
A Normal Form for Preventing Redundant Tuples in
Relational Databases

Hugh Darwen
University of Warwick, UK

C. J. Date
Independent Consultant

Ronald Fagin∗
IBM Research – Almaden

ABSTRACT
We introduce a new normal form, called essential tuple nor-
mal form (ETNF), for relations in a relational database
where the constraints are given by functional dependencies
and join dependencies. ETNF lies strictly between fourth
normal form and fifth normal form (5NF, also known as
projection-join normal form). We show that ETNF, al-
though strictly weaker than 5NF, is exactly as effective as
5NF in eliminating redundancy of tuples. Our definition of
ETNF is semantic, in that it is defined in terms of tuple
redundancy. We give a syntactic characterization of ETNF,
which says that a relation schema is in ETNF if and only
if it is in Boyce-Codd normal form and some component of
every explicitly declared join dependency of the schema is a
superkey.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—normal
forms, schema and subschema

General Terms
Algorithms, Design, Theory

Keywords
database design, redundancy, essential tuple normal form,
fourth normal form, fifth normal form, BCNF, relational
database

1. INTRODUCTION
Database design can be characterized as a matter of decid-

ing what the database schema should be – that is, of decid-
ing what attributes (intuitively, “column names”) should be
in each individual relation schema, and what the constraints
should be on the data. It has always been a goal of database
design to make the database schema as redundancy-free as

∗Contact author; email fagin@us.ibm.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0791-8/12/03 ...$10.00

possible, and ever since the publication of Codd’s first pa-
pers on the subject, the discipline of further normalization
(normalization for short) has been used to help achieve that
goal. Thus, normalization can be described, informally, as a
process that leads to a design in which the database schema
is redundancy-free. In this paper, we define what it means
for a tuple in a relation to be redundancy-free, or “essential”,
and we define a normal form where every tuple is essential.

In the commercial world, it has long been thought that a
database schema must be in fifth normal form (5NF), also
known as projection/join normal form (PJ/NF) [9], in order
for its tuples to be redundancy-free. We show, however, that
a new normal form, one that is strictly weaker than 5NF, is
just as effective as 5NF in eliminating redundancy of tuples.
In fact, our new normal form – which we call essential tuple
normal form (ETNF) – is necessary and sufficient for the
purpose.1 In that sense, therefore, we suggest that ETNF is
superior to 5NF.

We now illustrate this issue of tuple redundancy through
two examples. The first example suffers from tuple redun-
dancy, and the second does not. The first example reminds
us of the problem that 5NF is intended to solve, and the
second example shows that 5NF is not necessarily the best
solution to the problem after all.

Example 1.1. Assume that the relation schema R has
exactly three attributes: S (“suppliers”), P (“parts”), and
J (“projects”). A tuple (s, p, j) means, intuitively, that sup-
plier s supplies part p to project j. Assume also that the only
constraint of R is the join dependency (JD) ./{SP, PJ, JS}.
Intuitively, this JD says:

• If supplier s supplies part p, and part p is supplied to
project j, and project j is supplied by supplier s, then
supplier s supplies part p to project j.2

The relation schema R is not in 5NF. Furthermore, it suf-
fers from tuple redundancy, as we now discuss. Let r be a
relation that is an instance of R (so that r has attributes
S, P , and J , and r satisfies the JD). Assume that r has
tuples (s, p, j′), (s′, p, j), and (s, p′, j), and possibly other
tuples, and that s 6= s′, p 6= p′, and j 6= j′. Because of
the JD ./{SP, PJ, JS}, it follows that r, as an instance of

1
In selecting this name for our new normal form, we were influenced

by the notion of essentiality suggested by Codd in [5]. Briefly, to
say that some data construct is essential is to say that its loss would
cause a loss of information. Every tuple in every instance of an ETNF
relation schema is essential in this sense.
2
When we say “supplier s supplies part p”, we mean “supplier s sup-

plies part p to some project” (and similarly for “part p is supplied to
project j” and “project j is supplied by supplier s”).

R, must contain also the tuple (s, p, j). So in the relation
r, the information in the tuple (s, p, j) is represented twice:
first, explicitly, by the tuple (s, p, j), and second, implicitly,
by the tuples (s, p, j′), (s′, p, j), and (s, p′, j) and the JD.
Intuitively, the tuple (s, p, j) is what we shall call “fully re-
dundant” (the “fully” refers to the fact that the entire tuple
is redundant).

Standard principles of normalization suggest that we de-
compose the relation schema R into three relation schemas,
with attributes, respectively, of {S, P}, {P, J}, and {J, S},
and with no FDs or JDs specified. These three new relation
schemas, intuitively, represent projections onto these sets of
attributes. Then the tuple redundancy problem disappears.

Example 1.2. Let R′ be a relation schema that is the
same as the relation schema R of Example 1.1, except that in
addition to the JD ./{SP, PJ, JS}, it also has the functional
dependency (FD) SP → J . Intuitively, this FD says:

• Any given supplier s supplies a given part p to at most
one project j.

It is well known that a collection of FDs and JDs can log-
ically imply other FDs and JDs. We can think of the FDs
and JDs that are specified for the relation schema as explicit
dependencies, and the FDs and JDs that are not given ex-
plicitly, but are logically implied by the explicit dependen-
cies, as implicit dependencies. For example, if A → B and
B → C are explicit FDs, and A→ C is not an explicit FD,
then A → C is an implicit FD. An example of an implicit
FD that arises through the interaction of an FD and a JD
will be given in Example 3.1. However, in the case of the
relation schema R′ in the example we are now considering,
we shall show later (in the proof of Theorem 6.1) a straight-
forward verification, using the chase process3 that no new
nontrivial FDs or JDs are implied by our two dependencies.
(A dependency is trivial if it “always holds” for relations
with the appropriate attributes.)

What normal form is the relation schema R′ in? Since
there are no nontrivial multivalued dependencies (MVDs4),
it follows easily from the characterization of 4NF in [9] that
R′ is in 4NF. However, R′ is not in 5NF, because the JD is
not logically implied by the keys (in particular by the only
nontrivial FD SP → J).

Let r be a relation that is an instance of R′ (so that r has
attributes S, P , and J , and satisfies the two dependencies).
Assume, as we did in Example 1.1, that r has tuples (s, p, j′),
(s′, p, j), and (s, p′, j), and possibly other tuples. Unlike
Example 1.1, we no longer assume that that j 6= j′. Because
of the JD, it follows that r, as an instance of R′, must contain
the tuple (s, p, j). But because r contains the tuples (s, p, j′)
and (s, p, j), and because of the FD SP → J , it follows
that j = j′. So we no longer have the tuple redundancy
that we exhibited in Example 1.1, because the information
in the tuple (s, p, j) is represented only once. Thus, unlike
the situation in Example 1.1, this information is not “also
represented implicitly” by the tuples (s, p, j′), (s′, p, j), and

3
To decide when a given dependency is a logical consequence of a set

of dependencies, we shall often make use of the chase process [1, 13].
Since the chase is a standard tool, we do not describe here the details
of the chase.
4
MVDs, along with other notions mentioned in the introduction, will

be formally defined in Section 2.

(s, p′, j) and the JD, since these three tuples have (s, p, j) as
one of their members (because (s, p, j′) = (s, p, j)).

Here is another way to view this example. We typically
expect a nontrivial JD to “force new tuples to be present”.
But this does not happen in the relation schema R′. Thus,
assume that we start with a relation r′ that contains the
tuples (s, p, j′), (s′, p, j), and (s, p′, j), and assume that we
wish to extend r′ to a relation r that satisfies the constraints
(“extend” means that r′ ⊆ r). Then we do not need to
add the tuple (s, p, j) to r′, since, as we showed, necessarily
j = j′, and so the tuple (s, p, j) is already present in r′.

We argue, therefore, that there is nothing wrong with the
relation schema R′ of Example 1.2 as far as tuple redun-
dancy issues are concerned, even though it is not in 5NF.
We now define two notions of tuple redundancy.

Tuple redundancy Our first notion of tuple redundancy
is with respect to FDs. It is based on the classical Boyce-
Codd normal form (BCNF) [4]. The definition we now give
of BCNF is equivalent to the definition given in [4].

Definition 1.3. A relation schema R is in Boyce-Codd
normal form (BCNF) if every explicit or implicit FD of R
is logically implied by the keys of R.

It is well known (see, for example, [9]) that R is in BCNF
if and only if for every explicit or implicit nontrivial FD
X → Y of R, necessarily X is a superkey (a superkey is a
subset of the attributes that is also a superset of a key).

The fact that both explicit and implicit FDs of R need
to be considered in Definition 1.3 will be demonstrated in
Example 3.1.

A tuple (over a finite set A of attributes) is a function with
domain A and range some set of values. Thus, if A is an
attribute, then t(A) is the value for attribute A of tuple t. If
X ⊆ A, and t is a tuple, then t[X] is the restriction of t to the
set X. Thus, t[X] is also a tuple, which is sometimes referred
to as the projection of the tuple t on X. We now define
the notion of a tuple being partly redundant. This notion
is based on the intuition that an FD X → A is thought
of as a function that associates with every X-value some
unique A-value. Intuitively, if t is a tuple, then t[X] uniquely
determines the value t(A).

Definition 1.4. Let R be a relation schema, let r be a
relation that is an instance of R, and let t be a tuple of r.
The tuple t is partly redundant in r (with respect to R) if
(a) there is a tuple t′ of r with t 6= t′, (b) there is a nontrivial
FD X → A of R (explicit or implicit), and (c) t[X] = t′[X].

