SIFMA 2009
Securities Industry and Financial Markets Association Technology Conference June 2009

Data Center Design
Tom Keller, Austin Lab
tkeller@us.ibm.com

Hendrik Hamann, T.J. Watson Lab
hendrikh@us.ibm.com

IBM Research
Dr. Tom Keller
Distinguished Engineer
Austin Research Lab

- data center energy efficiency & tools
- led first system-level power management for IBM products
- technical lead IBM AIX performance
- led Los Alamos’ performance evaluation of the Cray-1 serial #1 supercomputer
- at M.C.C. prototyped parallel database machine &
- led creation of the still surviving TPC-C benchmark
- Associate Director of the U. Texas Computation Center
- Chair, ACM Sigmetrics
- 50+ papers

Dr. Hendrik F. Hamann
Manager Photonics and Thermal Physics
T.J.Watson Research Ctr

- physical aspects of thermal & energy management from the transistors to the data center
- nanoscale heat transfer research
- novel near-field optical microscopes to study single molecules at high spatial resolution, at joint institute between U. Colorado and NIST
- 30+ scientific papers
- 25+ patents with 25+ pending
- IBM Master Inventor
- National Academy of Sciences committee
- Industrial advisor to Universities
Agenda

Case study from the financial Industry
(Tom Keller)
- ACU Efficiencies
- Power Gap Analysis

DC Measurement and Management Technologies
(Hendrik Hamann)
- How to measure, model and manage DCs
- Results & Savings
Data Centers

• Three drivers have lead to DC crisis
 • Insatiable IT demand
 • Power-limited core technology
 • Increasing energy costs

• DCs consume ~ 2 % of all US electricity

• Annual growth (15 %) is non-sustainable

• DC power projected to be > 8 % of US power by 2020

• Every DC is different, DCs are heterogeneous and change over time

• DCs are not as efficient as they should

• Inefficiencies are caused by lack of best practices
IBM Data Centers

As of August, 2007

<table>
<thead>
<tr>
<th>Data Centers</th>
<th>Americas</th>
<th>Pan Euro</th>
<th>Asia Pacific</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>135</td>
<td>110</td>
<td>170</td>
<td>415</td>
</tr>
<tr>
<td>Square Feet (Millions)</td>
<td>4.3</td>
<td>1.6</td>
<td>1.8</td>
<td>7.7</td>
</tr>
</tbody>
</table>

9% IBM
6% SUN
6% HP
2% COMPAQ
1% DELL
1% OTHER

= Delivery Hub

© 2009 IBM Corporation
The Energy Efficiency Management Challenge
you know your DC could be more energy efficient, but

- Need “ongoing” energy efficiency measurements
 - “what you can’t measure you can’t improve “
 - no viable charge-back mechanism between IT and RESO
 - current efficiency metrics are weather snapshots
 - just too many good excuses/reasons not to implement

- Energy efficiency recommendations are like New Year’s resolutions

1.) How much energy ($) do I really save ?

2.) Are we really executing on the recommendations ?
Energy Efficiency Proof of Concept Study

- Tier 4 (cooling, power)
- 40,000+ square feet
- Many hundreds of racks, plus
- Hundreds of freestanding racked machines
- Thousands of servers, SANs and routers
- 40+ Computer Room Air Conditioners (ACUs)
- Cooling and actual power known to be underused

Using Research’s Measurement & Management Technology, we expected above floor temperatures to look something like this.

Instead, the machine room was uniformly cool at all heights.

* Exact measures are client confidential
Instrumenting the ACUs revealed why -- excess cooling capacity being used

And sometimes ACUs went nuts
Cooling kWh histories of two pairs of ACUs

121 kWh 100% !
After computational fluid dynamics modeling, recommended a schedule for turning ACUs on and off

Procedure

- Preliminary data collection
- Deploy above and below floor sensor network
- Gather temperatures and pressure measurements
- Experimental evaluation of turning ACUs off
- Turn 2 ACUs off
 - Check for system safety
 - Sensor network to check temperatures and pressures
 - Spot check air flow in critical areas via flowhood
 - Compare results to model
 - Calculate ACU efficiencies
- Repeat until suggested number of ACUs are off
- Monitor system for 1 week to gather additional data

Deployment

- Turn on additional ACUs when a ACU fails
- Turn on all ACUs during ACU maintenance

Savings

- Each off ACU will save $10,000 to $20,000 per year in electric bill
Power gap analysis

- Displaying the difference between the actual power being used in a rack and the power allocated to the equipment in the rack showed opportunities for increasing the density of equipment in the data center.

- Improvements in the 10’s of percent in equipment density can be made safely, deferring the construction of new data centers.
Power Measures
600 square foot snippet from machine room

ACUs

Racks and freestanding equipment
Power stranded by overallocation
Power capacity wasted by overallocation
the difference between derated kVA and measured kVA values
Agenda

Case study from the financial Industry (Tom Keller)
- ACU Efficiencies
- Power Gap Analysis

DC Measurement and Management Technologies (Hendrik Hamann)
- How to measure, model and manage DCs
- Results & Savings
Single Energy Efficiency Metric is Not Enough

PUE might be good for bragging rights, but it is only a start

PUE = Total DC Power / IT Power

PUE metric can be problematic
- PUE is weather-, location-, application/tier-, and power density dependent
- does not include true IT performance
- metering is often not in place
Cooling Efficiency requires a more detailed Look

