
VulnerableMe: Measuring Systemic Weaknesses
in Mobile Browser Security

Chaitrali Amrutkar1, Kapil Singh2, Arunabh Verma1, and Patrick Traynor1

1 Georgia Tech Information Security Center (GTISC), Georgia Institute of Technology
(chaitrali@, arunabh.verma@ traynor@cc.)gatech.edu

2 IBM Research
kapil@us.ibm.com

Abstract. Porting browsers to mobile platforms may lead to new vulnerabili-
ties whose solutions require careful balancing between usability and security and
might not always be equivalent to those in desktop browsers. In this paper, we
perform the first large-scale security comparison between mobile and desktop
browsers. We focus our efforts on display security given the inherent screen limi-
tations of mobile phones. We evaluate display elements in ten mobile, three tablet
and five desktop browsers. We identify two new classes of vulnerabilities specific
to mobile browsers and demonstrate their risk by launching real-world attacks
including display ballooning, login CSRF and clickjacking. Additionally, we im-
plement a new phishing attack that exploits a default policy in mobile browsers.
These previously unknown vulnerabilities have been confirmed by browser ven-
dors. Our observations, inputs from browser vendors and the pervasive nature of
the discovered vulnerabilities illustrate that new implementation errors leading to
serious attacks are introduced when browser software is ported from the desk-
top to mobile environment. We conclude that usability considerations are crucial
while designing mobile solutions and display security in mobile browsers is not
comparable to that in desktop browsers.

1 Introduction
Mobile web browsers have long underperformed their desktop counterparts. Whether

by implementing limited alternative standards such as WAP [44] or incomplete versions
of HTML, the first mobile browsers provided a meager set of capabilities and attracted
only a small number of early adopters. However, recent improvements in processing
power and bandwidth have spurred significant changes in the ways users experience the
mobile web.

Modern mobile browsers now build on the same or similarly capable rendering en-
gines used by many desktop browsers [12, 13]. Mobile browsers are so capable that,
through APIs such as WebViews, many of the most popular mobile apps (e.g., Face-
book, ESPN) act as wrappers for the browser pointed to specific webpages. How-
ever, due to limitations in the screen real estate and memory, existing desktop browser
software was not directly ported to mobile devices. Accordingly, while many mobile
browsers bear the name of related desktop applications, their internal components are
significantly different. The impact of these changes on security has not previously been
evaluated. Given the popularity of browsing on mobile devices [26,36], focusing on the
security of mobile browsers is critical.

In this paper, we perform the first large-scale security comparison between mobile
and desktop browsers. While there are many potential areas for investigation, we focus
on the issues of display security due to the screen constraints of mobile devices. Given
the often crowded layout of mobile webpages, we specifically investigate the behavior
of overlapping HTML elements (and how browsers handle clicks - i.e., “user event rout-
ing”), behavior at the boundaries between non-overlapping items (“boundary control”)
and the impact of nonpersistent availability or complete absence of the address bar. We
apply blackbox analysis across ten mobile, three tablet and five desktop browsers and
demonstrate that many mobile and tablet browsers are vulnerable to new two classes
of attacks due to inconsistent click-event routing and incorrect write policies. We illus-
trate that desktop browsers are not susceptible to these attacks and present solutions to
address the new vulnerabilities. We then discover a third class of vulnerability result-
ing from a clash between considerations made for usability in mobile browsers and a
universally implemented display policy, demonstrating that making usability consider-
ations while creating mobile software is crucial and blind porting of traditional browser
code to mobile devices can introduce unexpected vulnerabilities.

We make the following contributions:
– Characterize display security disparity between the most popular mobile and

desktop browsers: We analyze display security on ten mobile (Android Mobile,
Blackberry (Mango), Blackberry (Webkit), Chrome Beta, Firefox Mobile, Internet
Explorer (IE) Mobile, Nokia Mini-Map, Opera Mini, Opera Mobile and iPhone
Safari), three tablet (Android on Motorola Xoom, Android on Samsung Galaxy
and iPad2 Safari) and five desktop (Chrome, Firefox, Internet Explorer, Opera and
Safari) browsers. We use blackbox analysis as source code is not available for the
majority of browsers. Table 2 on page 14 summarizes our findings.