The reason we say that t is partly redundant is as follows.
Since t[X] = t′[X], and since the relation r satisfies the FD
X → A, it follows that t(A) = t′(A). Thus, intuitively,
the information as to what A-value is associated with some
X-value is given by both t and t′. We have the following
proposition.

Proposition 1.5. Let R be an arbitrary relation schema.
Then R is in BCNF if and only if no instance has a partly
redundant tuple.

Proof. Assume first that R is in BCNF, and that some
instance r of R has a partly redundant tuple; we shall derive
a contradiction. Let t be a partly redundant tuple of r. Then
by definition, there is a tuple t′ of r with t 6= t′ and there

is a nontrivial explicit or implicit FD X → A of R such
that t[X] = t′[X]. Since R is in BCNF, it follows from
the comment after Definition 1.3 that necessarily X is a
superkey. Hence, since t[X] = t′[X], it follows that t = t′.
This is our desired contradiction.

Assume now that R is not in BCNF; we shall show that
R has an instance with a partly redundant tuple. Since R
is not in BCNF, it follows from the comment after Defini-
tion 1.3 that there is a nontrivial explicit or implicit FD
X → Y of R where X is not a superkey. Since X is not a
superkey, there is an attribute A such that X → A is not an
FD (explicit or implicit) of R.

Let s and s′ be tuples, whose attributes are the attributes
of R, with s[X] = s′[X], and where s(B) 6= s′(B) for every
attribute B not in X. Let us now apply the chase process to
the relation containing just these two tuples s and s′, where
we treat the entries of the tuples as variables that can be
equated by the chase process. Let r be the relation that
is the result of the chase, let t be the tuple of r that s is
eventually converted into at the end of the chase, and let t′

be the tuple of r that s′ is eventually converted into at the
end of the chase. Since X → A is not an FD (explicit or
implicit) of R, it follows by the standard theory of the chase
[1, 13] that t(A) 6= t′(A). Hence, t 6= t′. Further, by the
standard theory of the chase [1, 13], we know that r satisfies
the dependencies of R. Since s[X] = s′[X], and since s
(respectively, s′) is eventually converted into t (respectively,
t′) as a result of the chase, it follows that t[X] = t′[X].
Since t[X] = t′[X] and t 6= t′, where t and t′ are tuples of
the relation r with r satisfying the dependencies of R, it
follows that t is a partly redundant tuple of the instance r
of R. So an instance of R has a partly redundant tuple,
which was to be shown.

Let R be a relation schema, let S be a set of tuples, and let
t be a tuple. We say that S logically implies t (with respect
to R) if every instance of R that contains all of the tuples
in S also necessarily contains the tuple t. We now define a
second notion of tuple redundancy.

Definition 1.6. Let R be a relation schema, let r be a
relation that is an instance of R, and let t be a tuple of
r. The tuple t is fully redundant in r (with respect to R)
if there is a set S of tuples in r where t 6∈ S such that S
logically implies t with respect to R.

Intuitively, t is fully redundant if its presence is already
logically implied anyway by the presence of other tuples.
Similarly to the discussion in Example 1.1, in the relation
r the information in the tuple t is represented twice: first,
explicitly, by the tuple t, and second, implicitly, by the tu-
ples in S and the dependencies. It is easy to see that if the
relation schema is specified only by FDs, then there can be
no fully redundant tuple.

Note that “partly redundant” and “fully redundant” are
orthogonal notions: it is possible for a tuple to be fully re-
dundant without being partly redundant, and vice-versa.

We now give Fagin’s [10] definition of a deletion anomaly.5

We then show that a relation schema that is specified only
by FDs and JDs has a deletion anomaly if and only if it has
an instance with a fully redundant tuple.

5
Technically, we have to replace the word “dependencies” by “con-

straints” to obtain Fagin’s definition.

Definition 1.7. A relation schema R is said to have a
deletion anomaly if there are relations r1 and r2, each with
the attributes of R as their attributes, such that

1. r2 consists of the tuples of r1 along with exactly one
other tuple t,

2. r1 does not satisfy all of the dependencies of R, and

3. r2 satisfies all of the dependencies of R.

Thus, a deletion anomaly arises when the seemingly harm-
less operation of deleting just the tuple t from the instance
r2 of the schema R leads to r1, which is not an instance of
R, since it does not satisfy all of the dependencies of R.

Lemma 1.8. An equivalent definition to Definition 1.7 can
be obtained by replacing part (1) of Definition 1.7 by “r1 (
r2”.

Proof. Since r1 is a proper subset of r2, there are re-
lations s1, . . . , sk where s1 = r1 and sk = r2, and where
si+1 is obtained from si by adding exactly one tuple, for
1 ≤ i ≤ k − 1. Since s1 does not satisfy the dependencies
of R while sk does, there is j with 1 ≤ j ≤ k − 1 such
that sj does not satisfy all of the dependencies of R while
sj+1 satisfies all of the dependencies of R. Let r′1 = sj ,
let r′2 = sj+1, and let t be the tuple in sj+1 but not not sj .
Then the conditions of Definition 1.7 hold when r′1 plays the
role of r1, and r′2 plays the role of r2.

Proposition 1.9. Let R be a relation schema that is spec-
ified only by FDs and JDs. Then R has a deletion anomaly
if and only if R has an instance with a fully redundant tuple.

Proof. Assume first that R has a deletion anomaly; we
shall show that R has an instance with a fully redundant
tuple. Let r1, r2, and t be as in Definition 1.7. Let r be r2,
and let S be r1. Since r1 ⊆ r2 and r2 satisfies the FDs of R,
also r1 satisfies the FDs of R. Therefore, it is not hard to see
that r2 is the result of applying a JD of R to r1. Hence, S
logically implies t with respect to R. Since t 6∈ S, it follows
by definition that t is fully redundant in r with respect to
R.

Now assume that R has an instance with a fully redundant
tuple; we shall show that R has a deletion anomaly. Let t,
r, and S be as in Definition 1.6. Since S logically implies t,
and t 6∈ S, we know that S does not satisfy the dependencies
of R. Let r1 be S, and let r2 be r. Then by Lemma 1.8, it
follows that R has a deletion anomaly, as desired.

Fagin [10] also defines the notion of an insertion anomaly,
which we now discuss. He defines key dependencies, which
are FDs where the right-hand side is the set of all attributes,
and domain dependencies, which are sentences of the form
IN(A,S), where A is an attribute and S is a set of values.
The domain dependency IN(A,S) holds for a relation r if
the value of every tuple on the attribute A is a member of
the set S. (Other than in this introductory section, we shall
not consider domain dependencies in this paper.)

Definition 1.10. A relation schema R is said to have an
insertion anomaly if there are relations r1 and r2, each with
the attributes of R as their attributes, such that

1. r2 consists of the tuples of r1 along with exactly one
other tuple t,

2. r1 satisfies all of the dependencies of R,

3. r2 does not satisfy all of the dependencies of R, and

4. r2 satisfies the key dependencies and domain depen-
dencies of R.

Note that parts (2) and (3) are the reverse of parts (2)
and (3) of Definition 1.7.

An insertion anomaly arises when the operation of adding
the tuple t to the instance r1 of the schema R leads to r2,
which is not an instance of R, even though the tuple t does
not agree with any tuple of r1 on a key, and the tuple t
satisfies the domain dependencies.

Fagin [10] defines an “ultimate” normal form, which he
calls domain-key normal form (DK/NF), which holds if ev-
ery constraint is logically implied by the key dependencies
and domain dependencies. He shows that a relation schema
is in DK/NF if and only if it has no insertion anomalies and
no deletion anomalies. The next proposition says that if
we restrict our attention to relation schemas where the only
constraints are FDs and JDs (in particular, where domain
dependencies are not allowed) then DK/NF is equivalent to
5NF, and both are equivalent to there being no insertion
anomaly.

Proposition 1.11. Let R be a relation schema that is
specified only by FDs and JDs. The following are equivalent.

1. R is in DK/NF.

2. R is in 5NF.

3. R has no insertion anomalies.

Proof. (1) and (2) are equivalent, because both say that
all of the constraints (which in this case are only FDs and
JDs) are implied by the keys. It is shown in [10] that (1)
implies (3). It is also shown in [10] that a relation schema
with arbitrary constraints (not necessarily just FDs or JDs)
is in DK/NF if and only if (1) it has no insertion anomalies,
and (2) the empty relation satisfies all of the constraints.
In our case of interest, where the only constraints are FDs
and JDs, it is automatically true that the empty relation
satisfies all of the constraints. It therefore follows easily
that (3) implies (1).

Let us say that a tuple is essential if it is neither partly
nor fully redundant. We now define our new normal form.

Definition 1.12. A relation schema R is in essential tu-
ple normal form (ETNF) if every tuple in every instance of
R is essential.

As we shall show in the proof of Theorem 6.1, the relation
schema R′ of Example 1.2 is in ETNF but not 5NF.

Define the components of a JD ./{C1, . . . , Ck} to be the
sets C1, . . . , Ck. It can be shown by an argument similar
to that in Example 1.2 that if a relation schema R is in
BCNF and some component of every explicit JD of R is a
superkey (as with the JD in Example 1.2, where the com-
ponent SP is a key), then R is in ETNF (we shall give a
proof in Section 4.2). It is interesting (and quite nontrivial
to prove) that the converse also holds. Thus, we shall prove
the following theorem, which is our main technical result.

Theorem 1.13. Let R be a relation schema specified only
by FDs and JDs. Then R is in ETNF if and only if it is in
BCNF and some component of every explicit JD of R is a
superkey.

