metronome and how it
schedules garbage collection. This scheduling approach can easily be adapted to periodic
real-time scheduling. The interval ∆t is the period of the collector. The utilization uT is
the fraction of that time devoted to the collector. The user parameterizes the application
in terms of its allocation rate, which is already an RTSJ parameter on real-time threads.
The one additional required parameter is the maximum memory utilization m.

With these parameters, the garbage collector becomes a periodic real-time task.
The time remaining after garbage collection, 1 − uT , is the time available in which to



474 D.F. Bacon, P. Cheng, and V.T. Rajan

schedule the high-priority real-time tasks. A feasible schedule must be able to perform
the real-time tasks in this interval.

Of course, the main limitation of this approach is that collection can consume a
significant portion of the total processor resources. In our experiments we have used
the SPECjvm98 benchmarks as a driving workload for our collector, effectively treating
them as high-priority processes. The result is that when collection is on, it consumes
about 50% of CPU resources.

While this seems high, there are two important points to note: first of all, the domain in
which Java is likely to prosper is one in which the greater concerns are with development
time and reliability, and less with CPU cost. A purely garbage-collection based real-time
environment should have significant time-to-market advantages over the much more
complex model of the RTSJ.

The second point is that the high-priority tasks are likely to have a much lower
allocation rate, or could be programmed to do so. In that case, the percentage of the CPU
that has to be allocated to the collector will significantly decrease.

Of course, this begs the question: are we better off with a simple programming
model in which programmers have to adapt by reducing the allocation rate of some
performance-critical code, or with a more complex programming model that gives them
some tools (like scoped memory regions) for reducing this allocation rate. We believe
that a simple, uniform, adaptable programming model is preferable.

5 Reducing Context Switch Times

The Metronome currently operates with a maximum pause time of 4 milliseconds, and
using the current approaches we expect to drive this pause time to the sub-millisecond
level. However, for some applications responses in the tens of microseconds are required.
In this section we describe the features of the current collector that stand in the way of
this goal, and describe how the design could be adapted to achieve these much lower
pause times.

5.1 Priority Scheduling

First of all, the current system does not include any notion of high-priority real-time
threads versus low-priority threads. Such a distinction would have to be incorporated,
with the collector having a priority higher than the low-priority threads but lower than
the high-priority threads. When scheduling the high-priority threads, a feasible schedule
would have to include a time allotment for the collector thread to run, that was sufficient
given the application threads’ cumulative allocation rates.

This could easiy be done by treating the addition of a thread with allocation rate ai

and maximum live memory mi as the addition of two threads to the schedule: one is the
thread itself, and the other is the additional work performed by the garbage collector.

High-priority real-time threads would be allowed to interrupt the collector thread,
but the scheduling algorithm guarantee guarantee that the collector receives sufficient
resources in each time period.

The modifications described below will allow much faster interruption of the collec-
tor.



The Metronome: A Simpler Approach to Garbage Collection in Real-Time Systems 475

5.2 Lazy Read Barrier

The first inhibitor to quick context switching out of the collector is an optimization of the
read barrier which we call the “eager barrier”. In this form of the barrier, when a mutator
thread loads a pointer onto the stack its forwarding pointer is immediately followed. This
has the advantage that if the pointer is used in a loop, the read barrier is only executed
once. However, it does mean that if the mutator is interleaved with the collector, and the
collector moves objects, it must execute “fix-up” code on the stack frames to maintain the
eager invariant (that is, that all stack references point to the current versions of objects).

By trading off some throughput for response time, we can employ the lazy version
of the read barrier, which does not forward the pointer until it is used. In this case, there
is no fix-up code required and any movement of objects by the collector does not inhibit
context switch to the mutator. We measured the cost of this as about a 2% slowdown
over the SPECjvm98 benchmarks.

Based on our experience we believe that the performance loss due to the lazy barrier
can mostly be recovered, albeit at the expense of more complex compiler optimizations.
Essentially, there is a spectrum between “eager” and “lazy”, and compiler optimizations
can preserve the lazy property while reducing the number of forwarding operations.