– Identify erroneous implementations of display security policies: We identify
previously unknown erroneous policies in user event routing and boundary control
and implement multiple attacks that demonstrate their seriousness. Even though
many mobile browsers rely on the same rendering engines as their desktop counter-
parts, our experiments demonstrate that mobile browsers are vulnerable to attacks
not previously seen in the desktop space.

– Expose conflict between usability and display security: We show that some re-
implemented policies from desktop browsers, specifically Top-Level Frame Nav-
igation [21], expose mobile devices to phishing when mobile browsers hide or
completely eliminate indicators such as the address bar for reasons of usability.
In particular, we demonstrate the ability to navigate users away from their intended
destinations. Our technique is new and does not use address bar spoofing similar to
the phishing techniques studied earlier [30,37]. We find that our technique enables
a more dangerous and easy to launch attack, since it exploits a built-in policy in all
web browsers instead of attempting to spoof the address bar in individual browsers.

Our analysis demonstrates that the discovered vulnerabilities are not isolated bugs;
rather, they are pervasive and affect all but one of the most popular mobile and tablet
browsers in some capacity. We have communicated our results to various browser ven-
dors who have acknowledged the presence of these vulnerabilities. Moreover, we argue
that because an increasing number of apps rely on mobile browsers, that these issues are

2

Category Browser Name Version Rendering Engine Operating System Device

Mobile

Android 2.3.6 Webkit Android 2.3.6 Nexus One
Blackberry 5.0.0 Mango Blackberry OS 5.0.0.732 Bold 9650
Blackberry 6.0.0 Webkit Blackberry OS 6 Torch 9800

Chrome Beta 0.16.4301.233 Webkit Android 4.0 Galaxy Nexus
Firefox Mobile 4 Beta 3 Gecko Android 2.3.6 Nexus One

Internet Explorer * Trident Windows Phone LG-C900
Mobile 7.0.7004.0 OS

Nokia Mini-Map * Webkit Symbian S60 E71x

Opera Mini 6.0.24556 Presto Android 2.3.6 Nexus One
5.0.019802 Presto iOS 4.1 (8B117) iPhone

Opera Mobile 11.00 Presto Android 2.3.6 Nexus One
Safari * Webkit iOS 4.1 (8B117) iPhone

Tablet Android * Webkit Android 3.2.1 Motorola Xoom
Android * Webkit Android 3.1 Samsung Galaxy
Safari * Webkit iOS 4.3.5 (8L1) iPad 2

Desktop

Chrome 15.0.874.106 Webkit OS X 10.6.8 –
Firefox 7.0.1 Gecko OS X 10.6.8 –

Internet Explorer 8.0.7600.16385 Trident Windows 7 –
Opera 11.52 Presto OS X 10.6.8 –
Safari 5.1.1 Webkit OS X 10.6.8 –

Table 1. Details of the browsers used for experimental evaluation. We also evaluated Opera Mini 5.5.1, Android 2.2.1

and Android 2.3.3 on Nexus One and Android 4.0.1 on Galaxy Nexus. We observed the same vulnerabilities in both the old

and new versions of Opera Mini and Android browsers (except Android 4.0.1). Android 4.0.1 is susceptible to attacks in

Section 3 and Section 5, but not from Section 4. (*: The version numbers of these browsers were not apparent. We have used

the default browsers shipped with the referenced version of the OS.)

relevant to all mobile app developers. Our results are the first comprehensive study in
display security and they provide strong evidence that the security of mobile browsers
has taken steps backward when compared to desktop browsers.

2 Overview
This section discusses our experimental methodology and defines our threat model.

2.1 Methodology
We analyze the rendering differences between popular desktop and mobile browsers

for security. The studied browsers are shown in Table 1. We have selected these browsers
as they represent approximately 90% of mobile browsers in the market [7].

