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A QUANTITATIVE ANALYSIS OF MODAL LOGIC 

RONALD FAGIN 

Abstract. We do a quantitative analysis of modal logic. For example. for each Kripke structure M ,  we 
study the least ordinal ,u such that for each state of M ,  the beliefs up to level ,u characterize the agents’ 
beliefs (that is, there is only one way to extend these beliefs to higher levels). As another example, we 
show the equivalence of three conditions, that on the face of it look quite different, for what it  means 
to say that the agents’ beliefs have a countable description, or putting it another way, have a “countable 
amount of information”. The first condition says that the beliefs of the agents are those at a state of a 
countable Kripke structure. The second condition says that the beliefs of the agents can be described in 
an infinitary language. where conjunctions of arbitrary countable sets of formulas are allowed. The third 
condition says that countably many levels of belief are sufficient to capture all of the uncertainty of the 
agents (along with a technical condition). The fact that all of these conditions are equivalent shows the 
robustness of the concept of the agents’ beliefs having a “countable description”. 

51. Introduction. Modal logic is the logic of necessity and possibility. It has been 
discussed since ancient times, most notably by Aristotle. It has been extensively 
studied by logicians, philosophers, and computer scientists. One modal logic is 
epistemic logic, the logic of knowledge and belief In epistemic logic, we are 
especially interested in the situation where there are multiple agents, so that we 
consider not only an agent’s beliefs about “nature”, but also his beliefs about the 
beliefs of other agents. In this paper, we focus on the case where “nature” is given 
by the truth value of a finite set of primitive propositions: thus, we are dealing 
with propositional modal logic. 

Kripke structures [Kri63] were invented to provide an intuitive and natural 
semantics for modal logic. Kripke structures can be viewed as labeled directed 
graphs. Intuitively, the nodes correspond to “possible worlds”, each labeled by a 
truth assignment. In the case of multiple agents, which we focus on in this paper, 
we think of the edges as being labeled also. Intuitively, there is an edge labeled i 
from node s to node t precisely if the world corresponding to node t is considered 
possible by agent i in the world corresponding to node s. 

Kripke structures were immensely successful mathematical tools and served as 
the basis for extremely fertile research. Nevertheless, from a conceptual point of 
view, it is not clear that Kripke structures are as intuitive as they are supposed to 
be. The basic problem is that in Kripke semantics the notion of a possible world 
is a primitive notion. This works well in applications where it is intuitively clear 
what a possible world is. For example, in dynamic logic a possible world is just 
a program state [Pra76], i.e., an assignment of values to the variables and to the 
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location counter. In temporal logic a possible world is just a point in time [BurSO]. 
In the analysis of distributedsystems. a possible world is just a global state [Ha187], 
which gives the local state of each of the processes. But in applications where it is 
not clear what a possible world is, e.g., in epistemic logic, how can we construct a 
Kripke structure without understanding its basic constituents? 

For these reasons, Fagin, Halpern, and Vardi [FHV91] defined knowledge struc- 
tures, and Fagin and Vardi [FV85] defined the slightly more general modal struc- 
tures, as an alternative to Kripke structures. (Similar structures were suggested 
by van Emde Boas et al. [EGSSO] and Mertens and Zamir [MZSS].) These 
structures are defined in a hierarchical fashion. At the bottom, or 0th level, is 
a truth assignment, which can be thought of as a state of nature. The next level 
describes each agent’s beliefs about nature, which corresponds to a set of truth 
assignments. Intuitively, these are the states of nature that the agent considers 
possible. The ( k  + 1)st-order belief of each agent is modeled by a set of possibilities, 
each of which is a description of a state of nature and each agent’s kth-order belief. 
Intuitively, whatever is in the subset is believed to be possible, and whatever is not 
in the subset is believed to be impossible. A modal structure consists of a state of 
nature and each agent’s hierarchy of beliefs. 

Modal structures can be viewed as “modal worlds” of length o. It turns out 
[FHVgl] that there are situations where this hierarchy of w levels is not sufficient to 
capture all of the uncertainty of the agents; it is necessary to extend the hierarchy to 
levels w,  o + 1, and beyond. Fagin, Geanakoplos, Halpern, and Vardi [FGHV92] 
investigated this situation. They defined what it means for the first w levels to 
characterize the agents’ beliefs (that is, to uniquely determine all higher levels), 
and they gave necessary and sufficient conditions. 

Not surprisingly, there is a natural correspondence (first discussed in [FHV9 I]) 
between a state of a Kripke structure on the one hand, and a modal world on 
the other hand. Specifically, for each ordinal 1 and each state s of a Kripke 
structure M ,  there is a unique modal world of length A that represents state s of 
M .  Intuitively, this world represents the beliefs of the agents up to level A at state s 
of M .  In this paper, we shall investigate this correspondence carefully and thereby 
obtain certain quantitative features of both Kripke structures and modal worlds. 

Much is known about the qualitative effect of graph-theoretic assumptions about 
a Kripke structure. For example, it is well known that by assuming that the 
graph represents an equivalence relation, we obtain properties corresponding to 
the modal logic S5 [Kri63]. In this paper, we focus on quantitative, as opposed to 
qualitative effects. In particular, two ordinals are defined for each Kripke structure 
M .  The first ordinal is called the distinguishing ordinal. This is the least ordinal 
y such that whenever s and t are states of M that are represented by the same 
modal worlds of length y ,  then for every ordinal 1, the modal worlds of length A 
that represent s and t are the same. It is easy to see that such an ordinal y exists. 
The second ordinal is called the uniqueness ordinal. This is the least ordinal p such 
that for each state s of M ,  the modal world of length p that represents state s of 
M characterizes the agents’ beliefs (that is, there is only one way to extend this 
modal world to higher levels). It is shown thatp exists, andp  5 y + o. A complete 
characterization is given, as a function of the size of the Kripke structure M ,  as to 
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which infinite ordinals can be the distinguishing ordinal of M ,  and which infinite 
ordinals can be the uniqueness ordinal of M .  We consider these issues also in 
the case of the modal logic S5, where, as we mentioned, the graph of the Kripke 
structure represents an equivalence relation. (If there are no restrictions on the 
graph, then this corresponds to the modal logic K .  In this paper, for simplicity 
we will deal only with the cases of the modal logics K and S5.) For uniqueness 
ordinals, the situation is different in the S5 case than in the K case. 