5.3 Abortable Copy Operations

The next problem for context switching out of the collector is that it may be in the midst
of a long-running atomic operation, in particular copying a large chunk of memory like
a stacklet or an arraylet.

The solution is to make these operations abortable and restartable. The main difficulty
is that the context switches must not be so frequent that the abort operations are able to
impede forward progress of the collector. Thus the cost of the aborted operations must
be factored into the collector cost.

5.4 Deferred Root Scanning

Probably the single largest inhibitor to rapid context switching out of the collector is the
atomic operations performed when collection starts. In particular, the collector uses a
“snapshot-at-the-beginning” technique. Thus, the roots in the thread stacks and global
variables must be copied atomically.

Stacklets [6] allow the delay to be reduced by only requiring the snapshoting of
the topmost stacklet of each thread, but this solution does not scale to large numbers
of threads and introduces further problems because it requires that threads perform
stack snapshot operations if they return from the topmost stacklet into a lower, un-
snapshotted stacklet. Neither of these behaviors is acceptable in a high-frequency real-
time environment.

The solution is to weaken the “snapshot-at-the-beginning” property. Instead we sim-
ply require that no reference from a stack be allowed to “escape” from the stack without
being logged. Thus the write barrier, instead of recording just the old value (the Yuasa-
style barrier) also records new values written from stack variables into the heap (the



476 D.F. Bacon, P. Cheng, and V.T. Rajan

Dijkstra-style barrier). In this manner, no references on the stacks can escape into the
heap without being caught by the write barrier.

As a result, we both avoid the termination problems of the Dijkstra-style barrier
as well as avoiding the need to complicate the read barrier (for instance by recording
pointers loaded onto the stack during collection). Furthermore, even though the stacks
may be changed by the mutators, we still only have to scan each stack exactly once (and
can do so incrementally), since any relevant references not found in the stack scan must
have been written by the write barrier.

This in turn allows us to interleave execution of mutators with root scanning, at a
modest performance cost in the write barrier.

5.5 Safe Points

Finally, since our scheduler only performs context switches at safepoints, there is the
issue of delay introduced while waiting for threads to reach a safe point. In practice,
safe points occur quite often. In order to meet real-time bounds, an analysis phase can
be added which inserts extra safe points into large monolithic basic blocks.

6 Metronome versus RTSJ

In Section 2, we described some of the problems with RTSJ. Now that we have presented
the Metronome, we examine the relative benefits of the two approaches.

The current collector can usually context switch in about 100 microseconds but in
certain (short) phases of collection may take as much as 700 microseconds. With the
modifications of Section 5, in particular the lazy read barrier and deferred root scanning,
we expect to be able to bound the context switch time to 100 microseconds.

In choosing between RTSJ and the Metronome, one must balance greater control
over memory usage and possibly superior performance with the greater programming
effort. Metronome has the advantage of greater simplicity and retains the spirit of Java
where the programmer is not burdened with memory management details: there are no
scopes and no dynamic memory store or load exceptions.

RTSJ has the advantage that it may be possible to write a particular program to fit in
a much smaller memory by careful use of ScopedMemory. However, using Scoped-
Memory might actually increase memory consumption because the size estimate is too
conservative or if a large fraction of data within the scope dies during the scope’s lifetime.
RTSJ also has the advantage that context switching to NoHeapRealTimeThreads can
be quicker than context switching out of the Metronome.

To capture the key benefits of both systems, we propose a hybrid system in which
RTSJ is modified to take real-time GC into consideration. We propose removing the
NoHeapRealtimeThread class so that the programmers do not have to program in a
constrained fashion in which high-priority threads cannot access the heap at all. Instead,
high-priority threads can communicate with lower-priorty or even regular threads in
the usual way. In the hybrid system, MemoryAccessError exceptions are eliminated
because the read barriers associated with the NoHeapRealtimeThread are removed.