Of course, we could replace “explicit JD” by “explicit or
implicit JD” in Theorem 1.13, since every implicit JD can
be made explicit if desired. We state Theorem 1.13 as we do
to make the “if” direction stronger. Thus, the “if” direction
of Theorem 1.13 tells us that to decide if a BCNF relation
schema is in ETNF, we need to check only the explicit JDs
to see if some component is a superkey; it then can be shown
to follow automatically that for the implicit JDs also, some
component is a superkey. We note that we could make the
“if” direction even stronger by replacing “every explicit JD”
by “every explicit, irreducible JD”.6 But we do not do this,
since the statement of the theorem seems a little cleaner
without the word “irreducible” in it, and since it is clear
that some component of every explicit, irreducible JD of R
is a superkey if and only if some component of every explicit
JD of R is a superkey.

Theorem 1.13 gives a syntactic characterization of ETNF.
It is quite interesting that this syntactic characterization of
ETNF is closely related to syntactical characterizations of
two other normal forms between 4NF and 5NF. We discuss
one of these now, and the other in Section 1.1.

The first of these other normal forms arose because of a
common misperception in the literature about 5NF, which
we now discuss, after giving some more definitions.

Definition 1.14. Let R be a relation schema. Then a
JD ./{C1, . . . , Ck} of R is irreducible (with respect to R)
if there is no proper subset {Ci1 , . . . , Cis} of {C1, . . . , Ck}
such that ./ {Ci1 , . . . , Cis} is a JD (explicit or implicit) of
R.

Note that if the JDs ./{C1, . . . , Ck} and ./{Ci1 , . . . , Cis}
are as in Definition 1.14, then ./{Ci1 , . . . , Cis} logically im-
plies ./{C1, . . . , Ck}. So the irreducible JDs logically imply
all of the JDs of R. Note also that if one component Ci of
a JD J is a proper subset of another component of J , then
J is not irreducible, since the JD J ′ that is the result of
removing the component Ci from J is an explicit or implicit
JD of R (because J and J ′ are logically equivalent).

Definition 1.15. [14] A relation schema R is in superkey
normal form (SKNF) if every component of every irreducible
JD of R (explicit or implicit) is a superkey.

This definition of superkey normal form is due to Nor-
mann [14].7 As Normann notes, this definition appears in
Maier’s textbook [12] as a preliminary version of 5NF (be-
fore Maier gives the “real” definition, due to Fagin [10]). A
primary reason that SKNF is of interest is that, as shown
by Normann [14], many textbooks (including the textbook
[6] by our second author) incorrectly give the definition of
SKNF as a definition of 5NF. An equivalent definition to
SKNF was given by Vincent [18], who calls it 5NFR. Nor-
mann and Vincent both show that 5NF ⇒ SKNF ⇒ 4NF,
and that neither reverse implication holds. Our interest in
SKNF is for two reasons.

6
The definition of an irreducible JD is given in Definition 1.14.

7
Normann abbreviates superkey normal form as SNF rather than

SKNF, but to us the abbreviation SNF looks too physically similar
to the abbreviation 5NF.

• It is an intermediate normal form (a normal form be-
tween 4NF and 5NF), and we wish to know the re-
lationship between the various intermediate normal
forms, including ours.

• The syntactic condition that defines SKNF in Defini-
tion 1.15 turns out to be very similar to syntactic char-
acterizations of the other intermediate normal forms.

These issues are discussed in Section 1.2.
Date and Fagin [7] give simple conditions, that we now

describe, that guarantee that a relation schema is in a higher
normal form, namely 4NF or 5NF. It is shown in [7] that
if a relation schema R is in third normal form (3NF) and
every key has only one attribute, then R is in 5NF. It is
also shown in [7] that if a relation schema R is in BCNF
and some key has only one attribute, then R is in 4NF. In
Section 5, we show that the conclusion of this latter result
can be strengthened to say that R is in ETNF. Thus, we
show that if a relation schema R is in BCNF and some key
has only one attribute, then R is in ETNF. This is nice,
because it gives a simple, natural condition involving FDs
only (that is, not involving JDs) that guarantees ETNF.

1.1 Related work
Vincent [17] defines the notion of a data value (an entry

of a tuple) being redundant. We now give a definition equiv-
alent to his. Since it is somewhat ambiguous to refer to a
value in a tuple (e.g., that same value could appear several
times within the tuple), we reference a value t(A) of a tuple
t as the pair (t, A).

Definition 1.16. [17] Let R be a relation schema, let r
be a relation that is an instance of R, let t be a tuple of r,
and let A be an attribute of R, The pair (t, A) is redundant
in r (with respect to R) if whenever t′ is a tuple with t′(A) 6=
t(A) and t′(B) = t(B) for each attribute B other than A,
and r′ is the result of replacing the tuple t in r by t′, then r′

is not an instance of R.

We now show that our notions of a tuple being partly re-
dundant or fully redundant give special cases of the notion
of redundancy in Definition 1.16. In the case of “partly re-
dundant”, if r, t, and A are as in Definition 1.4, then it is
straightforward to see that (t, A) is redundant in r. In the
case of “fully redundant”, if r and t are as in Definition 1.6,
then it is straightforward to see that (t, A) is redundant in
r for each attribute A.

Intuitively, Definition 1.16 says that the value of tuple t
for attribute A is redundant if it is uniquely determined by
the rest of the relation. Vincent defines a new normal form
based on this notion of redundancy; we now give a definition
equivalent to his.

Definition 1.17. [17] A relation schema R is in redun-
dancy-free normal form (RFNF) if it is not the case that
there is an instance r of R, a tuple t of r, and an attribute
A such that (t, A) is redundant in r with respect to R.

Vincent [17] shows that if R is a relation schema specified
only by FDs and MVDs, then R is in RFNF if and only if
it is in 4NF. The interesting case, which we now discuss, is
when R is specified only by FDs and JDs.

Assume that R is specified only by FDs and JDs. Vincent
then gives a syntactic characterization of RFNF. He refers to
this syntactic characterization as key-complete normal form
(KCNF). We now give a definition equivalent to his.

Definition 1.18. [17] A relation schema R that is spec-
ified only by FDs and JDs is in key-complete normal form
(KCNF) if it is in BCNF, and if for every JD J of R (ex-
plicit or implicit), the union of the components of J that are
superkeys contains every attribute of R.

Vincent proves the following theorem, which shows that
KCNF is a syntactic characterization of RFNF.

Theorem 1.19. [17] Let R be a relation schema specified
only by FDs and JDs. Then R is in RFNF if and only if it
is in KCNF.

Arenas and Libkin [2] define a numerical measure (based
on entropy) of the redundancy of a relation schema. They
refer to a relation schema with zero redundancy as being
well designed. Vincent et al. [19] prove that if R is a relation
schema specified only by FDs and JDs, then R is in RFNF
if and only if it is well designed.

As we shall show in the proof of Theorem 6.1, the relation
schema R′ of Example 1.2 is in ETNF but not RFNF. It is
instructive to see an example of a redundancy that keeps R′

from being in RFNF. Let r be a relation that consists of the
tuples (s, p, j), (s′, p, j), and (s, p′, j), with s 6= s′ and p 6= p′.
Then r is an instance of R′. Let t be the tuple (s, p, j). We
now show that (t, J) (which corresponds to the entry j of
tuple t) is redundant in r. This is because if we were to try
to replace j with j′ in the tuple (s, p, j), we would have the
relation r′ with tuples (s, p, j′), (s′, p, j), and (s, p′, j). As
discussed in Example 1.2, the explicit JD and explicit FD of
R′ force j′ = j, which proves redundancy. This redundancy
implies that R′ is not in RFNF.

In other related work, Thalheim [16] defines what he calls
the deductive normal form of a relation r (with respect to
a relation schema R). It is not really a normal form in our
sense, but is simply a minimal subset of the tuples of r that
generates r via the chase. It is not hard to see that a relation
schema has no instance with a fully redundant tuple if and
only if the deductive normal form of every instance r is r
itself. However, Thalheim does not define or study this case
where the deductive normal form of every instance r is r
itself.

1.2 Relationships between normal forms
We shall show that 5NF ⇒ SKNF ⇒ RFNF ⇒ ETNF ⇒

4NF, and that none of the reverse implications hold.
Normann [14] shows that 5NF⇒ SKNF⇒ 4NF, and that

neither reverse implication holds. Vincent [17] shows that
5NF ⇒ SKNF ⇒ RFNF ⇒ 4NF, and that none of the re-
verse implications hold.

It is quite interesting to compare the syntactic conditions,
which involve the interrelationship of superkeys with com-
ponents of JDs of the schema, that characterize the inter-
mediate normal forms SKNF, RFNF, and ETNF. Let R be
a relation schema specified only by FDs and JDs. By Def-
inition 1.15, we have that R is in SKNF if and only if for
every irreducible JD J of R, every component of J is a su-
perkey. By Theorem 1.19, we have that R is in RFNF if and
only if it is in BCNF and for every JD J of R, the union of
the components of J that are superkeys includes every at-
tribute of R. By Theorem 1.13, we have that R is in ETNF
if and only if it is in BCNF and for every JD J of R, some
component of J is a superkey.