We exploit our results on uniqueness ordinals to give several equivalent con- 
ditions for what it means to say that the agents’ beliefs, as given by a modal 
world, have a “countable description”, or putting it another way, have a “countable 
amount of information”. One of these conditions says that the modal world 
represents the beliefs of the agents at a state of a countable Kripke structure. 
The beliefs with a countable description play a role analogous to that of Borel 
sets in descriptive set theory. This is because, intuitively, Borel sets are sets with 
a “countable description”. When the modal world f has a countable description, 
we can further refine our definitions to give us a countable ordinal, called the 
descriptive ordinal o f f .  We show that every countable ordinal IS the descriptive 
ordinal of some modal world. Although what we are most interested in is the 
countable case, it turns out that all of our results carry over with almost no 
extra work to arbitrary cardinalities. Therefore, we state and prove our results 
in this slightly greater generality. For example, we associate with every modal 
world f a descriptive cardinal, which, intuitively, is the least cardinal K such that 
f has a description of size at most K ,  or putting it another way, has an “amount 
of information” given by K. One of these conditions says that the modal world 
represents the beliefs of the agents at a state of a Kripke structure with at most K 
states. 

The author feels that the paradigm of considering quantitative aspects of modal 
logic represents an interesting direction, where a great deal of research remains to 
be done. There are some papers (for example, [Fin72], [FC83], [Hoe92]) where the 
modal language is enriched in order to reason explicitly about quantitative issues; 
in particular, in the enriched language it is possible to say “There are at least k 
possible worlds where the formula cp is true”. In this paper, we do not enrich the 
language in this manner; instead, our quantitative analysis takes place “outside”. 

Some of the ideas in this paper were considered independently by Heifetz and 
Samet [HS93]. In particular, as we shall discuss later, one of our theorems follows 
from their results. 

We now mention an example, due to Parikh [Par92], where, just as in this paper, 
infinite ordinals arise in connection with epistemic logic. Let g be some computable 
well-founded function (well-founded means that there is no infinite chain XI, x2, . . . 
such that g(x,+l) = x, for all n) .  Consider a situation where there are two agents, 
Alice and Bob, who are told that for some number n,  Alice has either n or g(n) 
written on her forehead, and Bob has the other number written on his forehead. 
Each agent can see the number written on the other person’s forehead, but not the 
number written on her/his own. Alice and Bob are alternately asked repeatedly 
if she/he knows the number written on her/his forehead. (As Parikh points out, 
this sort of problem has been considered by others, for example [Lit53], [EGSSO]). 
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Parikh shows that the ordinal number of a round where someone can answer 
positively may be greater than o. In fact, he shows the following. For every 
computable well-founded function g, the ordinal associated with g (the ordinal 
number of a round where someone can answer positively) is a recursive ordinal, 
and for every recursive ordinal, there is a computable well-founded function g 
associated with that ordinal. (For a discussion on recursive ordinals, see Rogers 

In 52, we define both Kripke structures and modal worlds. We define a very 
rich propositional modal logic, in which we allow infinitely long conjunctions. and 
give our semantics. We discuss various relationships between Kripke structures 
and modal worlds. In particular, we explain what it means for a modal world f to 
represent a state s of a Kripke structure M :  intuitively, the beliefs of the agents, 
as described by f ,  are those at state s of M .  

In 53, we consider satisfiability. In particular, we give sufficient conditions for 
a countable set of formulas to be satisfiable in a countable Kripke structure. 

In 54, we give several characterizations for what it means for state s of Kripke 
structure M and a state s’ of Kripke structure M to be indistinguishable. Intu- 
itively, two states are indistinguishable if they have the same state of nature and 
if every agent has precisely the same “view” in both states (where the view of an 
agent encompasses his beliefs about nature. his beliefs about the agents’ beliefs, 
and so on, not only through every finite level of belief. but even through all the 
ordinals). We define the distinguishing ordinal of a Kripke structure M to be the 
least ordinal y such that whenever s and t are states of M that are represented by 
the same y-world, then s and t are indistinguishable. We show that every countable 
Kripke structure has a countable distinguishing ordinal and that every countable 
ordinal is the distinguishing ordinal of some countable Kripke structure. The 
fact that every countable ordinal is the distinguishing ordinal of some countable 
Kripke structure follows from a construction of Heifetz and Samet [HS93] that they 
obtained independently. We define aJlabby Kripke structure to be one where two 
distinct states are indistinguishable. We generalize a result of Segerberg [Seg71] by 
showing that we can restrict our attention to nonflabby Kripke structures without 
loss of generality. 

In $5 ,  we define the uniqueness ordinal of a Kripke structure M to be the 
least ordinal p such that for each state s of M ,  the modal world of length p 
that represents state s of M characterizes the agents’ beliefs. We show that the 
uniqueness ordinal exists, is countable in the case of a countable Kripke structure, 
and that every countable ordinal greater than 1 is the uniqueness ordinal of a 
countable Kripke structure. The S5 case is different from the K case. For example, 
in the S5 case with at least two agents, the uniqueness ordinal is shown to be a 
limit ordinal. This is an interesting interplay between qualitative (S5 versus K) 
and quantitative aspects of modal logic. Also in this section, we characterize 
the nonflabby Kripke structures with uniqueness ordinal o to be precisely those 
nonflabby Kripke structures with finite fanout. 