Thermodynamic COP

\[\text{COP}_{\text{thermo}} \approx P_{RF}/P_{\text{Chiller}} \]

Average Chiller COP (throughout the year)

THERMODYNAMIC PART OF COOLING:

HOTSPOTS / HIGH INLET TEMPERATURES IMPACT CHILLER EFFICIENCY (~ 1.7 % per F)

TRANSPORT PART OF COOLING:

LOW ACU UTILIZATION IMPACTS ACU BLOWER CONSUMPTION (~ 5-8 kW/ACU)

Data Center COP

\[1/\text{COP} \approx 1/\text{COP}_{\text{thermo}} + 1/\text{COP}_{\text{trans}} \]

Transport COP

\[\text{COP}_{\text{trans}} \approx P_{RF}/ \sum_{i=1}^{\# \text{of active ACUs}} P_{\text{ACU}}^i \]
Measuring and Managing DC Best Practices
IBM Measurement and Management Technologies (MMT 1.0)

- Optimize DC resources to reduce up to 15% of DC energy consumption
- Scans, digitize rapidly physical environment (temperature, flow, pressure etc..) of DC
- Cart tool comprises sensor network, where each sensor defines a virtual unit cell
- Integrates measurements, models and DC management
MMT 1.0 - Process

Solution Approach – *Three Steps*

1. **Measure**
 - Capture high resolution temperature data, air flow data and infrastructure & layout data

2. **Model**
 - To identify improvement opportunities model the data center and use optimization algorithms ("*best practices rules*”)

3. **Manage “Best Practices”**
 - Realize air transport energy savings
 - Realize thermodynamic energy savings
 - *Achieve reduced energy consumption*
 - *Potential for deferring new investments*
MMT 3D Temperature Distributions

MMT – Scans:
Thermal measurements at different heights (1 ft increments in z)

- 40 minutes scan time
- 30,000 thermal readings
- 3,000 humidity readings
- 200 air flow readings
Example Energy Savings

- saved 177 kW with measurement / metrics driven best practices implementation
- typical 1-2 Month turnaround to realize savings
- improved DC COP 2.39 to 3.44
 - $\text{COP}_{\text{ thermo}}$ from 4.5 to 5.1
 - $\text{COP}_{\text{ trans}}$ from 5.3 to 9.8
- total energy savings \sim $200k$ (ROI: 7 months)

Case Study: DC Area = 20k sqf; Temp. Meas. = 200,000; Airflow Meas. = 1,200; Power density \sim 75 W / sqf
MMT Historical Record / Scorecard

- MMT service provided to more than 50 DCs
different sizes, power densities, locations etc.
- usually energy savings of > 10 % of IT power (< 1 y ROI)
- has delayed major DC upgrades / capital investments
- MMT is an WW IBM service offering with Research support in three GEOs

Example – MMT Savings

<table>
<thead>
<tr>
<th>Survey Date</th>
<th>RF power P_{RF} [kW]</th>
<th>DC area [feet²]</th>
<th>% Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC1 05/07</td>
<td>1400</td>
<td>42k</td>
<td>13</td>
</tr>
<tr>
<td>DC2 06/07</td>
<td>2316</td>
<td>84k</td>
<td>11</td>
</tr>
<tr>
<td>DC3 07/07</td>
<td>1917</td>
<td>55k</td>
<td>9</td>
</tr>
<tr>
<td>DC4 09/07</td>
<td>1822</td>
<td>57k</td>
<td>9</td>
</tr>
<tr>
<td>DC5 10/07</td>
<td>204</td>
<td>2k</td>
<td>11</td>
</tr>
<tr>
<td>DC6 10/07</td>
<td>418</td>
<td>10k</td>
<td>12</td>
</tr>
<tr>
<td>DC7 12/07</td>
<td>461</td>
<td>8k</td>
<td>8</td>
</tr>
<tr>
<td>DC8 12/07</td>
<td>1091</td>
<td>14k</td>
<td>4</td>
</tr>
<tr>
<td>DC9 01/08</td>
<td>442</td>
<td>11k</td>
<td>10</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

WW MMT Activities
MMT 1.5: Move to a dynamic Solution

- DC can change over time
 - IT power levels can change (e.g., 10-15% during a day)
 - cooling conditions change etc..
 - new racks / new servers / re-arrangement of tiles etc..
- MMT 1.5 provides high resolution combining
 - MMT 1.0 for base model generation, sensor placement etc..
 - real-time sensors for creating dynamic models
FEATURES:
- efficiency of each cooling zone in real-time
- data analysis capabilities
- energy efficiency reporting
- detailed layout editor
- alarm services / hotspot services
- real-time temperatures / 3D capabilities
- current being integrated into Tivoli and Maximo

https://researcher.ibm.com/mmt2/launch.htm
provides alarm/threshold settings for sensors

determines fan efficiencies in real-time and provides corresponding cooling zones

provides weekly reports of all logged temperatures
MMT IBM Internal Deployment

MMT 1.0 successfully WW deployed in > 1 M square feet of DC space
- ~2MW of savings so far
 - $1.5M savings in utility bill savings
 - > $10M delayed capital cost
- over 150 ACUs turned off / decommissioned
- ~ 8-9 % PUE improvements

MMT 1.5 currently being rolled out WW
- active management large-scale dynamic DC
- large scale deployment in EMEA

MMT 1.5 part of leadership DC design and architecture
- full deployment in leadership DC in Raleigh
- integrated into ITD data models & asset management systems