1.3 Summary of contributions
We introduce a new normal form, called essential tuple

normal form (ETNF), which lies strictly between 4NF and
5NF, and which is exactly what is needed to eliminate re-
dundancy of tuples. Our main technical result is a syntactic
characterization of ETNF: a relation schema is in ETNF if
and only if it is in BCNF and some component of every
explicitly declared join dependency of the schema is a su-
perkey. We show the relationship between ETNF and other
normal forms in the literature that are strictly between 4NF
and 5NF, namely SKNF and RFNF. Specifically, we show
that 5NF ⇒ SKNF ⇒ RFNF ⇒ ETNF ⇒ 4NF, and that
none of the reverse implications hold. Interestingly, all three
of these intermediate normal forms can be characterized by
saying that the schema must be in BCNF and that there is
some interrelationship of superkeys with components of JDs
of the schema We also give a simple sufficient condition for
ETNF: a relation schema is in ETNF if it is in BCNF and
some key has only one attribute.

2. DEFINITIONS AND BACKGROUND
In this section, we give basic definitions and background

needed for this paper.
We shall consider three types of dependencies, or sen-

tences, in this paper, namely functional dependencies, mul-
tivalued dependencies, and join dependencies, each of which
we shall define shortly. A set Σ of sentences logically implies
a sentence τ (or τ is a logical consequence of Σ) if every
relation that satisfies every sentence of Σ also satisfies τ . If
Σ is a singleton set {σ}, then we say that σ logically implies
τ . We say that two sentences are logically equivalent if each
logically implies the other.

We formally defined tuple in the introduction. A relation
(with attributes A) is a finite set of tuples over A. If X ⊆ A,
then r[X] is the set of all tuples t[X] where t is a tuple of r.
The relation r[X] is called the projection of r onto X.

The active domain of a relation r is the set of values t(A)
over all tuples t of r and all attributes A. Thus, the active
domain of relation r is the set of members of the domain
that actually appear in r. If an ordering on the set A of
attributes is understood, and the number of attributes is n,
then we may write a tuple as (a1, . . . , an), where ai is the
value of the tuple on the ith attribute, for 1 ≤ i ≤ n.

If A and B are attributes, we may write AB for the set
{A,B}. If X and Y are sets of attributes, we may write XY
for the set X ∪ Y .

A functional dependency or FD (over the set A of at-
tributes) is a sentence of the form X → Y , where X and Y
are subsets of the set A of attributes. If X is a singleton set
{A}, we may write A for {A} in the FD, and similarly for Y .
We say that a relation r satisfies the FD X → Y (or the FD
X → Y holds for r) if for each pair t1, t2 of tuples in r such
that t1[X] = t2[X], we have t1[Y] = t2[Y]. A trivial FD
(over A) is one that holds for every relation with attributes
A. It is easy to see that an FD X → Y is trivial if and only
if Y ⊆ X. Functional dependencies were first considered by
Codd [3], but not using this formalism.

A multivalued dependency or MVD (over the set A of at-
tributes) [8] is a sentence of the form X →→ Y , where X
and Y are subsets of the set A of attributes. Let Z be the set
difference A \ (X ∪ Y). We may then also write the MVD
X →→ Y as X →→ Y |Z. We say that a relation r sat-

isfies the MVD X →→ Y |Z (or the MVD X →→ Y |Z
holds for r) if whenever t1 and t2 are tuples in r such
that t1[X] = t2[X], then there is a tuple t in r such that
t[X] = t1[X], t[Y] = t1[Y], and t[Z] = t2[Z]. A trivial MVD
(over A) is one that holds for every relation with attributes
A. The MVD X →→ Y is trivial if and only if either Y ⊆ X
or X∪Y = A [8]. Without loss of generality, we can restrict
our attention to MVDs X →→ Y where X and Y are dis-
joint (and so X, Y , and Z are pairwise disjoint), because
of the simple result [8] that the MVD X →→ Y is logi-
cally equivalent to the MVD X →→ Y ′, where Y ′ is the set
difference Y \X.

A join dependency or JD (over the set A of attributes)
[15] is a sentence of the form ./ {C1, . . . , Ck}, where C1 ∪
. . . ∪ Ck = A. We call each Ci a component of the JD
./ {C1, . . . , Ck}. We say that a relation r satisfies the JD
./ {C1, . . . , Ck} (or the JD ./ {C1, . . . , Ck} holds for r) if
whenever t1, . . . , tk are tuples in r, and there is a tuple t
such that t[Ci] = ti[Ci], for 1 ≤ i ≤ k, then t is a tuple
in r. The name “join dependency” refers to the fact that a
relation r satisfies the JD ./{C1, . . . , Ck} if and only if r is
the join of its projections r[C1], . . . , r[Ck]. This is sometimes
expressed by saying that r decomposes losslessly onto these
projections. A trivial JD (over A) is one that holds for
every relation with attributes A. It is easy to see that a
JD is trivial if and only if some component is the set of all
attributes.

A dependency is an FD, MVD, or JD. An MVD can be
viewed as a JD, in that the MVD X →→ Y |Z is logically
equivalent to the JD ./{XY,XZ}.

A relation schema R is a pair consisting of a finite set of
attributes and a set of constraints. It is often convenient to
say that R is specified by these constraints. In the case that
we are focusing on, where the constraints are FDs and JDs,
we shall write a relation schema as a triple (A,F ,J), where
A is a finite set of attributes, F is a set of FDs over A, and J
is a set of JDs over A. We then say that R is specified by F
and J . Each member of F is an explicit FD of R, and each
member of J is an explicit JD of R. Implicit dependencies
are those not in F or J but which are logically implied by
F ∪J . A relation r is an instance of the relation schema R
if (a) A is the set of attributes of r and (b) r satisfies the
dependencies in F and J .

A key of the relation schema R = (A,F ,J) is a subset of
A such that (a) the FD K → A is an explicit or implicit FD
of R and (b) there is no proper subset K′ of K such that the
FD K′ → A is an explicit or implicit FD of R. A superkey
of R is a subset of A that is also a superset of a key of R.
When we say that a dependency σ is logically implied by the
keys, we mean that σ is a logical consequence of the set of
FDs of the form K → A, where K is a key.

We now define the “classic” normal forms that we shall
make use of in this paper. Since we mention third normal
form (3NF) [3] only in passing, we shall not give the defini-
tion here of 3NF.

The definition of BCNF appears in the introduction (Defi-
nition 1.3). We note for later use the following simple propo-
sition from [9]. It helps clarify the definition of BCNF.

Proposition 2.1. [9] A nontrivial FD X → Y is logically
implied by the keys of a relation schema R if and only if X
is a superkey of R.

We now define 4NF and 5NF.

Definition 2.2. [8] A relation schema R is in fourth
normal form (4NF) if every MVD of R is logically implied by
the keys of R. (By an MVD of R, we mean those explicit or
implicit JDs of R that are logically equivalent to an MVD.)

Definition 2.3. [9] A relation schema R is in fifth nor-
mal form (5NF; also known as projection-join normal form,
or PJ/NF) if every explicit or implicit JD of R is logically
implied by the keys of R.

We shall make use of the Membership Algorithm of [9],
which tells when a JD ./{C1, . . . , Ck} is logically implied by
the keys.

Membership Algorithm [9] (Input is a finite set A of
attributes, a JD ./{C1, . . . , Ck}, and a set {K1, . . . ,Kr} of
keys.)

1. Initialize the set S to be {C1, . . . , Ck}.

2. Apply the following rule until it can no longer be ap-
plied: if Ki ⊆ Y ∩ Z for some i (with 1 ≤ i ≤ r) and
some members Y,Z of S, then replace Y and Z in S
by their union, that is, remove the sets Y and Z from
S and add to S the single member Y ∪ Z. (Note that
the number of members of S then decreases by one.)

3. On termination, if A is a member of S, then accept,
and otherwise reject.

Proposition 2.4. [9] Let R be a relation schema with
attributes A and with {K1, . . . ,Kr} as its set of keys. The
JD ./ {C1, . . . , Ck} over A is logically implied by the keys
of R if and only if the Membership Algorithm accepts with
inputs A, ./{C1, . . . , Ck}, and {K1, . . . ,Kr}.

Assume that relations r and r′ have the same attributes.
A homomorphism from r to r′ is a function h from the active
domain of r to the active domain of r′ such that whenever
(b1, . . . , bn) is a tuple of r, then (h(b1), . . . , h(bn)) is a tuple
of r′. For convenience, if b = (b1, . . . , bn), then we denote
(h(b1), . . . , h(bn)) by h(b).

3. IMPLICIT DEPENDENCIES
We now discuss an example that shows the importance of

considering implicit dependencies.

Example 3.1. Let R be the relation schema with

A = {A,B,C} ,

F = {AB → C} ,

J = {./{AB,AC}} .

We shall show that A → C is an implicit FD, and A is not
a key. Hence, this relation schema is not in BCNF. This
example shows that to determine BCNF, we must consider
not only the explicit FDs, but also the implicit FDs. Thus,
the only explicit FD is AB → C, whose left-hand side is a
key. So if we were to consider only the explicit FDs, then
we would believe that R is in BCNF, even though it is not.

We first show that A→ C is an implicit FD. Let r be an
instance of the relation schema. Assume that (a, b1, c1) and
(a, b2, c2) are tuples of r. To show that A→ C is an implicit
FD, we need only show that the dependencies of R imply

that c1 = c2. From the JD, we have that (a, b1, c2) is a tuple
of r. Since (a, b1, c1) and (a, b1, c2) are tuples of r, it follows
from the FD AB → C that c1 = c2, as desired.

We now show that A → B is not an implicit FD, and
so A is not a key. Let r consist of the tuples (a, b1, c) and
(a, b2, c), where b1 6= b2. It is easy to verify that r satisfies
the (explicit) dependencies of the relation schema, and so is
an instance of the relation schema, but the FD A→ B fails.