In 56, we give three equivalent but different-looking conditions on a modal 
world f for what it means to say that the agents’ beliefs, as given by f, have a 
countable description. The first condition says that the beliefs of the agents are 

[Rog671.) 
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those at a state of a countable Kripke structure. The second condition says that the 
beliefs of the agents can be described in an infinitary language where conjunctions 
of arbitrary countable sets of formulas are allowed. The third condition says that 
countably many levels of belief are sufficient to capture all of the uncertainty of the 
agents (along with a technical condition). In this section, we also characterize the 
finite case, when the agents’ beliefs are those at a state of a finite Kripke structure. 

In §7, we construct modal worlds and Kripke structures with various properties 
and use these to prove several of the rheorems in the paper. 

In 58, we summarize our results and state some open problems. 
The results we have mentioned generalize naturally to the case where the Kripke 

structure is not necessarily countable and are proven in their full generality. 

52. Kripke structures and modal worlds. In this section, we define Kripke struc- 
tures and modal worlds. We define an infinitary language and tell when a formula 
in the language is satisfied by a Kripke structure or a modal world. We also 
discuss the interrelationship between Kripke structures and modal worlds. We 
assume throughout this paper that there is a fixed nonempty finite set of primitive 
propositions and a fixed nonempty finite set d = { 1, . . . , n }  of agents. However, 
on some occasions, we deal with the one-agent case. Also, for some results, we 
need to assume that there are at least two agents, and we will make this assumption 
explicit on those occasions. 

2.1. Kripke structures. A Kripke structure is a tuple ( S ,  n, XI,. . . , X n ) ,  where 
S is a set of states, n ( s )  is a truth assignment to the primitive propositions for 
each state s E S ,  and X t  is a binary relation on S ,  for each agent z .  If we are 
considering a modal logic of belief, then intuitively, (s, t )  E ZI iff in state s, agent 
i considers t a possible state. We then say that agent i believes formula ‘p in state s 
precisely if ‘p is true in every state t that agent i considers possible in state s, that 
is, if p is true in every state t such that (s, t )  E X,. Throughout this paper, we shall 
describe the intuition in terms of this epistemic logic. If the Xi’s are equivalence 
relations (i.e., reflexive, symmetric, and transitive binary relations on S ) ,  then we 
may call the Kripke structure an S 5  Kripke structure. This is because S 5  Kripke 
structures correspond to the modal logic S5, which is often thought of as a logic of 
knowledge (cf. [HM92]). In the S5 case, instead of saying that agent i believes cp, 
we usually say that agent i knows p. As we shall see, some of our results depend 
on whether or not we make the S5 assumption. 

Some of our results depend on the size or the fanout of a Kripke structure. The 
size of the Kripke structure (S ,  n ,X, ,  . . . ,Xn), is the cardinality IS1 of the state 
space S .  A Kripke structure isJinite if its size is finite; otherwise, it is infinite. The 

Let A be an index set, so that Me is a Kripke structure for each 9 E A. Assume 
that if 8,8’ E A, then the Kripke structures Me and Me, involve the same set 
of agents and the same set of primitive propositions. We now define the disjoint 
union of the collection (M~l6’ E A}. By replacing the Me’s by isomorphic copies if 
necessary, we can assume without loss of generality that no state is a state of both 
Me and Me! for 9 # 9’. The state space of the disjoint union A4 is the union of 
the state spaces of the MQ’s; for each agent i, the X I  relation of M is the union 

fanout is s~Ps&s,l&!g l i t :  (s ,  t )  E Xl}l. 
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of the Zi relations of the Me's, and the 7c function of A4 is defined so that ~ ( s )  is 
the same for M as it is for Mo, if s is a state of Mo. 

2.2. Modal worlds. We now define modal worlds. For convenience later on; 
we begin by defining a 0-ary world to be the empty sequence ( ). A 0th-order 
assignment f o  is a truth assignment to the primitive propositions. We call ( f o )  a 
1-ary world (since its “length” is 1). Intuitively. a 1-ary world is a description of 
reality. We could now define A-ary worlds (or A-worlds, for short) for arbitrary 
ordinals 1, by induction on A. Because the definitions are somewhat hard to 
understand. we proceed at a more leisurely pace; by first defining 2-worlds and 
3-worlds. 

A 1st-order assignment is a function ,f 1 ,  with domain the set d of agents, such 
that f l ( i )  is a set of I-worlds, for each agent i. Intuitively, . f l ( i )  represents agent 
i s  beliefs about nature: the I-world (go) is a member of fl(i) iff agent i considers 
go to be a possible state of nature. A 2-world is a sequence ( f o ,  f l ) ,  where f o  is 
a 0th-order assignment (that is, a truth assignment), and where f l  is a 1st-order 
assignment. Intuitively. a 2-world represents a state of nature, along with each 
agent’s beliefs about nature. 

Let W2 be the set of all 2-worlds. A 2nd-order assignment is a function f 2 : @’ + 

2w2. Intuitively, f 2 ( i )  represents agent i’s beliefs about nature along with agent i’s 
beliefs about the agents’ beliefs about nature. Thus intuitively, a 2-world (go, gl) 

is a member of f 2 ( i )  iff agent i believes that (g0,gl) is a possible 2-world. that is, 
that agent i considers it possible that simultaneously (a) go is the state of nature 
and (b) gl represents the agents’ beliefs about nature. 