We define a ‘display element’ as any HTML element that can color pixels on the
screen. For example, iframe, image, text, text area, link, table and button
all fall under display elements. However, HTML elements such as head or option
do not qualify as display elements. We create customized scenarios to evaluate common
interactions of cross-origin display elements: 1) when they overlap, 2) when they bor-
der each other and 3) when they are navigated to new sources. Given the tight layout of
many mobile webpages and the corresponding small screen sizes of the associated de-
vices, characterizing such interactions is critical. We discover new classes of vulnerabil-
ities in mobile browsers and evaluate their risk by implementing attacks exploiting the
vulnerabilities. All the experiments were performed on browsers on real mobile phones,
and are recreated in the respective emulators to create many of the figures throughout
the paper.
2.2 Threat Model

We consider two classes of adversaries. Each adversary attempts to attack other
website principals and/or the user and exploit the constrained nature of a mobile de-

3

vice’s display. Each adversary can identify the user’s mobile browser and is knowl-
edgeable of the display-related security vulnerabilities associated with that browser.
Landlord attacker: The landlord attacker is a malicious principal3 who can host his
own websites such as landlordattacker.com. For example, the owner of a phish-
ing website such as blankofamerica.com imitating bankofamerica.com is
classified as a landlord attacker. A ‘tenant’ is a principal who rents an area on a land-
lord’s website to render his own content such as advertisements. After the landlord gets
honest tenants on his website, he attempts to exploit the honest tenant and/or the honest
user. The landlord cannot read or change parts of the content in the tenant’s rented area
on the screen (due to the Same Origin Policy4), but controls the external properties of
the tenant’s rented area. For example, the landlord can specify the dimensions, trans-
parency and position of the tenant’s area on his website. The landlord instead tries to
attack the honest tenant and honest user by manipulating his own website display.

We note that not every user visiting the malicious website will be exploited. De-
pending on the vulnerability targeted by the landlord attacker, the honest tenant and
honest user may be attacked only when landlordattacker.com is rendered in
a vulnerable browser. Placing web advertisements, displaying popular content indexed
by search engines and sending bulk e-mail to users are some of the techniques that the
landlord attacker can use to attract users to his website [23].
Tenant attacker: The tenant attacker is a malicious principal who can rent an area of
the display on a website owned by an honest landlord. For example, the tenant attacker
can insert a malicious advertisement or widget into an honest website. Websites such as
iGoogle allow any user having an account to upload a new widget. We assume that an
honest user visits an honest website containing at least one tenant attacker area using a
vulnerable mobile browser. The tenant attacker has knowledge of the display vulnera-
bilities in the popular mobile browsers. He manipulates the content of his rented area to
attack the honest website and/or the user.

A successful exploit is able to (1) influence the state and logic of a victim website
principal across Same Origin Policy boundaries, and/or (2) deceive a user into perform-
ing unintended actions or sharing private data.

3 User Event Routing
Overlapping elements are common in many webpages. From drop-down menus to

floating advertisements, the ability to overlay objects allows for content to be dynam-
ically presented to the user. However, the interaction between such elements must be
strictly defined, especially in cases when they are controlled by different origins. When
two or more display elements share the same pixel on the screen, browsers must decide
both a) which element can control the ‘coloring’ (display) of the pixel and b) which
element owns and responds to the user access to that pixel (user event routing). For ex-
ample, if a drop-down menu covers over an image and a user clicks in this shared screen

3 A principal is the owner of some web content. In general, one principal does not trust another
with respect to his resources [46].

4 The Same Origin Policy prevents a document or script loaded from one domain from getting
or setting properties of a document from another domain [10, 38].

4

area, the browser must decide whether the principal owning the image or the principal
owning the menu will respond to a user’s click action.

Although all browsers make these decisions, the security relevance of user event
routing in overlapped elements has not previously been studied. Our evaluation demon-
strates that while desktop browsers consistently route user actions to the topmost ele-
ment, event routing is inconsistent across mobile and tablet browsers. This inconsistency
allows hidden elements to intercept user actions and potentially perform dangerous op-
erations. We first discuss the results of our evaluation of overlapped elements using the
methodology in Section 2.1 and then present attacks exploiting the vulnerabilities.