As an interesting aside, we note that this example can
be turned into a necessary and sufficient condition for an
extended version of Heath’s Theorem. Heath’s Theorem [11]
says that if X and Y are subsets of the set A of attributes,
and Z is the set difference A \ (X ∪ Y), then the FD X →
Y implies the JD ./ {XY,XZ}. It is easy to see that the
converse is false. However, an extended version of Heath’s
Theorem does have a valid converse. Specifically, we have
the following proposition.

Proposition 3.2. Assume that X and Y are subsets of
the set A of attributes, and Z is the set difference A\(X∪Y)
The following are equivalent:

1. X → Y

2. ./{XY,XZ} and XZ is a superkey (i.e., XZ → Y).

Proof. Assume first that (1) holds. Then ./{XY,XZ}
holds, by Heath’s Theorem. Also, since X → Y holds, so
does XZ → Y .

Conversely, assume that (2) holds. Then by the same
argument as we gave in Example 3.1, where the roles of A,
B, and C of Example 3.1 are played by X, Z, and Y \ X,
respectively, it follows that (1) holds.

We will not make explicit use of this section later. How-
ever, it is important for the reader to keep in mind that, as
Example 3.1 shows, we cannot simply look only at the ex-
plicit dependencies in order to determine whether a relation
schema is in some specific normal form; instead, we must
take into account the implicit dependencies also

4. SYNTACTICAL CHARACTERIZATION
OF ETNF: PROOF

In this section, we present our proof of Theorem 1.13,
which gives a syntactic characterization of ETNF, and which
is our main technical result. As the first step in the proof, we
give an algorithm that determines, given a relation schema
R, whether R has an instance with a fully redundant tuple.
This algorithm is based on the chase [1, 13]. As is usual with
algorithms that do the chase using JDs, the algorithm runs
in time exponential in the size of the dependencies. The
only reason we are presenting the algorithm is that we use
it as a tool in our proofs, and in particular to help prove
Theorem 1.13.

4.1 Full nonredundancy algorithm
Let A = {A1, . . . , An} be the set of attributes. For each

attribute Ai, we create a distinguished variable ai. We as-
sume that there are an arbitrary number of nondistinguished
variables for each attribute (none of which equals the distin-
guished variable).

As we mentioned, the algorithm we shall give is based on
the chase. For convenience, instead of using a tableau as

in [1, 13], we shall use a relation, whose entries consist not
of constants but of variables (distinguished and nondistin-
guished).8 During the course of the chase, we may replace
certain variables that appear as entries in tuples of the rela-
tion by other variables, and we may add new tuples to the
relation.

Full Nonredundancy Algorithm (Input is a finite set
A = {A1, . . . , An} of attributes, a set F of FDs over A, and
a set J of JDs over A.)

1. For each JD J in J , do the following.

(a) If J is ./ {C1, . . . , Ck}, then create a relation rJ

with k tuples t1, . . . , tk defined as follows. For
1 ≤ i ≤ k, let ti(Aj) be the distinguished variable
aj if Aj ∈ Ci, and otherwise let ti(Aj) be a new
nondistinguished variable.

(b) Create a total ordering < over all of the vari-
ables (distinguished and nondistinguished) that
appear in rJ , where every distinguished variable
is smaller in the total ordering than every nondis-
tinguished variable (thus, the distinguished vari-
ables form an initial prefix of the total ordering).

(c) Chase rJ with F and J . During this chase, when-
ever an FD forces two variables x and y to be
equated, if x < y then replace every occurrence
of y by x, and otherwise replace every occurrence
of x by y. In particular, whenever a distinguished
variable x and a nondistinguished variable y are to
be equated, then every occurrence of y is replaced
by x. Note that no two distinguished variables
are ever forced to be equated during the chase,
since a column (that is, the set of values t(A) for
a fixed attribute A) cannot contain two different
distinguished variables, and the chase forces only
variables in the same column to be equated.

(d) If at the end of the chase, one of the original tuples
tp of rJ has been converted into the tuple tD of
all distinguished variables, then call this process
a “success”, and proceed to the next JD in J . If
not, then halt and reject.

2. If there is success for each of the JDs in J , then accept.

Note in particular that in the Full Nonredundancy Algo-
rithm, we need to consider only explicit JDs J (those in the
set J), not implicit JDs (those that are logically implied by
the explicit dependencies).

The next theorem shows that the Full Nonredundancy
Algorithm is sound and complete.

Theorem 4.1. The Full Nonredundancy Algorithm ac-
cepts if and only if R = (A,F ,J) has no instance with
a fully redundant tuple.

Proof. Assume first that the algorithm rejects; we shall
show that R has an instance with a fully redundant tuple.
Let ./{C1, . . . , Ck} be the JD J that causes the algorithm to
reject, and let rJ and t1, . . . , tk be as in part (a) of step (1) of
the algorithm. Let t′i (for 1 ≤ i ≤ k) be what the tuple ti was
converted into (by variables being equated) at the end of the

8
This abuse of the convention that the entries of a relation are only

constants is quite common.

chase of rJ with F and J . Note that if ti(A) is distinguished,
then so is t′i(A). Let r1 be the relation consisting of the
tuples t′1, . . . , t

′
k. Since r1 does not contain the tuple tD

of all distinguished variables, and since whenever ti(A) is
distinguished, then so is t′i(A), it follows that r1 does not
satisfy the JD ./{C1, . . . , Ck}. Let r2 be the relation that is
the result of the chase of rJ with F and J . In particular, r2
contains the tuple tD of all distinguished variables, because
of the JD ./{C1, . . . , Ck} and because r2 contains the tuples
t′i, where t′i[Ci] consists of all distinguished variables. Since
r1 does not contain tD while r2 does contain tD, we have r1 (
r2. By the standard theory of the chase [1, 13], r2 satisfies
the dependencies of R. It now follows from Lemma 1.8 that
R has a deletion anomaly. So by Proposition 1.9, we know
that R has an instance with a fully redundant tuple, which
was to be shown.

Assume now that the algorithm accepts, but that R has
an instance with a fully redundant tuple; we shall derive a
contradiction. Since R has an instance with a fully redun-
dant tuple, we know by Proposition 1.9 that R has a deletion
anomaly. So there are r1 and r2 such that r1 (r2, and such
that r1 does not satisfy the dependencies of R but r2 sat-
isfies the dependencies of R. Since r1 (r2, and r2 satisfies
the FDs of R (because r2 satisfies all of the dependencies of
R), it follows that r1 satisfies the FDs of R.

Let D be the active domain of r1. Thus, D is the set of all
values t(Ai), where t is a tuple of r1 and Ai is an attribute.
We now show that if x and y are distinct members of D,
then x and y can never be forced to be equal during a chase
of r1 by the dependencies of R. This is because if this were
to happen, then by the standard theory of the chase [1, 13],
there could be no relation that includes r1 as a subrelation
and satisfies the dependencies of R. This would contradict
the facts that r1 (r2, and r2 satisfies the dependencies of
R.

We now show that r1 satisfies the explicit JDs of R (which
is a contradiction, since r1 does not satisfy all of the depen-
dencies of R, and r1 satisfies the FDs of R). Let J be an
explicit JD of R; we must show that r1 satisfies J . Assume
not; we shall derive a contradiction. Since r1 does not sat-
isfy J , the result of chasing r1 with J produces a new tuple
t̂ not in r1.

Assume that J is the JD ./{C1, . . . , Ck}. Let rJ be as in
part (a) of step (1) of the Full Nonredundancy Algorithm,
and let tp and tD be as in part (d) of step (1) of the Full
Nonredundancy Algorithm. Since the result of chasing r1
with J produces t̂, it follows immediately that there is a
homomorphism h from rJ to r1 such that h(tD) = t̂.

Consider the sequence of chase steps on rJ that eventually
converts tp into tD. Assume that there are m chase steps.

Let r
(i)
J be the relation after applying chase step i to rJ , for

0 ≤ i ≤ m. In particular, r
(0)
J , the result of doing no chase

steps, is rJ .
Let us mimic these chase steps on r1 to thereby obtain a

chase on r1 with the dependencies of R, as we now describe.

We shall let r
(i)
1 be the result of applying chase step i to r1,

for 0 ≤ i ≤ m. Thus, r
(0)
1 = r1, and r

(i+1)
1 is the result of

doing the same chase step to r
(i)
1 as that used to obtain r

(i+1)
J

from r
(i)
J (we shall clarify this shortly). We shall maintain

the invariants that (1) if tuple s is in r
(i)
J , then tuple h(s)

is in r
(i)
1 , and (2) if tuple s of rJ has been converted by

chase step i to tuple s′ of r
(i)
J , then tuple h(s) of r1 has been

converted by chase step i to tuple h(s′) of r
(i)
1 . We now

clarify how our mimicking process works.
If on chase step i+ 1 the JD ./

{
C′1, . . . , C

′
q

}
is applied to

the tuples s1, . . . , sq of r
(i)
J to obtain the new tuple s that is

added to r
(i)
J to obtain r

(i+1)
J , then r

(i+1)
1 is obtained from

r
(i)
1 by adding the tuple h(s) to r

(i)
1 (if the tuple h(s) is not

already present in r
(i)
1). It is straightforward to verify, using

the first invariant, that this is a legal application of apply-
ing the JD ./

{
C′1, . . . , C

′
q

}
to the tuples h(s1), . . . , h(sq) of

r
(i)
J . If on chase step i+ 1 an FD F converts x in r

(i)
J to y,

we mimic this by converting h(x) in r
(i)
1 into h(y). As be-

fore, it is straightforward to verify, using the first invariant,
that this is a legal application of the FD F . Further, it is
straightforward to verify that in both cases, the invariants
are maintained. Since the tuple tp of rJ is eventually con-
verted into tD in the chase on rJ , it follows from the second
invariant that the tuple h(tp) of r1 is eventually converted
into h(tD) in the chase on r1 we have described that mimics
the chase on rJ .