We would now like to call each triple ( f o ,  f ’ l ,  f 2 )  a 3-world. However. we do 
not consider all such triples to be “legal”: we need to assume a certain consistency 
condition between f l  and f 2 .  To help understand the issue, assume that, say, 
f 2 ( i )  = {(go,gl), (g&gi), (g{,gf’)}. Thus, the 2-ary worlds that agent i considers 
possible are precisely (go,gl), (g&g[), and (g{,g;). By “projecting” onto the 
first component, we would infer that the 1-ary worlds that agent i considers 
possible are precisely (go), (gh), and (gl). But the set of 1-worlds that agent i 
considers possible is precisely f l  (i). So our consistency condition would demand 
that f l  (i) = {(go), (g;), (gl)}. A little more generally, our consistency condition 
(“extensionality”) says that (go) E f l  (i) iff there is a 1st-order assignment gl such 

We are now ready to give an inductive definition of worlds of arbitrary ordinal 
length. Assume inductively that we have defined the set W). of all A-worlds. A Ath- 
order assignment is a function f ). : d -+ 2 wi. A (A + 1)-sequence of assignments is 
a sequence ( f o ,  f l ,  . . . , f i . )  of length (A + l ) ,  where fa is an ath-order assignment 
for each a 5 A. A (A + 1)-worldf is a (A + 1)-sequence of assignments satisfying the 
extensionality condition that we shall give shortly. We first need some preliminary 
definitions. If a 5 A +  1 ,  then the a-prejix of f ,  denoted fie, is the a-sequence that 
is the restriction o f f  to a (that is, the initial subsequence indexed by a). We say 
that g is aprejix o f f  if it is an a-prefix o f f  for some a ,  and we say that f extends 
g, and f is an extension of g. In the special case where f = ( f o ,  f l ,  . . . , f i b )  is a 
(A + 1)-world and g = (Yo, f l ,  . . . ) is its A-prefix, then we will sometimes abuse 
notation and write f = (g, f l . ) .  

that (go,g1) E f 2 ( i ) .  
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The extensionality condition is as follows. Assume that 0 < (Y < A. Then 
g E f a  ( i )  iff there is some h E fi,( i )  such that g = h,, . 

If A is a limit ordinal, then a A-world is a A-sequence such that the a-prefix 
is an a-world, for each cx < A. For example, an w-world is an w-sequence 
( f o , f l ,  f 2 , .  . . )  such that the k-prefix ( f o ,  . . . , f k - l )  is a k-world for each finite 
k. The main focus of Fagin, Halpern, and Vardi [FHV91] and of Fagin and Vardi 
[FV85] is on w-worlds. 

Let f = (fo, f l ,  . . . ) and g = (go.gl,. . . ) be A-worlds, and let i be an agent. Let 
us write f g if g,e E f e ( i )  for every 8 < A. Intuitively, f +I g if agent i considers 
g to be a possible A-world according to the information in f. Let us denote 
{glf g} by W:, which intuitively, is the set of A-worlds that agent i considers 
possible according to f. For every A-world f ,  there is always some extension of 
f to a (A + 1)-world (SO, f l ,  . . . ,f~&): in fact, by induction on 2,  it follows in 
a straightforward way that one such extension is given by taking f j , ( i )  = W:. 
Following [FHV9 11, we call this extension the one-step no-information extension of 
f .  (Actually, the definition in [FHV91] is slightly different, since they are concerned 
only with the S5 case. We shall consider the S5 case shortly.) Intuitively, in the 
one-step no-information extension, each agent has no more information than he 
does in the A-world, since in each case the possible A-worlds are those in W:. Let 
us consider the one-step no-information extension of a A-world f in the case where 
A is a successor ordinal v + 1. Let f = ( f o , f l , .  . . ,f,,). It follows easily from 
extensionality that if g is a A-world, then f -+I g iff g,, E f Y ( i ) .  So in this case, 
if the one-step no-information extension off  is ( f o ,  f l ,  . . . , f ”, f v + l ) ,  and i is an 
agent, then f,.+1 ( i )  consists precisely of all possible ( v  + 1)-extensions of members 
o f f  ,,(i). 

What are possible extensions of the A-world f to a (A + 1)-world ( f o , f l ,  

. . . ,fib)? By the extensionality condition on worlds, it follows easily that for every 
such extension, necessarily f i , ( i )  2 W,’. Intuitively, what is going on is that when 
f i , ( i )  is a proper subset of W:, then f i . ( i )  gives us additional information as to 
which A-worlds agent i considers possible. 

We now define S5 modal worlds, or knowledge worlds. Just as was the case 
with Kripke structures, the S5 assumption causes there to be extra constraints. 
First, we require inductively that for f = ( f o ,  f l ,  . . . , f z )  to be an S5 (A  + 1)-  
world, every member of f ~ ( i )  must be an S5 A-world, for every agent i. Thus, 
we restrict attention to S5 worlds at every level of the induction. There are two 
more constraints (originally defined in [FHV91]). The first, which we call the 
knowledge condition, says that the actual world is one of the possibilities, for each 
agent. Intuitively, this corresponds to the “knowledge axiom” K,cp + cp, which 
says that everything that agent i knows is true. As before, let us begin by seeing 
what the knowledge condition says for S5 2-worlds and for S5 3-worlds. For a 
sequence ( f o , f l )  to be an S5 2-world, we require that (Yo) E f l ( i )  for each 
agent i .  Intuitively, every agent considers the actual state of nature, namely f o ,  a 
possibility. Similarly, for a sequence (fo, fl, f 2 )  to be an S5 3-world, we require 
that ( f o ,  f l )  E fl( i) ,  for each agent i. In the general case, we require of a (A + 1)- 
sequence f = ( f o , f l , .  . . , f n )  that f<n E f n ( i ) ,  for each agent i. 