3.1 Experimental Evaluation

Mobile and tablet browsers:
Inconsistent click-event reception: Click-event reception refers to a browser choosing
the element that receives a user’s click action in a stack of overlapped elements. In the
Android mobile, Android tablet on Xoom, Nokia Mini-Map and Opera Mini browsers,
a user’s onclick event on an image is routed to the onclick events of buttons, text
areas and links below the opaque image, thereby executing the events of the hidden
elements. We note that only the events corresponding to the element directly situated
below the area where a user clicks responds to the click action. Click events of all the
elements situated below the image are not executed when the user clicks on the image.

In the Nokia Mini-Map and Opera Mini browsers, even if the top image has an
onclick event associated with it, the onclick events of the buttons below the image
are given preference. If the image on top does not have an event associated with it, the
buttons below the image are clickable in the Android mobile and Android tablet on
Xoom browsers.
Incorrect write policy: The Android mobile, Android tablet on Xoom, Nokia Mini-Map
and Opera Mini browsers allow a user to write into the text areas in an iframe situated
below an opaque image. When a user clicks on the portion of the image overlapping
any part of the text area below, the text area pops out on top and the user can write into
the box.

Desktop browsers: The desktop browsers always route click and write events exclu-
sively to the top element in a stack of overlapped elements.

3.2 Attacks

We present three novel techniques that exploit inconsistent click-event reception
and incorrect write policies for overlapping elements.
1) Click Fraud: This attack is possible due to inconsistent click-event reception in
overlapping elements. Click fraud occurs in pay-per-click advertising when a malicious
principal creates illicit clicks on an ad by either tricking a real user or by imitating a
legitimate user’s click with a program. Such attacks generate revenue per click with no
actual interest in the target of the ad’s link. A popular pay-per-click advertising program
is Google’s AdSense. A malicious landlord or tenant website cannot manipulate the ad
placed by Google (due to the Same Origin Policy) and thus cannot trick a legitimate
user into clicking on an unwanted ad by disguising it with more enticing content.

5

mesothelioma-find-lawyer.com

Display: user's view of the webpage
User access: the user's click
actually accesses the hidden

mesothelioma ad

Click Fraud

Fig. 1. Left image: Fake image advertisement of sales in San Francisco on the www.landlordattacker.com web-

site; Right image: The mesothelioma ad from Google AdSense placed directly below the enticing fake sales ad image by

malicious landlord. A user clicking on the mesothelioma ads [1] earns the landlord attacker more money. The landlord places

the honest mesothelioma ads from AdSense in an iframe and overlays it with the more enticing images of sales in San Fran-

cisco to increase the rate of clicks. When a user clicks on the fake sale ad in San Francisco, the mesothelioma ad is clicked

benefiting the landlord attacker. The Opera Mini (pictured), Android mobile, Android tablet on Xoom and Nokia Mini-Map

browsers are vulnerable to the click fraud attack.
Consider a malicious landlord principal who creates an AdSense account and em-

beds relevant content containing targeted keywords to attract high paying ads. The high
paying ads [1] are generally not as popular as ads for discounts or coupons and thus
are not clicked very often. A landlord attacker can carry out click fraud as shown in
Figure 1, on a browser that allows a user to inadvertently access hidden content (links,
buttons etc.) placed below an opaque element such as an image. The landlord attacker
overlaps the mesothelioma ad (right) with more enticing and opaque content such as
sales at local restaurants (left). If an honest user clicks the area containing the attractive
content from a vulnerable browser, the mesothelioma ad5 below the attractive content
will be clicked without the user’s knowledge. Since the user’s click is captured by the
Google AdSense ad instead of the image on top, the malicious landlord illicitly benefits.

