






















perform. Note that the net effect on the queue size is one less than
the index. Similarly, we have W2 which stands for the number of
2-push write barrier operations.

We are trying to maximize total occupancy which is given by

−T0 + T2 + 2W2

subject to the usual non-negativity constraints as well as 3 addi-
tional constraints. The first constraint expresses the fact that we
schedule at most one write barrier operation for each tracing opera-
tion. The second and third constraints require that the total number
of pushes and pops cannot exceed the total number of objects.

T0 + T1 + T2 ≥ W2

T1 + 2T2 + 2W2 ≤ N

T0 + T1 + T2 ≤ N

With a slight rearrangement, these equations can be put in the
“standard form” of a linear programming problem [9]. Although
the quantities are constrained to be integral (making this in reality
an integer linear programming problem), we are safe in droppping
the integrality constraints as that only increases the feasible region.
The over-approximation of the objective is not a soundness issue
since we are establishing an upper bound. Conversely, the bound
is also rather tight by noting the total size of the coefficients in the
objective function.

The problem is easily solved with the simplex method and
standard tableau techniques show that the problem is feasible and
bounded with the objective maximized at 3N/4 and the free vari-
ables T0 and T1 at zero while T2 and W2 are at N/4. Since the
queues always maintain balance, we arrive at the final individual
queue size by halving the 3N/4 and including the capacity needed
for the root phase to arrive at 3N/8 + R.

We omit the actual tableaus as they are uninteresting and shed
less insight than by examining a few key points in the space. From
the objective function, it is intuitively desirable to maximize W2.
If we allow only W2 and T0 to be non-zero, then we will have
both at N/2 with a total occupancy of N/2. Similarly, allowing
only W2 and T1 into play at N/3 will achieve 2N/3. Finally, W2

and T2 both at N/4 achieves the maximum of 3N/4. If we were
to leave out W2 entirely, T2 increases to N/2 but the objective
actually decreases to N/2. The changes in these values confirm
our intutition that trace operations that perform no pushes do not
stress the queues and that maximizing the write barrier operations
will cause the greatest occupancy.
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