The final consistency condition, which we call the introspection condition, says 
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that each agent has no uncertainty about his own knowledge. Intuitively, this 
corresponds to the “introspection axioms” K,cp 3 K,K;cp and 1 K ; p  + K;lK;cp, 
which say that agent i knows what he knows and knows what he doesn’t know. 
Let us begin by seeing what the introspection condition says for S 5  3-worlds (it 
does not arise for S5 2-worlds). For a sequence (fo, f l ,  f z )  to be an S 5  3-world, 
we require that for each agent i ,  if (g0,gl) E f 2 ( i ) ,  then gl(i) = f l ( i ) .  That is, 
the only S5 2-worlds that agent i considers possible are those where he has exactly 
the same uncertainty about nature as he does in the actual world. In the general 
case, we require of a (A + 1)-sequence f = (fo, f l ,  . . . , fi,) that for every a with 
1 5 a < A and every agent i ,  if g = (go,gl,. . .) E f ) , ( i ) ,  then g u ( i )  = f a ( i ) .  

Let f = ( f o , f l , .  . .)  and g = (go,gl,. . . )  be S5 A-worlds. We write f - i  g 
if f o ( i )  = ge(i)  for every 6 with 1 5 6 < A. Intuitively, f -; g if agent i 
has the same information according to f and g.’ As we mentioned, the one-step 
no-information extension is defined slightly differently in the S5 case; this is to 
preserve the introspection condition. In the S5 case, define V: = {glf -; g}, which 
intuitively is the set of S5 A-worlds that agent i considers possible, according to f. 
Just as before, for every S 5  A-world f ,  there is always some extension of f  to an S5 
(A + 1)-world ( f o ,  f l ,  . . . , fi,), which is given by taking f l , ( i )  = V:. We call this 
extension the one-step S5 no-information extension off. 

2.3. Infinitary formulas. We now define a very rich propositional modal logic, in 
which we allow infinitely long conjunctions (and disjunctions). For convenience, 
we define a special formula true, that is logically true. 

Let K be an infinite cardinal. The set of 5?K-formulas is the smallest set F such 
that 

(1) true is in F .  
(2) Each primitive proposition is in F .  
( 3 )  If cp is in F ,  then so is l c p .  
(4) If A C F ,  and the cardinality of A is less than K ,  then A A is in F .  
(5) If cp is in F and i is an agent, then K i p  is in F .  

The fourth clause allows us to take infinite conjunctions of sets of less than K 

distinct _E”,-formulas. For convenience, we may write cp1 A 9 2  for j\{cpl, cp2}, where 
we take advantage of the fact that the order of the conjuncts does not matter. If A 
is a set of less than K. distinct 5?&-forrnulas, then we define the disjunction V A to be - A Y ,  where Y = {--pip E A}. Thus, we can also take infinite disjunctions of sets 
of less than K distinct 5?&-formulas. The fifth clause defines the modal operator K;.  
Intuitively, K;cp means that cp holds in every world that agent i considers possible. 

Note that PU-formulas are the usual propositional modal formulas of finite 
length. Define K+ to be the cardinal that is the successor cardinal of K .  In the case 
we are most interested in, where K = No, the successor cardinal (No)+ is usually 
written either as N1 or as WI. By our definitions, in the language TK+ we allow 
arbitrary conjunctions of up to K distinct .Y&+-formulas. In particular, in .YU, we 
allow arbitrary countable conjunctions of 2ZU, -formulas. It is clear that in TUl, 

‘The reader might believe that f -, g iff f -+, g and g -+i f .  This is true if 1 is a limit ordinal. 
If L is a successor ordinal v + 1, then f - i  g implies (and is actually equivalent to) f , . ( i )  = g,.(i). In 
this case, f 4 i  g and g -ti f imply that f e ( i )  = go( i )  for B with 1 5 0 < Y ,  but not necessarily that 
f , , ( i )  = gv( i ) .  
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we can express common knowledge (and common knowledge of a group of the 
agents). Thus, if G is a group of agents, then C ~ c p  means “Everyone in the group 
G knows c p ,  everyone in the group G knows that everyone in the group G knows cp, 
everyone in the group G knows that everyone in the group G knows that everyone 
in the group G knows c p ,  . . . ”. We can of course have nested occurrences of various 
CG’S,  and still remain in _E”,, . 

If cp is an 5?K-formula for some 6, then we may refer to cp as an 5?m-formula, 
or simply a formula. 

Let M = ( S ,  n,31, .  . . ,Zn) be a Kripke structure. We now define what it 
means for a formula cp to be sutisjied at a state s of the Kripke structure M ,  
written ( M , s )  k cp. 

(1) ( M ,  s )  k true. 
( 2 )  ( M ,  s )  k p ,  where p is a primitive proposition, iff p is true under the truth 

( 3 )  ( M , s )  i= ”p iff ( M , s ) F  cp. 
(4) ( M ,  s) i= A A iff ( M ,  s) k cp for every cp E A. 
( 5 )  ( M , s )  k K,cp iff ( M ,  t )  k cp for all t such that ( s ,  t )  E 3,. 

assignment n(s ) .  

The last clause captures the intuition that K,cp means that cp holds in every 
world that agent i considers possible. Before we can define the semantics for 
modal worlds, we need to define the depth of a formula cp, denoted depth(cp), 
which roughly corresponds to the depth of nesting of the K,  operators. 

(1) depth(true) = 0. 
(2) depth(p) = 1 if p is a primitive proposition. 
(3) depth(7cp) = depth(9). 
(4) depth(/\ A) = sup,,A{depth(~)}. 
(5) depth(K,cp) = depth(cp) + 1. 