But it is not possible for a chase to convert the tuple h(tp)
of r1 into h(tD), since (1) h(tp) 6= h(tD) (because h(tp) is in
r1, whereas h(tD) is not in r1, since h(tD) = t̂, and t̂ is not in
r1), and (2) every entry of h(tp) and h(tD) is a member of D,
and we showed that whenever x and y are distinct members
of D, then x and y can never be forced to be equal during
a chase of r1 by the dependencies of R. This contradiction
completes the proof.

4.2 Completion of the proof of Theorem 1.13
We now complete the proof of Theorem 1.13, by making

use of Theorem 4.1, which shows the soundness and com-
pleteness of the Full Nonredundancy Algorithm.

Assume first that (1) R is in BCNF, and (2) for every JD
in J , some component is a superkey of R. We must show
that R is in ETNF. We first show that the Full Nonredun-
dancy Algorithm accepts. Let J be the JD ./{C1, . . . , Ck}
of R. By condition (2), there is q such that the component
Cq of J is a superkey of R. Let t1, . . . , tk be as in part (a)
of step (1) of the Full Nonredundancy Algorithm, and let
tD be as in part (d) of step (1) of the Full Nonredundancy
Algorithm. In particular, tq is the tuple corresponding to
the component Cq that is a superkey. By construction,
tq[Cq] = tD[Cq]. Applying the JD ./ {C1, . . . , Ck} to the
tuples t1, . . . , tk in the chase produces the tuple tD. Since
Cq is a superkey, and since tq[Cq] = tD[Cq], the chase causes
the tuple tq to be converted into the tuple tD. So the Full
Nonredundancy Algorithm succeeds on the JD J . Since J
is an arbitrary JD of R, the Full Nonredundancy Algorithm
accepts, as desired. Therefore, by Theorem 4.1, we have
that R has no instance with a fully redundant tuple. Fur-
ther, since R is also in BCNF, we know by Proposition 1.5
that R has no instance with a partly redundant tuple. It
follows that every tuple in every instance of R is essential.
Therefore, R is in ETNF, which was to be shown.

We now show the converse. Assume that R is in ETNF.
So in particular, R has no instance with a partly redundant
tuple. Therefore, by Proposition 1.5, we know that R is in
BCNF. Let J be an explicit JD ./ {C1, . . . , Ck} of R. We
must show that some Ci is a superkey.

Since R is in ETNF, it has no instance with a fully re-
dundant tuple. Therefore, by Theorem 4.1, we know that

the Full Nonredundancy Algorithm accepts when run on R.
Hence, step (1) of the Full Nonredundancy Algorithm suc-
ceeds when run on J . Let rJ and t1, . . . , tk be as in part (a)
of step (1) of the Full Nonredundancy Algorithm, and let
tp and tD be as in part (d) of step (1) of the Full Nonre-
dundancy Algorithm. We now show that the corresponding
component Cp of J is a superkey of R.

Let r1 be a relation consisting only of the two tuples tp
and tD. Note that tp and tD agree precisely on the set Cp of
attributes. Therefore, it follows from the standard theory of
the chase [1, 13] that to show that Cp is a superkey of R, we
need only show that during a chase of r1 with the dependen-
cies of R, the tuple tp is eventually converted into the tuple
tD. Let h be a function defined on the distinguished and
nondistinguished variables of rJ , defined as follows. First,
we let h(x) = x when x is a variable in tD (that is, a dis-
tinguished variable) or a variable in tp. For each remaining
nondistinguished variable, if x is a nondistinguished variable
for the attribute Ai, let h(x) be the distinguished variable
ai for attribute Ai. It follows from the definition of h that
h(tp) = tp, and h(ti) = tD = h(tD) for i 6= p. In particular,
h(t) ∈ r1 for each tuple t of rJ . So h is a homomorphism
mapping rJ into r1.

Then exactly as in the proof of Theorem 4.1, we can take
the chase of rJ that converts tp into tD, and mimic this
chase in r1, to get a chase that converts h(tp) into h(tD).
But h(tp) = tp, and h(tD) = tD. So this chase of r1 converts
tp into tD. This is exactly what was to be shown.

5. SIMPLE SUFFICIENT CONDITION FOR
ETNF

In [7], some simple conditions, which we now describe,
are given that guarantee higher normal forms. It is shown
in [7] that if a relation schema R is in 3NF, and every key
has only one attribute, then R is in 5NF. It is also shown
that if a relation schema R is in BCNF and some key has
only one attribute, then R is in 4NF. We now show that the
conclusion of this latter result can be strengthened to say
that R is in ETNF.

Theorem 5.1. Let R be a BCNF relation schema speci-
fied only by FDs and JDs, such that some key has only one
attribute. Then R is in ETNF.

Proof. Let A be an attribute that is a key of R, and let
J be a JD of R. Then A is contained in some component C
of J , since the union of the components of J is the set of all
attributes. Therefore, C is a superkey. It then follows from
Theorem 1.13 that R is in ETNF.

The next example shows that we cannot strengthen Theo-
rem 5.1 by replacing “ETNF” in the conclusion by “RFNF”.

Example 5.2. Let R be the relation schema with

A = {A,B,C,D} ,

F = {A→ BCD,BC → AD} ,

J = {./{ABC,CD,BD}} .
We shall show that R satisfies the hypotheses of Theo-
rem 5.1, but R is not in RFNF.

We first show that R is in BCNF. Let X → Y be a non-
trivial FD of R. We shall show that X is a superkey, by
showing that X necessarily contains either A or BC.

If X has exactly 3 members, then either X contains A, or
X is BCD. In both cases, X contains either A or BC, as
desired.

Assume now that X has exactly 2 members. It is easy to
see that for X not to contain either A or BC, necessarily X
must be one of BD or CD. We shall show that X cannot be
BD; a symmetric argument shows that X cannot be CD.
Let r be the relation with tuples (a, b, c, d) and (a′, b, c′, d),
where a 6= a′ and c 6= c′. It is straightforward to verify that
r satisfies the explicit dependencies of R. However, r does
not satisfy any nontrivial FD with left-hand side BD. This
shows that X cannot be BD, as desired.

Assume now that X has exactly one member. If X is A,
we are done, so assume that X is B, C, or D. We first show
that X cannot be B; a symmetric argument shows that X
cannot be C. Let r be the relation with tuples (a, b, c, d)
and (a′, b, c′, d′), where a 6= a′, c 6= c′, and d 6= d′. It is
straightforward to verify that r satisfies the explicit depen-
dencies of R. However, r does not satisfy any nontrivial FD
with left-hand side B. This shows that X cannot be B, as
desired. Now consider the case where X is D. Here we let r
be the relation with tuples (a, b, c, d) and (a′, b′, c′, d), where
a 6= a′, b 6= b′, and c 6= c′. It is straightforward to verify that
r satisfies the explicit dependencies of R. However, r does
not satisfy any nontrivial FD with left-hand side D. This
shows that X cannot be D, as desired.

Assume now that X is the empty set. We can assume
without loss of generality that the right-hand side Y is a
singleton. If this singleton is B, so that ∅ → B is an implicit
FD, then so is C → B, whereas we showed that there is no
nontrivial implicit FD with C as the left-hand side. If this
singleton is not B, then B → Y is a nontrivial implicit FD,
whereas we showed that there is no nontrivial implicit FD
with B as the left-hand side. This concludes the proof that
R is in BCNF.

So R satisfies the hypotheses of Theorem 5.1. We con-
clude this example by showing that R is not in RFNF. Let
J be the JD ./{ABC,CD,BD} of R. From what we have
shown, it follows that the only component of J that is a
superkey is ABC. So D is an attribute of R that is not
in any component of J that is a superkey. This shows that
J is not in the syntactically defined normal form KCNF of
Definition 1.18. So by Theorem 1.19, it follows that R is
not in RFNF, which was to be shown.

6. RELATIONSHIPS BETWEEN NORMAL
FORMS

In this section, we prove the following theorem, which
gives the relationships among the normal forms. As we noted
in Section 1.2, parts of this theorem were already known,
but we are including proofs of those parts to help make this
paper more self-contained.

Theorem 6.1. 5NF ⇒ SKNF ⇒ RFNF ⇒ ETNF ⇒
4NF. None of the reverse implications hold.

Proof. 5NF ⇒ SKNF: Assume that R is in 5NF. We
now show that R is in SKNF. Let ./{C1, . . . , Ck} be an irre-
ducible JD of R; we must show that every Ci is a superkey
of R.

Since R is in 5NF, every JD of R is logically implied by the
keys, and so by Proposition 2.4, the Membership Algorithm
accepts for the set A of attributes, the JD ./{C1, . . . , Ck},

and the set {K1, . . . ,Kr} of keys of R. Let Ci1 , . . . , Cis

be the components of the JD ./ {C1, . . . , Ck} that, during
the course of running the Membership Algorithm, were re-
moved from S and eventually unioned together to obtain A
as a final member of S. Then each of Ci1 , . . . , Cis is a su-
perkey, as we see from the specifications of the Membership
Algorithm. Now ./{Ci1 , . . . , Cis} is a JD of the schema R,
since it is logically implied by the keys (because the Mem-
bership Algorithm accepts for the set A of attributes, the
JD ./ {Ci1 , . . . , Cis}, and the set {K1, . . . ,Kr} of keys of
R), Therefore, since ./ {C1, . . . , Ck} is an irreducible JD
of R necessarily every Ci (for 1 ≤ i ≤ k) is a member of
{Ci1 , . . . , Cis}. Since each of Ci1 , . . . , Cis is a superkey, it
follows that each of C1, . . . , Ck is a superkey. Hence, R is in
SKNF, as desired.

