






















perform. Note that the net effect on the queue size is one less than
the index. Similarly, we have W2 which stands for the number of
2-push write barrier operations.

We are trying to maximize total occupancy which is given by

−T0 + T2 + 2W2

subject to the usual non-negativity constraints as well as 3 addi-
tional constraints. The first constraint expresses the fact that we
schedule at most one write barrier operation for each tracing opera-
tion. The second and third constraints require that the total number
of pushes and pops cannot exceed the total number of objects.

T0 + T1 + T2 ≥ W2

T1 + 2T2 + 2W2 ≤ N

T0 + T1 + T2 ≤ N

With a slight rearrangement, these equations can be put in the
“standard form” of a linear programming problem [9]. Although
the quantities are constrained to be integral (making this in reality
an integer linear programming problem), we are safe in droppping
the integrality constraints as that only increases the feasible region.
The over-approximation of the objective is not a soundness issue
since we are establishing an upper bound. Conversely, the bound
is also rather tight by noting the total size of the coefficients in the
objective function.

The problem is easily solved with the simplex method and
standard tableau techniques show that the problem is feasible and
bounded with the objective maximized at 3N/4 and the free vari-
ables T0 and T1 at zero while T2 and W2 are at N/4. Since the
queues always maintain balance, we arrive at the final individual
queue size by halving the 3N/4 and including the capacity needed
for the root phase to arrive at 3N/8 + R.

We omit the actual tableaus as they are uninteresting and shed
less insight than by examining a few key points in the space. From
the objective function, it is intuitively desirable to maximize W2.
If we allow only W2 and T0 to be non-zero, then we will have
both at N/2 with a total occupancy of N/2. Similarly, allowing
only W2 and T1 into play at N/3 will achieve 2N/3. Finally, W2

and T2 both at N/4 achieves the maximum of 3N/4. If we were
to leave out W2 entirely, T2 increases to N/2 but the objective
actually decreases to N/2. The changes in these values confirm
our intutition that trace operations that perform no pushes do not
stress the queues and that maximizing the write barrier operations
will cause the greatest occupancy.

Acknowledgments
We thank the members of the Liquid Metal team at IBM Research
who contributed insights, infrastructure, and a stimulating working
environment: Joshua Auerbach, Stephen Fink, and Rodric Rabbah.
We also thank team members and the reviewers for their corrections
and insightful comments which helped to improve the paper.

References
[1] M. Adler et al. Leap scratchpads: automatic memory and cache

management for reconfigurable logic. In FPGA, pp. 25–28, 2011.

[2] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection on
stock multiprocessors. In PLDI, pp. 11–20, June 1988.

[3] J. Auerbach, D. F. Bacon, P. Cheng, D. Grove, B. Biron, C. Gracie,
B. McCloskey, A. Micic, and R. Sciampacone. Tax-and-spend: demo-
cratic scheduling for real-time garbage collection. In EMSOFT, pp.
245–254, 2008.

[4] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah. Lime: a Java-
compatible and synthesizable language for heterogeneous architec-
tures. In OOPSLA, pp. 89–108, Oct. 2010.

[5] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage collector
with low overhead and consistent utilization. In POPL, pp. 285–298,
Jan. 2003.

[6] H. G. Baker. List processing in real-time on a serial computer. Com-
mun. ACM, 21(4):280–294, Apr. 1978.

[7] G. E. Blelloch and P. Cheng. On bounding time and space for multi-
processor garbage collection. In PLDI, pp. 104–117, June 1999.

[8] R. A. Brooks. Trading data space for reduced time and code space in
real-time garbage collection on stock hardware. In LFP, pp. 256–262,
Aug. 1984.

[9] V. Chvatal. Linear Programming. W. H. Freeman and Company, 1983.
[10] C. Click, G. Tene, and M. Wolf. The pauseless GC algorithm. In VEE,

pp. 46–56, 2005.
[11] B. Cook et al. Finding heap-bounds for hardware synthesis. In

FMCAD, pp. 205 –212, Nov. 2009.
[12] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M.

Steffens. On-the-fly garbage collection: an exercise in cooperation.
Commun. ACM, 21(11):966–975, 1978.

[13] P. Faes, M. Christiaens, D. Buytaert, and D. Stroobandt. FPGA- aware
garbage collection in Java. In FPL, pp. 675–680, 2005.

[14] D. Greaves and S. Singh. Kiwi: Synthesis of FPGA circuits from
parallel programs. In FCCM, 2008.

[15] T. H. Heil and J. E. Smith. Concurrent garbage collection using
hardware-assisted profiling. In ISMM, pp. 80–93, 2000.

[16] R. Henriksson. Scheduling Garbage Collection in Embedded Systems.
PhD thesis, Lund Institute of Technology, July 1998.

[17] J. A. Joao, O. Mutlu, and Y. N. Patt. Flexible reference-counting-based
hardware acceleration for garbage collection. In ISCA, pp. 418–428,
2009.

[18] J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine. Commun. ACM, 3(4):184–195, 1960.

[19] Mentor Graphics. ModelSim SE Users Manual. Version 10.0c.
[20] M. Meyer. An on-chip garbage collection coprocessor for embedded

real-time systems. In RTCSA, pp. 517–524, 2005.
[21] D. A. Moon. Garbage collection in a large LISP system. In LFP, Aug.

1984.
[22] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgaard. Stopless: a

real-time garbage collector for multiprocessors. In ISMM, pp. 159–
172, 2007.

[23] W. J. Schmidt and K. D. Nilsen. Performance of a hardware-assisted
real-time garbage collector. In ASPLOS, pp. 76–85, 1994.