We now define the satisfaction relation between worlds and formulas. Unlike 
the situation with Kripke structures, the satisfaction relation is a partial relation. 
For example, let cp be a propositional formula, and let ( f  0) be a 1-world. Although 
it makes perfect sense to determine whether ( f  0) k cp, we would not expect to make 
sense of whether or not (fo) k K,cp. This is because the 1-world ( f o )  does not 
describe any information about the beliefs of the agents. On the other hand, we 
can define whether ( f 0 , f I )  i= K,cp, by saying that this holds precisely if (go) k cp 
for every I-world (go) E f l ( i ) .  This captures the intuition that agent i believes 
cp precisely if cp is satisfied by every I-world that agent i considers possible. In 
general, it makes sense to define whether f k cp, for a A-world f and a formula cp 
of depth a, only when QI 5 A. 

We now define what it means for a A-world f = ( f  0 ,  f 1, . . . ) to satisfy a formula 
cp of depth a,  written f k c p ,  when a 5 A. 

( I )  f true. 
(2) f k p ,  where p is a primitive proposition, iff p is true under the truth 

(3) fk7cpi f f fFcp .  
(4) f k A A  ifff i= cp for everycp E A. 
( 5 )  If A is a successor ordinal v + 1, then f k K ,  cp iff g k cp for each g E f Y  (i). 
(6) If A is a limit ordinal, then f I= K,cp iff f<= k K,cp. 

assignment f 0. 
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We now show how we can use the fifth and sixth clauses together to resolve 
whether f k K,cp, when the length A o f f  is a limit ordinal. In the sixth clause 
above, we assume that depth(K,cp) = a.  Let us denote depth(cp) by v. Then 
a = v + 1. So the sixth clause tells us that f k K,cp iff f<"+l k K,cp. The fifth clause 
tells us that f<"+l k K,cp iff g k cp for each g E f . ( i ) .  We conclude that f k K,cp iff 
g b cp for each g E f Y ( i ) .  

In the sixth clause, we see that to determine whether the formula K, cp of depth 
a holds in the A-world f ,  where A is a limit ordinal, we consider only the a-prefix of 
f .  The following proposition, which essentially appears in [FHV91], says that this 
is true about all formulas and all A. This proposition helps show the robustness of 
the definitions above. 

PROPOSITION 2.1. Let f be a 1-world. and let cp be a formula of depth a 5 A. 
Then f k cp ifff<a k cp. 

Proposition 2.1 says that to decide if a world f satisfies a formula cp, we consider 
the prefix g o f f  of the minimal possible length where we have defined whether or 
not g k cp. Then Proposition 2.1 tells us that f k cp iff g k cp. 

The next proposition says that each A-world can be characterized by a formula 
of depth A. 

PROPOSITION 2.2. Let f be a A-world. There is a formula cq of depth A such that 
i f g  is an arbitrary A-world, then g k r s f  if and only i f g  = f .  

PROOF. We define the formulas cq by induction on the length A. If A = 0, then 
let rsf = true.  Assume now that A = 1 and that f is the 1-ary world ( f o ) .  Assume 
that the primitive propositions are P I , .  . . , p r .  (Recall that throughout this paper, 
we are assuming that there are only a finite number of primitive propositions.) In 
this case, let of be the propositional formula pi  A . . . A p i ,  where p;  is p ,  if the 
truth assignment f o  makesp, true, and yp,  otherwise, for 1 5 j 5 r .  

We now consider the inductive step. Assume that A > 1, and that the formulas 
q, have been defined for every A'-world h, where A' < I .  To define of for a 
A-world f ,  there are two cases, depending on whether I is a successor ordinal 
or a limit ordinal. Assume first that A is a successor ordinal v + 1, and that 
f = ( f o ,  f 1 , .  . . , f ") is a A-world. For each agent i ,  define t i  to be the formula 

Intuitively, zi says that agent i considers possible precisely those worlds in f " ( i ) .  
Define or to be 

o(fo)  A A { r i l i  is an agent). 

If A is a limit ordinal and f is a A-world, then define of to be 

/\{q,lh is a proper prefix off}. 

It is straightforward to show the conclusion of the proposition, by induction on 
I .  

In the special case where I is finite, Proposition 2.2 was proven in [FV85]. In 
this special case, the formulas of are essentially the normal forms in [Fin75]. 
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2.4. Relationship between Kripke structures and modal worlds. In [FHV91] it is 
shown how to associate a A-world with a state of a Kripke structure for every A. 
Let M = ( S ,  rc,X~, . . . , X n )  be a Kripke structure. For each state s of M and each 
ordinal a ,  we now define an ath-order assignment f A ,  which we call the ath-order 
assignment that represents s (or the ath-order assignment that represents ( M ,  s ) ,  if 
we wish to mention the Kripke structure M ) .  First, f (s is just the truth assignment 
~ ( s ) .  Suppose inductively that we have defined the Bth-order assignments f j  for 
each /3 < a and every state s. Then f ;  ( i )  is the set of all a-sequences ( f  6, f i ,  . . . ) 
such that (s, t )  E 37,. It is straightforward to verify that for each state s and 
each ordinal 2 .  the A-sequence (fi, f f ,  . . . )  is a A-world. We call this the A-world 
that represents s (or the A-world that represents ( M , s ) ,  if we wish to mention the 
Kripke structure M ) .  Intuitively, i f f  represents state s of M ,  then the beliefs of 
the agents, as described by f ,  are those at state s of M .  

The next proposition follows immediately from our construction. 
PROPOSITION 2.3. Let M = ( S ,  rc,Xl, . . . , X,,) be a Kripke structure, and let f 1, 

be the Ath-order assignment that represents state s of M .  Let i be an agent, and let 
w be a A-world. Then w E f i,(i) iff there is some state t such that ( s ,  t )  E 3, and 
w represents t .  

The next proposition (from [FHV91]) tells us that the worlds that represent 
states of S5 Kripke structures are S5 modal worlds. 

PROPOSITION 2.4. Let A4 be an S 5  Kripke structure, and let f be the A-world that 
represents the state s of M .  Then f is an S5 modal world. 