2) Login CSRF: This attack is possible due to inconsistent click-event reception and in-
correct write policies. The intention of an attacker in a login Cross Site Request Forgery
(CSRF) is to make the honest user’s browser log in as the attacker into a legitimate web-
site without any notice to the user. While seemingly counter-intuitive, such an attack
allows an adversary to monitor operations executed by the user and steal their private
information. For example, if an attacker successfully logs in into his Yahoo account
from the victim’s browser, the victim’s actions on all of the websites (search, shopping,
finance, health) belonging to Yahoo’s single sign-on system will be recorded in the at-
tacker’s account. If the user makes a purchase at shopping.yahoo.com and enters
his credit card details, the information will be stored in the attacker’s profile. Note that

5 Mesothelioma is a cancer caused by inhaling asbestos and an ad costs $65.21 per click [9].

6

Display: user's view of webpage User access: user actually fills the username
and password fields on the hidden yahoo page

and signs in as the attacker

attacker's
username
attacker's
password

Login CSRF

Fig. 2. Left image: Image overlapping the www.yahoo.com iframe on www.landlordattacker.com. The text

areas for entering ‘solution’ of the CAPTCHAs are placed exactly over the email and password fields on yahoo.com.

The verify button is placed exactly above the ‘sign in’ button of yahoo.com. The two CAPTCHAs are the real email

and password of the attacker’s Yahoo account.; Right image: Login page of www.yahoo.com included in an iframe

on www.landlordattacker.com, placed below the image. The Android mobile (pictured), Android tablet on Xoom,

Opera Mini and Nokia Mini-Map browsers are vulnerable to this attack.

the user will not be asked to sign-in since the attacker has already signed in in the user’s
browser. Previous work has leveraged a browser’s network connectivity and a browser’s
state to launch a login CSRF attack [22]. We present a new mechanism to launch the
login CSRF attack by exploiting the vulnerability of incorrectly handling user access
to overlapped display elements in mobile browsers. Our method is more robust and not
easy to detect since it exploits an in-built vulnerability in the browsers.

Consider a malicious website landlordattacker.com. The landlord includes
a legitimate iframe containing the ‘sign in’ page of www.yahoo.com as shown in Fig-
ure 2 (right). The landlord then overlaps the iframe completely with an opaque image
as shown in Figure 2 (left). The image shows enticing free content on the landlord’s
website and includes two image CAPTCHAs expected to be solved by the user to ac-
cess the free content. The intention of the landlord attacker is to make the user enter
the attacker’s credentials into the hidden iframe below the opaque image. The land-
lord accomplishes this by setting the two CAPTCHAs to the email and password of
the attacker’s Yahoo account. For example, in Figure 2, FVbLzzF and following are the
username and password respectively of the attacker’s Yahoo account. The landlord at-
tacker then carefully places each of the solution boxes of the CAPTCHAs on the image
exactly overlapping the email and password fields (text areas) of the Yahoo iframe be-
low the opaque image. The ‘Verify’ button on the image of the CAPTCHAs is exactly
overlapped with the ‘Sign in’ button of the Yahoo iframe below.

When an honest user visits landlordattacker.com from a vulnerable browser,
he solves the two CAPTCHAs on the image to view free content. Since the browser al-
lows user access to the text area below the image, when the user fills in the CAPTCHA
on top, he actually fills in the username and password of the landlord attacker in the

7

Yahoo iframe below the image. Once the user clicks the verify button on the image,
the ‘sign in’ button on the Yahoo iframe is clicked instead, thereby logging the user’s
browser into www.yahoo.com as the attacker.

In general, solving a CAPTCHA does not disclose private user information and is
perceived as a security feature. Therefore, even a careful user would likely be willing to
solve the CAPTCHA. Because the top image is opaque, the user is completely oblivious
to the consequences of his seemingly benign action. Once the attacker is logged in from
the user’s browser, all the potential consequences of login CSRF are possible.

3) User Interaction Interception: This attack is possible due to inconsistent click-
event reception. A malicious landlord can launch a user interaction interception attack
on his cross-origin tenant by inserting display elements below a cross-origin tenant im-
age. In a webpage containing mutually distrusting principals, each principal’s actual
content as well as the user interaction with the principal’s content are private to that
principal (due to the Same Origin Policy). Therefore, the browser must not allow unau-
thorized observation by a principal on a user’s interaction with another tenant.