[24] M. Schoeberl and W. Puffitsch. Nonblocking real-time garbage col-
lection. ACM Trans. Embedded Comput. Sys., 10:1–28, 2010.

[25] J. Simsa and S. Singh. Designing hardware with dynamic memory
abstraction. In FPGA, pp. 69–72, 2010.

[26] W. Srisa-an, C.-T. D. Lo, and J. M. Chang. Active memory processor:
A hardware garbage collector for real-time Java embedded devices.
IEEE Trans. Mob. Comput., 2(2):89–101, 2003.

[27] G. L. Steele, Jr. Multiprocessing compactifying garbage collection.
Commun. ACM, 18(9):495–508, Sept. 1975.

[28] G. L. Steele, Jr. Data representation in PDP-10 MACLISP. Tech. rep.,
MIT, 1977. AI Memo 420.

[29] G. Tene, B. Iyengar, and M. Wolf. C4: the continuously concurrent
compacting collector. In ISMM, pp. 79–88, 2011.

[30] D. Ungar et al. Architecture of SOAR: Smalltalk on a RISC. In ISCA,
pp. 188–197, 1984.

[31] Wikipedia. Intel iAPX 432, Nov. 2011.
[32] Xilinx. Virtex-5 family overview. Tech. Rep. DS100, Feb. 2009.
[33] Xilinx. Power methodology guide. Tech. Rep. DS786, Mar. 2011.
[34] W. S. Yu. Hardware concurrent garbage collection for object-oriented

processor. Master’s thesis, City University of Hong Kong, 2005.
[35] T. Yuasa. Real-time garbage collection on general-purpose machines.

J. Systems and Software, 11(3):181–198, Mar. 1990.

34

http://doi.acm.org/10.1145/1950413.1950421
http://doi.acm.org/10.1145/1950413.1950421
http://doi.acm.org/10.1145/53990.53992
http://doi.acm.org/10.1145/53990.53992
http://doi.acm.org/10.1145/1450058.1450092
http://doi.acm.org/10.1145/1450058.1450092
http://doi.acm.org/10.1145/1869459.1869469
http://doi.acm.org/10.1145/1869459.1869469
http://doi.acm.org/10.1145/1869459.1869469
http://doi.acm.org/10.1145/604131.604155
http://doi.acm.org/10.1145/604131.604155
http://doi.acm.org/10.1145/359460.359470
http://doi.acm.org/10.1145/301618.301648
http://doi.acm.org/10.1145/301618.301648
http://doi.acm.org/10.1145/800055.802042
http://doi.acm.org/10.1145/800055.802042
http://doi.acm.org/10.1145/1064979.1064988
http://dx.doi.org/10.1109/FMCAD.2009.5351120
http://doi.acm.org/10.1145/359642.359655
http://dx.doi.org/10.1109/FPL.2005.1515811
http://dx.doi.org/10.1109/FPL.2005.1515811
http://dx.doi.org/10.1109/FCCM.2008.46
http://dx.doi.org/10.1109/FCCM.2008.46
http://doi.acm.org/10.1145/362422.362466
http://doi.acm.org/10.1145/362422.362466
http://doi.acm.org/10.1145/1555754.1555806
http://doi.acm.org/10.1145/1555754.1555806
http://doi.acm.org/10.1145/367177.367199
http://doi.acm.org/10.1145/367177.367199
http://dx.doi.org/10.1109/RTCSA.2005.25
http://dx.doi.org/10.1109/RTCSA.2005.25
http://doi.acm.org/10.1145/800055.802040
http://doi.acm.org/10.1145/1296907.1296927
http://doi.acm.org/10.1145/1296907.1296927
http://doi.acm.org/10.1145/195473.195504
http://doi.acm.org/10.1145/195473.195504
http://doi.acm.org/10.1145/1814539.1814545
http://doi.acm.org/10.1145/1814539.1814545
http://doi.acm.org/10.1145/1723112.1723125
http://doi.acm.org/10.1145/1723112.1723125
http://doi.ieeecomputersociety.org/10.1109/TMC.2003.1217230
http://doi.ieeecomputersociety.org/10.1109/TMC.2003.1217230
http://doi.acm.org/10.1145/361002.361005
http://dspace.mit.edu/handle/1721.1/6278
http://doi.acm.org/10.1145/1993478.1993491
http://doi.acm.org/10.1145/1993478.1993491
http://doi.acm.org/10.1145/800015.808182
http://en.wikipedia.org/wiki/Intel_iAPX_432#Garbage_collection
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/ug786_PowerMethodology.pdf
http://dspace.cityu.edu.hk/handle/2031/4491
http://dspace.cityu.edu.hk/handle/2031/4491
http://dx.doi.org/10.1016/0164-1212(90)90084-Y

	Introduction
	FPGA Background
	Memory Structures on FPGAs

	Memory Architecture
	Miniheap Interface
	Miniheap with Malloc/Free
	Fragmentation and Other Trade-Offs

	Garbage Collector Design
	Background: Yuasa's Snapshot Algorithm
	Root Snapshot
	Tracing
	Trace Engine Pairing
	Trace Termination and WCET Effects

	Sweeping

	Analysis of Real-Time Behavior
	Application-Specific Analysis
	Minimum Heap Size

	Experimental Methodology
	Description of Benchmarks

	Evaluation
	Dynamic Measurements
	Throughput
	Energy

	Validation of Real-time Bounds

	Related Work
	Micro-coded Collectors
	Hardware-assisted Collection

	Conclusion
	Proof of Overflow Freedom