The Metronome: A Simpler Approach to Garbage Collection in Real-Time Systems 477

In this hybrid system, the expected development cycle begins with programming
without scoped memory except where the fit is natural and intuitive. In prototyping the
system, the programmer must then determine the memory characteristics of the program
by some combination of analysis and profiling. These will result in establishing the
number and size of scoped regions, the maximum live heap data, and the allocation
rates of the various threads. From these parameters, the overall computational and space
requirements of the garbage collector can be established and the feasibility of the entire
system can be determined. Should the heap pose a problem, the programmer must reduce
the allocation rate and live heap data by modifying the program logic or by increasing the
use of scoped memory regions. What distinguishes this hybrid system from RTSJ is a less
brittle programming model where memory requirements can be met by incrementally
tightening the memory usage of the program. This is made possible by a greater reliance
on the garbage collector. As mentioned before, the floating garbage possible with scopes
can make scoped memory less attractive than garbage collection.

7 Conclusions

We have described the complexities of the RTSJ programming model, and shown that
they will have an adverse effect on both ease of use and reliability, and may have adverse
performance effects as well.

We have proposed an alternate approach to creating a real-time Java programming
environment, which is based on constructing a true real-time garbage collector which is
fully integrated with the scheduling system. This allows garbage collection to co-exist,
and results in a much simpler programming model.

We believe that such a model is more consistent with the spirit of the Java language
and will ultimately be more useful to the potential body of real-time Java programmers.

The techniques of the Metronome can also be applied to simplify the RTSJ spec-
ification by eliminating the need for threads that have no references to the heap, and
eliminating an entire class of run-time memory access exceptions.

References

[1] Bacon, D. F., Cheng, P., and Rajan, V. T. Controlling fragmentation and space consumption
in the Metronome, a real-time garbage collector for Java. In Proceedings of the Conference
on Languages, Compilers, and Tools for Embedded Systems (San Diego, California, June
2003).

[2] Bacon, D. F., Cheng, P., and Rajan, V. T. A real-time garbage collector with low over-
head and consistent utilization. In Proceedings of the 30th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (New Orleans, Louisiana, Jan. 2003),
pp. 285–298.

[3] Baker, H. G. List processing in real-time on a serial computer. Commun. ACM 21, 4 (Apr.
1978), 280–294.

[4] Bollella, G., Gosling, J., Brosgol, B. M., Dibble, P., Furr, S., Hardin, D., and Turn-
bull, M. The Real-Time Specification for Java. The Java Series. Addison-Wesley, 2000.

[5] Brooks, R. A. Trading data space for reduced time and code space in real-time garbage
collection on stock hardware. In Conference Record of the 1984 ACM Symposium on Lisp
and Functional Programming (Austin, Texas, Aug. 1984), G. L. Steele, Ed., pp. 256–262.



478 D.F. Bacon, P. Cheng, and V.T. Rajan

[6] Cheng, P., Harper, R., and Lee, P. Generational stack collection and profile-driven pre-
tenuring. In Proc. of the Conference on Programming Language Design and Implementation
(June 1998). SIGPLAN Notices, 33, 6, 162–173.

[7] Higuera-Toledano, M. T., and Issarny, V. Analyzing the performance of memory man-
agement in RTSJ. In The 5th IEEE International Symposim on Object-oriented Real-time
Distributed Computing (Crystal City, Virginia, 2002).

[8] Yuasa, T. Real-time garbage collection on general-purpose machines. Journal of Systems
and Software 11, 3 (Mar. 1990), 181–198.


	Introduction
	Problems with RTSJ
	Description
	Barriers
	Difficult Usage
	Fragmentation

	Overview of the Metronome
	Features of Our Collector
	Read Barrier
	Time-Based Scheduling
	Provable Real-Time Bounds

	Integrating the Metronome with a Real-Time System
	Reducing Context Switch Times
	Priority Scheduling
	Lazy Read Barrier
	Abortable Copy Operations
	Deferred Root Scanning
	Safe Points

	Metronome versus RTSJ
	Conclusions