A malicious landlord attacker can intercept user interaction with an opaque cross-
origin image ad with a click event in a browser that gives priority to the user events (such
as onclick, onmouseover) of elements situated below the image. The expected
behavior of onclick on the image is navigation of user’s browser to the advertiser’s
webpage. A user’s interaction with the ad on the malicious landlord’s page is private
to the advertiser because of the Same Origin Policy. To snoop on the user interaction
with the tenant, the landlord fills the entire screen area below the image ad with buttons
that have an onclick event defined. If a user visits the landlord’s website from a
vulnerable browser and clicks on the image ad, the click event of the buttons below
the image will be executed. This browser behavior will allow a malicious landlord to
monitor user interaction with the honest tenant.

3.3 Analysis

Android Mobile, Android tablet on Xoom, Nokia Mini-Map and Opera Mini browsers
are susceptible to all the attacks; whereas, none of the desktop browsers are susceptible
to any of the attacks. We found discrepancies between browsers made by the same ven-
dors. For instance, while Opera Mini is susceptible to all of the attacks discussed in this
section, neither the Opera desktop nor Opera Mobile browsers are vulnerable. How-
ever, this behavior does not indicate that Opera Mobile enforces all the same policies
implemented in Opera desktop as seen in Section 4.

These experiments demonstrate that there are a number of ways in which user ac-
tions can be intercepted by hidden and potentially malicious objects when rendered by
many popular mobile web browsers. However, as our next set of tests demonstrates,
there are more direct ways by which malicious objects can elicit direct user interaction.

4 Boundary Control
Many websites contain one or more cross-origin tenants in the form of ads or wid-

gets. Websites (landlord) rely on the browsers to restrict a tenant’s dimensions to the
display area as defined by the landlord. However, if a browser allows a malicious ten-

8

ant to control its own dimensions (display ballooning), the tenant can easily expand its
own boundaries, completely disregarding the dimensions specified by the cross-origin
landlord. This lack of boundary control allows the tenant to dominate the constrained
mobile screen and intercept a user’s intended interaction with the landlord. We discuss
details of the discovered vulnerability and then describe potential attacks.

4.1 Experimental Evaluation

Mobile and tablet browsers: The Android mobile, iPhone and iPad2 Safari, Opera
Mini and Opera Mobile browsers allow an iframe to stretch its own dimensions to fit the
content inside the iframe. Even if the landlord specifies the dimensions of the iframe, the
cross-origin tenant can change them by putting more content in the iframe. By altering
the iframe’s dimensions, the tenant’s iframe does not alter the layout of the original
page; rather all other elements on the screen are adjusted around the new dimensions of
the iframe while retaining the original relative layout.
Desktop browsers: We observe that desktop browsers restrict the boundaries of a cross-
origin tenant to those defined by the landlord. Instead of expanding, these browsers add
scroll bars to the contained iframes, allowing the user to scroll the iframes to access
the content not immediately visible due to the boundary restrictions. Therefore, the
phishing and password stealing attacks are not possible on desktop browsers.

4.2 Attacks

We illustrate two attacks that take advantage of incorrect boundary control.
1) Display Ballooning → Phishing: Display ballooning allows a malicious website
principal to push legitimate content far outside of the view of the user (an attack made
acute by the general lack of visible scroll bars), thereby causing a client to interact with
a seemingly benign but actually dangerous function.

Consider the iGoogle mashup webpage (landlord) containing each widget (tenant)
inside an iframe. As shown in Figure 3, an honest user innocently adds a malicious
widget (ATTACKER) to his profile. ATTACKER is placed “North” of the honest wid-
get Amazon, which shows online deals and helps the user purchase the items of his
choice. The intention of the malicious tenant is to navigate an honest user to a web-
site of the tenant’s choice. To launch the attack, the malicious tenant alters his dimen-
sions, expands his own iframe and masquerades as the Amazon and YouTube widgets,
while pushing the real Amazon and YouTube widgets “South”, far outside of the user’s
view. Unless the user scrolls down very far, he is unable to notice the attack. The user
perceives the masqueraded Amazon as the real widget and clicks on the deals of the
attacker’s choice.