The next proposition (a simple variation of a proposition in [FHV91]) says that 
the correspondence preserves satisfaction of formulas. 

PROPOSITION 2.5. Let M be a Kripke structure, and let f be the A-world that 
represents the state s of M .  Let cp be a formula of depth a 5 A. Then ( M ,  s )  + cp 
ifff k cp. 

We just showed how to associate a A-world with a state of a Kripke structure. 
We now consider a dual construction. For each A, the A-canonical Kripke structure 
M = ( S ,  rc,Xl,. . . ,Xn) is defined as follows. The set S of states consists of 
all A-worlds. If f and f’ are A-worlds, then (f,f’) E X I  iff f -+, f’. Finally, 
if f = ( f o ,  f 1 , .  . .}, then n(f) = f 0. We define the A-canonical S5 Kripke 
structure similarly. Here, we take the set S of states to consist of all S5 2-worlds. 
Furthermore, i f f  and f’ are S5 A-worlds, then (f, f’) E X, iff f -i f’. 

The next proposition (which is again a simple variation of a proposition in 
[FHV91]) says that each state of a A-canonical Kripke structure represents itself. 

PROPOSITION 2.6. Let f be a ,?-world (resp., S 5  A-world), and let M be the A- 
canonical Kripke structure (resp., A-canonical S 5  Kripke structure). The A-world 
that represents the state f of M is f .  

In particular, every modal world (resp., S5 modal world) represents a state of 
some Kripke structure (resp., S5 Kripke structure). 

Later, in Propositions 7.4 and 7.5, we prove results closely related to Proposition 
2.6, where we deal with generalizations of the A-canonical Kripke structure. 

§3. Satisfiability. There are two ways that we could define what it means for 
a formula to be “satisfiable”. We could say that it is satisfiable if it is satisfied 
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at a state of a Kripke structure M (in which case we say that it is satisfiable 
in M ) ,  or we could say that it is satisfiable if it is satisfied in a modal world f .  
The next proposition says that the notions are equivalent. Furthermore, the next 
proposition says that this equivalence holds also in the S5 case. 

PROPOSITION 3.1. A formula is satisjiuble in a Kripke structure (resp., in an S5 
Kripke structure) if it is satisfiable in a modal world (resp., in an S5 modal world). 

PROOF. Assume that cp is satisfiable in a Kripke structure. Then ( M ,  s) I= cp for 
some Kripke structure M and some state s of cp. Let the depth of cp be a, and 
let f be the a-world that represents the state s of M .  By Proposition 2.5, we see 
that f k 'p, so 'p is satisfiable in a modal world. By Proposition 2.4, if M is an S5 
Kripke structure, then f is an S5 modal world. 

Conversely, assume that 'p is satisfiable in a A-world (resp., S5 1-world) f .  Let M 
be the ,?-canonical Kripke structure (resp., the A-canonical S5 Kripke structure). 
By Proposition 2.6, we know that f represents the state f of M ,  and by Proposition 
2.5 again, it follows that (M,f) k 'p. So cp is satisfiable in a Kripke structure (resp., 

We now consider sufficient conditions for a formula to be satisfiable in a Kripke 
structure of size at most n. Here as in the rest of this paper, we are most interested 
in satisfiability in a countable Kripke structure. The next theorem will be useful 
later. We also give corollaries that will not be used later, but that are interesting 
in their own right. 

THEOREM 3.2. Every -Y,+-formula that is satisjiable (resp., satisjiable in an S5 
Kripke structure) is satisfiable in a Kripke structure (resp., S5 Kripke structure) of 
size at most n. 
PROOF. There is a well-known technique for associating Kripke structures (with 

state set S )  with relational structures (with universe S ) .  (See any standard text- 
book on logic, such as Enderton [End72], for a discussion on relational structures, 
which are usually called simply structures.) As before, let 0 be the set of primitive 
propositions, and let st = { 1,. . . , n }  be the set of agents. For the relational 
structures, the vocabulary V consists of one binary relation symbol L; for each 
agent i E d ,  and one unary relation symbol Up for each primitive proposi- 
tion p E 0. We can then define a one-to-one correspondence between Kripke 
structures with the set @ of primitive propositions and the set d = { 1, . . . , n }  
of agents, and relational structures with the vocabulary V .  For each Kripke 
structure M = ( S ,  n, 3 1 , .  . . , Zn), the corresponding relational structure R M  over 
the vocabulary V is obtained by taking the universe of the relational structure to 
be the set S of states, taking the interpretation of L, to be Zj, and taking the 
interpretation of Up to be the set of states s such that p is true under the truth 
assignment n(s ) .  

For each of our ZK+-formulas cp. we define a corresponding formula cp*, with 
one free variable x, in the infinitary language L,+, (see [Dic85] for a discussion 
of LKt,; intuitively, it consists of infinitary formulas that differ from first-order 
formulas by allowing conjunctions of arbitrary sets of formulas of size at most K ) .  

In the countable case, when K = No, we are dealing with the important infinitary 
language L,,,. The correspondence is as follows. 

S5 Kripke structure). 

(1) p' = Up (x) if p is a primitive proposition. 
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(2) (-cp)* = 'cp*. 
( 3 )  (A@* = A{vl*lw E A}- 
(4) (K,cp)* = b'y(L, (x, y )  3 cp*(y)),  where y is a variable that does not appear 

It is straightforward to show, by induction on formulas, that ( M , s )  I= cp iff 
RM k cp*(x/s), where cp*(x/s) is the result of interpreting the variable x in cp* 
by s. In particular, cp is satisfiable in a Kripke structure iff cp* is satisfiable in a 
relational structure. 