SKNF ⇒ RFNF: Assume that R is in SKNF. To show
that R is in RFNF, we must show (by Theorem 1.19) that R
is in KCNF. We first show that R is in BCNF. Assume that
R is not in BCNF; we shall show that R is not in SKNF,
which is a contradiction. Since R is not in BCNF, there is
an explicit or implicit FD X → A of R that is not implied by
the keys, and so X is not a superkey of R. Without loss of
generality, we can assume that A is a single attribute. Let Y
be the set of attributes not in X∪{A}. Now Y is nonempty,
since X is not a superkey. Since X → A is an FD of R, we
know that ./{XA,XY } is a JD of R (by Heath’s Theorem
[11]). This JD is irreducible, since if it were reducible, then
either ./{XA} or ./{XY } would be an explicit or implicit
JD; however, neither is a valid JD, since neither contains all
of the attributes (XA does not contain the attributes of Y ,
and XY does not contain the attribute A). Now XA is not a
superkey of R, since if it were, then X would be a superkey
of R, because X → A is an FD of R. So ./ {XA,XY } is
an irreducible JD of R where the component XA is not a
superkey of R. Hence, R is not in SKNF, as desired. This
completes the proof that R is in BCNF.

Let J be an arbitrary JD of R. To complete the proof that
R is in KCNF (and hence RFNF), we must show that the
union of the components of J that are superkeys includes
every attribute of R. It is easy to see that there is an ir-
reducible JD J ′ of R such that every component of J ′ is a
component of J (J ′ could be an explicit or implicit JD of R,
and J ′ could be J itself). Since J ′ is a JD of R, it follows
by definition of SKNF that every component of J ′ is a su-
perkey. Hence, the union of the components of J ′ that are
superkeys includes every attribute of R. Since every com-
ponent of J ′ is a component of J , it follows that the union
of the components of J that are superkeys includes every
attribute of R. This was to be shown.

RFNF ⇒ ETNF: Assume that R is in RFNF. So by
Theorem 1.19, it follows that R is in KCNF. Therefore R
is in BCNF. Hence, by Theorem 1.13, to show that R is
in ETNF, we need only show that some component of every
explicit JD of R is a superkey. Let J be an explicit JD of R.
Since R is in KCNF, the union of the components of J that
are superkeys includes every attribute of R. In particular,
some component of J is a superkey. This was to be shown.

ETNF ⇒ 4NF: Assume that R is in ETNF. Let X →→
Y |Z be a nontrivial MVD of R. As we discussed earlier, we
can assume without loss of generality that X, Y and Z are
pairwise disjoint (and have union the set of all attributes),
and Y and Z are nonempty. It is sufficient to show that
X is a superkey, since then the keys of R logically imply

X →→ Y |Z.
The MVD X →→ Y |Z is logically equivalent to the JD

./{XY,XZ}. Let t1 be a tuple with a distinguished variable
for each member of XY , and a new nondistinguished vari-
able for each attribute in Z. Similarly, let t2 be a tuple with
a distinguished variable for each member of XZ, and a new
nondistinguished variable for each attribute in Y . Let r be
the relation consisting of the tuples t1 and t2. Since the JD
./{XY,XZ} is one of the JDs of R, we can assume without
loss of generality that it is one of the explicit JDs of R (we
can add it in if needed to the explicit JDs). Since there is a
success when step (1) of the Full Nonredundancy Algorithm
is applied to the JD ./{XY,XZ}, we know that at the end
of the chase, either t1 or t2 has been converted into the tu-
ple tD of all distinguished variables. Assume without loss of
generality that t1 has been converted into the tuple tD of all
distinguished variables. It follows from the standard theory
of the chase [1, 13] that this implies that the FD X → Z
is an explicit or implicit FD of the relation schema. Since
R is in BCNF (because it is in ETNF), it follows that this
FD X → Z is logically implied by the keys. But then, by
Proposition 2.1, it follows that X is a superkey, as desired.

This completes the proof of the implications. We now
show that none of the reverse implications hold.

SKNF 6⇒ 5NF: Let R be the relation schema with

A = {A,B,C} ,

F = {AB → C,AC → B,BC → A} ,

J = {./{AB,AC,BC}} .

We shall show that R is in SKNF but not 5NF.
We first show that R is in SKNF. Let ./ {C1, . . . , Ck}

be an irreducible JD of R where some Ci (say C1, without
loss of generality) is not a superkey of R; we shall derive a
contradiction. Since C1 is not a superkey of R, and since
C1 6= ∅ (because the JD is irreducible), we see (by looking at
F) that C1 is a singleton, say A (without loss of generality).
The only possibilities for this JD are either ./{A,B,C} or
./{A,BC}. Since ./{A,B,C} logically implies ./{A,BC},
we need only show that ./{A,BC} is not an implicit JD of
R to derive our desired contradiction. Let t1 be the tuple
(a1, b1, c1) and let t2 be the tuple (a2, b2, c2), where a1 6= a2,
b1 6= b2, and c1 6= c2. Let r be the relation consisting of the
two tuples t1 and t2. It is straightforward to verify that r
satisfies the dependencies in F and J . However, r does not
satisfy the JD ./{A,BC}, since (a1, b2, c2) is not a tuple of
r. So ./{A,BC} is not an implicit JD of R, as desired.

We have shown that R is in SKNF. We now show that
R is not in 5NF. We begin by showing that the only keys
of R are the doubletons AB, AC, and BC. We need only
show that none of the singletons A, B, or C is a superkey
(this implies also that the empty set is not a superkey). By
symmetry in the roles of A, B, and C, we need only show
that A is not a superkey. Let t1 be the tuple (a, b1, c1) and
let t2 be the tuple (a, b2, c2), where b1 6= b2 and c1 6= c2. Let
r be the relation consisting of the two tuples t1 and t2. It is
straightforward to verify that R satisfies the dependencies
in F and J . However, r does not satisfy the FD A → B.
It follows that A → B is not an FD of R, so A is not a
superkey, as desired.

To show that R is not in 5NF, we need only show that
the JD ./{AB,AC,BC} of R is not logically implied by the

keys of R. We have already shown that the only keys of R
are AB, AC, and BC, so we need only show that the JD
./ {AB,AC,BC} of R is not logically implied by the FDs
AB → C, AC → B, and BC → A. Let r be the relation con-
sisting of the three tuples (a, b, c1), (a, b1, c), (a1, b, c), where
a 6= a1, b 6= b1, and c 6= c1. Clearly r satisfies the FDs
AB → C, AC → B, and BC → A. However, since r does
not contain the tuple (a, b, c), it follows that r does not sat-
isfy the JD ./{AB,AC,BC}. Hence, this JD is not logically
implied by the FDs AB → C, AC → B, and BC → A, as
desired.

RFNF 6⇒ SKNF: Let R be the relation schema with

S = {S, P, J} ,

F = {SP → J, PJ → S} ,

J = {./{SP, PJ, JS}} .
We shall show that R is in RFNF but not SKNF.

We first show that R is in RFNF. By Theorem 1.19, we
need only show that R is in KCNF. We first show that R is
in BCNF. It is easy to see that to show this, we need only
show that if X → Y is a nontrivial implicit FD of R, then
X is not a singleton (this implies also that X cannot be the
empty set). We now show that X cannot be {S}; similar
arguments show that X cannot be either {P} or {J}. The
relation that consists of the tuples (s, p, j) and (s, p1, j1) with
p 6= p1 and j 6= j1 satisfies the dependencies of R, but does
not satisfy either of the FDs S → P or S → J . So indeed,
X cannot be {S}. This completes the proof that R is in
BCNF.

We now show that there are no nontrivial implicit JDs
of R. We need only show that there are no nontrivial irre-
ducible implicit JDs of R. Let K be a nontrivial irreducible
implicit JD of R (we use K instead of J , since J is be-
ing used as an attribute). The only candidate for K with
no doubleton component is ./ {S, P, J}. The only candi-
dates for K with one doubleton component are ./{SP, J},
./{SJ, P} and ./{PJ, S}. The only candidates for K with
two doubleton components are ./{SP, PJ}, ./{SJ, PJ} and
./ {SP, SJ}. We shall show that none of the three candi-
dates with two doubleton components are an implicit JD of
R. This implies that none of the other four candidates are
implicit JDs of R, since each of the other four candidates im-
plies one of the candidates with two doubleton components
(for example, ./{SP, J} implies ./{SP, PJ}). We now show
that ./{SP, PJ} is not an implicit JD of R; symmetric ar-
guments show that neither of the other two candidates with
two doubleton components are implicit JDs of R. The re-
lation that consists of the tuples (s, p, j) and (s1, p, j1) with
s 6= s1 and j 6= j1 satisfies the dependencies of R, but does
not satisfy ./{SP, PJ}, so indeed ./{SP, PJ} is not an im-
plicit JD of R. Hence, there are no nontrivial implicit JDs
of R, but only the explicit JD ./ {SP, PJ, JS}. Since SP
and PJ are superkeys, the union of the components of this
JD that are superkeys includes every attribute of R. So R
is in KCNF, as desired.

We now show that R is not in SKNF. It follows from what
we have shown that ./{SP, PJ, JS} is irreducible, and so we
need only show that JS is not a superkey of R. The fact
that JS is not a superkey of R follows from the fact that
the relation that consists of the tuples (s, p, j) and (s, p1, j)
with p 6= p1 satisfies the dependencies of R, but not the FD
JS → P .

ETNF 6⇒ RFNF: The alert reader will observe that this
was already demonstrated by the relation schema of Exam-
ple 5.2, which we showed satisfies the hypotheses of Theo-
rem 5.1 (and hence, by Theorem 5.1, is in ETNF), but which
we showed in Example 5.2 is not in RFNF.

Since we promised in Section 1.1 that we would show that
the relation schema R′ in Example 1.2 is another relation
schema in ETNF but not RFNF, we now do so.

Let R′ be this relation schema. Thus, R′ is the relation
schema with

S = {S, P, J} ,

F = {SP → J} ,

J = {./{SP, PJ, JS}} .
We shall show that R′ is in ETNF but not RFNF.

We first show that R′ is in ETNF. We begin by showing
that R′ is in BCNF. To prove this, we need only show that
there are no nontrivial implicit FDs of R′ (so that the only
FD is the explicit FD SP → J). Since SP is a key, this will
show that R′ is in BCNF. The only FDs with a doubleton
left-hand side that we need to consider (that is, to show are
not implicit FDs) are PJ → S and JS → P . In addition, we
then need only consider the FDs S → J and P → J , since
the other nontrivial FDs (such as S → P) logically imply one
of the FDs PJ → S and JS → P . Thus, to show that R′ is
in BCNF, we need only show that none of the FDs PJ → S,
JS → P , S → J , and P → J are FDs of R′. Therefore, by
symmetry in the roles of S and P , we need only show that
neither of the FDs PJ → S and S → J are FDs of R′. Now
PJ → S is not an FD of R′, since the relation consisting of
the tuples (s, p, j) and (s1, p, j), where s 6= s1, satisfies the
dependencies of R′ but not the FD PJ → S. And S → J is
not an FD of R′, since the relation consisting of the tuples
(s, p, j) and (s, p1, j1), where p 6= p1 and j 6= j1, satisfies the
dependencies of R′ but not the FD S → J . This completes
the proof that R′ is in BCNF. Hence, by Proposition 1.5,
R′ has no instance with a partly redundant tuple.

We now show that R′ has no instance with a fully redun-
dant tuple, which completes the proof that R′ is in ETNF.
By Theorem 4.1, we need only show that the Full Nonredun-
dancy Algorithm accepts. Let K be the JD ./{SP, PJ, JS},
let t1 be the tuple (s, p, j1), let t2 be the tuple (s, p1, j), and
let t3 be the tuple (s1, p, j), where s, p, and j are distin-
guished variables, and where s1, p1, and j1 are new nondis-
tinguished variables. Then rK (which plays the role of rJ in
part (a) of step (1) of the Full Nonredundancy Algorithm)
is the relation with tuples t1, t2, and t3. When we chase rK

with K, we obtain the tuple tD = (s, p, j) of all distinguished
variables. When we then chase with the FD SP → J , the
tuple t1 is converted to the tuple tD. So the Full Nonredun-
dancy Algorithm accepts, as desired.

We have shown that R′ is in ETNF. We now show that R′

is not in RFNF. By Theorem 1.19, we need only show that
R′ is not in KCNF. Again, let J be the JD ./{SP, PJ, JS}
of R′. To show that R is not in KCNF, we need only show
that neither PJ nor JS is a superkey of R′. But we already
noted that neither PJ → S nor JS → P are FDs of R′. So
indeed, R′ is not in KCNF.

4NF 6⇒ ETNF: Let R′ be the relation schema with

A = {A,B,C} ,

F = ∅,

J = {./{AB,AC,BC}} .
We shall show that R′ is in 4NF but not ETNF.

It was shown in [9] that R′ is in 4NF but not 5NF. Fur-
thermore, R′ is not in ETNF, since the Full Nonredundancy
Algorithm rejects R′ (because there are no FDs to equate
variables). This concludes the proof.

7. CONCLUSIONS
We have introduced a new normal form, called essential

tuple normal form (ETNF), which is between 4NF and 5NF.
We argue that if the goal of the database designer is to pre-
vent redundant tuples, then contrary to common belief, 5NF
is not needed, but instead ETNF is what is called for. ETNF
is defined semantically, in terms of lack of redundancy of tu-
ples. We prove a syntactic characterization of ETNF, which
says that a relation schema is in ETNF if and only if it is
in BCNF and some component of every JD is a superkey.
Interestingly, this syntactic characterization is very similar
to that of two other intermediate normal forms. The first
such normal form arose as an erroneous definition in various
textbooks (including [6]) of 5NF; the normal form given by
this erroneous definition of 5NF is called superkey normal
form (SKNF) by Normann [14] and 5NFR by Vincent [18].
It says that every component of every irreducible JD is a su-
perkey. Our syntactic characterization of ETNF is also sim-
ilar to the syntactic characterization of a normal form due
to Vincent [17] called redundancy-free normal form (RFNF),
that captures an even stronger notion of lack of redundancy
than what ETNF captures. This syntactic characterization
of RFNF says that a relation schema is in RFNF if and only
if it is in BCNF and for every JD J of R, the union of the
components of J that are superkeys includes every attribute
of R. We show that 5NF ⇒ SKNF ⇒ RFNF ⇒ ETNF ⇒
4NF, and that none of the reverse implications hold.

We also give a simple sufficient condition for ETNF. Specif-
ically, we show that if a relation schema R is in BCNF and
some key has only one attribute, then R is in ETNF. This
is nice, because it gives a simple, natural condition involv-
ing FDs only (that is, not involving JDs) that guarantees
ETNF. We show that this condition is not strong enough to
guarantee RFNF.

Acknowledgments
The authors are grateful to Marcelo Arenas, Leonid Libkin,
and Millist Vincent for valuable discussions. We also thank
Ragnar Normann for some helpful comments.

8. REFERENCES
[1] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of

joins in relational databases. ACM Transactions on
Database Systems (TODS), 4(3):297–314, 1979.

[2] M. Arenas and L. Libkin. An information-theoretic
approach to normal forms for relational and XML
data. Journal of the Association for Computing
Machinery (JACM), 52(2):246–283, 2005.

[3] E. F. Codd. Further normalization of the database
relational model. In R. Rustin, editor, Courant
Computer Science Symposium, volume 6 - Data Base
Systems, pages 33–64. Prentice-Hall, 1972.

[4] E. F. Codd. Recent investigations in relational data
base systems. In Proc. IFIP Congress 74, pages
1017–1021. North-Holland, 1974.

[5] E. F. Codd and C. J. Date. Interactive support for
non-programmers: the relational and network
approaches. In R. J. Rustin, editor, Proceedings of the
1974 ACM SIGFIDET (now SIGMOD) Workshop on
Data Description, Access and Control: Data Models:
Data-Structure-Set versus Relational, SIGFIDET ’74,
pages 11–41, New York, NY, USA, 1975. ACM.

[6] C. J. Date. An Introduction to Database Systems.
Addison-Wesley, eighth edition, 2004.

[7] C. J. Date and R. Fagin. Simple conditions for
guaranteeing higher normal forms for relational
databases. ACM Transactions on Database Systems
(TODS), 17(3), 1992. Reprinted in “Relational
database, writings 1989 – 1991” by C. J. Date with H.
Darwen, Addison Wesley, 1992.

[8] R. Fagin. Multivalued dependencies and a new normal
form for relational databases. ACM Transactions on
Database Systems (TODS), 2(3):262–278, Sept. 1977.

[9] R. Fagin. Normal forms and relational database
operators. In Proc. ACM SIGMOD International
Conference on Management of Data (SIGMOD),
pages 153–160, 1979.

[10] R. Fagin. A normal form for relational databases that
is based on domains and keys. ACM Transactions on
Database Systems (TODS), 6(3):387–415, 1981.

[11] I. J. Heath. Unacceptable file operations in a
relational data base. In Proc. ACM SIGFIDET
Workshop on Data Description, Access and Control,
pages 19–33, 1971.

[12] D. Maier. The Theory of Relational Databases.
Computer Science Press, 1983.

[13] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing
implications of data dependencies. ACM Transactions
on Database Systems (TODS), 4(4):455–469, 1979.

[14] R. Normann. Minimal lossless decompositions and
some normal forms between 4NF and PJ/NF.
Information Systems, 23(7):509–516, 1998.

[15] J. Rissanen. Theory of relations for databases–a
tutorial survey. In 7th Symposium on Mathematical
Foundations of Computer Science, Lecture Notes in
Computer Science, 64, pages 537–551, 1978.

[16] B. Thalheim. Deductive normal forms of relations. In
W. Bibel and K. P. Jantke, editors, Mathematical
Methods of Specification and Synthesis of Software
Systems, volume 215 of Lecture Notes in Computer
Science, pages 226–230. Springer, 1985.

[17] M. W. Vincent. Redundancy elimination and a new
normal form for relational database design. In
L. Libkin and B. Thalheim, editors, Semantics in
Databases, volume 1358 of Lecture Notes in Computer
Science, pages 247–264. Springer, 1995.

[18] M. W. Vincent. A corrected 5NF definition for
relational database design. Theoretical Computer
Science (TCS), 185(2):379–391, 1997.

[19] M. W. Vincent, J. Liu, and M. K. Mohania. On the
equivalence between FDs in XML and FDs in
relations. Acta Informatica, 44(3–4):207–247, 2007.