Assume now that cp is a satisfiable -YK+-formula. We must show that cp is satisfi- 
able in a Kripke structure of size at most K .  By our comments above, we know that 
cp* is satisfiable in a relational structure. By the Downwards Lowenheim-Skolem 
Theorem for L,+, (see, for example, [Dic85, Corollary 3.1.4, p. 3401, where we take 
advantage of the fact that K' is a regular cardinal), it follows that cp* is satisfiable 
in a relational structure with a universe of size at most K .  By our correspondence, 
this relational structure is R M  for some Kripke structure M .  Since RM has a 
universe of size at most K ,  it follows that M has at most K states. We know that 
R M  I= cp*(x/s) for some s in the universe of R'. So ( M , s )  k cp. Hence, cp is 
satisfiable in a Kripke structure of size at most K ,  as desired. 

As for the S5 case, we now show that there is a first-order formula E in the 
vocabulary V that "says" that the relational structure corresponds to an S5 Kripke 
structure. Thus. for each agent i, let E ,  be the first-order formula 

in cp*. 

b'xh ( x  , x )  A Vxb'y(J5 ( x , y )  

=+ L ( y , x ) )  ~b'x""' 'z(L(x,Y) A L , ( y , z )  =-+ L ( x , z ) ) .  

Let E be the conjunction of the formulas E ,  over all agents i. If cp is an 2&+- 
formula that is satisfiable in an S5 Kripke structure, then cp* A E is satisfiable in a 
relational structure. Hence, as before. cp* A E is satisfiable in a relational structure 
R M  with a universe of size at most K .  Since RM satisfies E ,  it follows that M is an 
S5 Kripke structure. As before, M is of size at most K .  Hence, cp is satisfiable in 

We now discuss an important special case of Theorem 3.2. For the purposes 
of this section only, let us consider finitary propositional modal logic, extended by 
common knowledge (and common knowledge of groups of agents). ByJinitary, we 
mean that we consider formulas only of finite length. Thus, define -Yc-formulas 
to be the smallest set F such that: 

an S5 Kripke structure of size at most K ,  as desired. 

( 1 )  true is in F .  
(2) Each primitive proposition is in F .  
(3) If cp is in F ,  then so is -9. 
(4) If cp1 and 9 2  are in F ,  then 9 1  A 9 2  is in F .  
(5) If cp is in F and i is an agent, then K,cp is in F .  
( 6 )  If cp is in F and G is a nonempty set of agents, then C~cp is in F .  

Note that we are allowing only finite conjunctions. The semantics are as in 52.3, 
where in addition, in the case of a formula CGV, we say 

( M ,  s) k CGP iff ( M ,  s) k K,, . . . ~ , , c p  for every sequence i l ,  . . . , i, of 
members of G .  
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Define a set C of formulas to be satisfiable in Kripke structure A4 if there is a 
state s of M such that ( M , s )  k cp for every formula cp E C. A set of formulas is 
said to be satisfiable if it is satisfiable in some Kripke structure M .  

It is easy to see (as we mentioned earlier) that every LZc-formula is equivalent 
to an LYw,-formula. So every countable set of _E”c-formulas is equivalent to a 
countable conjunction of Yw, -formulas, which is itself an LYw, -formula. Therefore, 
we have the following immediate corollary of Theorem 3.2. 

COROLLARY 3.3. Every countable set of 5?‘-formulas that is satisfiable (resp., 
satisfiable in an S5 Kripke structure) is satisjiable in a countable Kripke structure 
(resp., countable S5 Kripke structure). 

Another useful modal operator, besides the CG operator, is the distributed 
knowledge operator D G ,  which was introduced in [HM90], where distributed knowl- 
edge was called implicit knowledge. Intuitively, a group G has distributed knowl- 
edge of a fact cp if the knowledge of cp is distributed among its members, so that 
by pooling their knowledge together the members of the group can deduce cp, even 
though it may be the case that no member of the group individually knows cp. 
For example, if Alice knows 91, and Bob knows + cp2, then together Alice 
and Bob have distributed knowledge of cp2, although neither Alice nor Bob might 
individually have this knowledge. 

Formally, let us define 2cD-formulas to be the smallest set F satisfying the six 
conditions in the definition of 5?‘-formulas, along with 

(7) If cp is in F ,  and G is a nonempty set of agents, then D ~ c p  is in F .  
The class of LZCD-formulas are those focussed on in the book [FHMV94]. The 

semantics is as with LZc, where in addition, if M = (S, T C , ~ , ,  . . . ,X,,), then we 
say 

( M ,  s) k D ~ c p  iff ( M ,  t )  b cp for all t such that ( s ,  t )  E nrEG 3,. 

Unlike the situation with CG, it is not hard to show that there is no LYm- 
formula that is equivalent to D G P ,  even when cp is a primitive proposition. We can, 
however, obtain the result analogous to Corollary 3.3 for BCD-formulas instead 
of just BC-formulas. The reason, intuitively, is that we can obtain a first-order 
formula corresponding to D ~ c p ,  as in the proof of Theorem 3.2, by letting 

( D ~ c p ) *  = V y ( ( A I E G  L,(x, y ) )  =+ cp*(y)), where y is a variable that does 
not appear in p*. 

We then proceed more or less as in the proof of Theorem 3.2. The simple details 
are left to the reader. We obtain 

COROLLARY 3.4. Every countable set of YcD-formulas that is satisfiable (resp., 
satisfiable in an S5 Kripke structure) is satisfable in a countable Kripke structure 
(resp., countable S5 Kripke structure). 

We can, of course, obtain a sweeping generalization of Corollary 3.4 to an 
even richer language by working not with languages over Kripke structures, but 
working directly with L,,, over the relational structure R M  that appear in the 
proof of Theorem 3.2. 

We will not consider -YCD-formulas anymore. Throughout the rest of this 
paper, whenever we say “formula”, we mean Ym -formula. 

b 






























