The tenant attacker does not necessarily need to know the presence and layout of
specific widgets on the victim’s personal profile. The attacker can masquerade as any
of the default widgets generally included on the mashup website. Unless the victim
is very familiar with the layout of his profile, he will trust the masqueraded widget.
Additionally, if the malicious widget is published on a well known mashup website, a
not-so-careful user may be willing to click on links he finds interesting irrespective of
the credibility of the widget presenting the links to him. The phishing attack can work
on any mash-up website with a similar layout.

9

Display Ballooning Phishing

Fig. 3. Left image: Layout of the malicious and honest widgets on the mashup webpage. ‘ATTACKER’ is a malicious

widget and Amazon and YouTube are honest widgets; Right image: The browser allows a cross-origin tenant to write its

own dimensions. The malicious widget expands its own dimensions and masquerades as the honest Amazon and YouTube

widgets on the browser. It pushes the honest widgets south and launches a phishing attack on the user. This attack works in

the iPhone Safari (pictured), Android mobile, iPad2 Safari, Opera Mini and Opera Mobile browsers.

2) Display ballooning → Password Stealing: Consider a malicious advertisement
(tenant attacker) situated to the “North” of the login box of an honest website. The
malicious ad can steal a user’s credentials by stretching its own dimensions and includ-
ing a fake login box, which looks exactly the same as the honest website’s login box.
The real login box would be pushed “South” beyond the bottom of the user’s screen.
Because the user is not able to see all the content on the screen at the same time, the
user will likely enter his credentials in the fake login box.

4.3 Analysis

The Android mobile, iPhone and iPad2 Safari, Opera Mini and Opera Mobile browsers
are susceptible to phishing and password stealing as a result of display ballooning. The
desktop browsers restrict a tenant iframe’s dimensions to those specified by the landlord
thereby preventing these attacks.

Browsers made by the same vendor deal with boundary control inconsistently. For
example, the Opera Mini, Opera Mobile and iPhone Safari browsers exhibit the same
vulnerability, whereas their desktop versions do not. Additionally, while the Android
tablet browser on Xoom is susceptible to display ballooning similar to its mobile ver-
sion, the Android tablet browser on Galaxy behaves like desktop browsers, correctly
implementing tenant boundary restrictions.

The experiments in Section 3 and Section 4 demonstrate that none of the desktop
browsers are vulnerable to the attacks feasible on mobile browsers. Intuitively, adopt-
ing similar policies implemented on desktop browsers will prevent introduction of new
vulnerabilities in mobile browsers. However, we show in the next section that reusing
desktop browser code without modifications can lead to unexpected vulnerabilities in

10

mobile browsers, due to adjustments made in mobile browser software for improved
usability.

5 Top Level Frame Navigation
The address bar indicates the URL of the viewed webpage and, in some browsers,

the current security status. Because of limited screen real-estate, mobile browsers min-
imize the address bar once a page is rendered, hiding it from the user. This usability
concession in mobile browsers directly conflicts with the ‘Top-Level Frame Naviga-
tion’ display policy [21] implemented throughout desktop browsers. This policy gov-
erns a principal’s ability to navigate principals of other origins. In particular, this policy
allows top-level frames (i.e., the landlord) to be navigated by any of its descendants
(i.e., tenants) regardless of their origin. Because users can always see the address bar,
it is possible for a user to determine if the current destination represents their intended
target or a malicious webpage [21]. Accordingly, all desktop browsers allow a user to al-
ways view the top-level window’s address bar.6 We show that since mobile browsers do
not make the address bar persistently available to a user, browser policies that assume
persistent view of address bar for security can be exploited. We also discuss the differ-
ences in our attack and the already studied attacks [30, 37] that exploit non-persistent
address bar in mobile browsers, and argue that our attack technique is more dangerous
and easier to launch.

5.1 Attack and Experimental Evaluation
A tenant attacker (descendant) can launch a phishing attack if he can navigate the

cross-origin top-level window and the top-level window’s address bar is not visible to
the user.

Consider a webpage www.honest.com consisting of a malicious cross-origin
advertisement as shown in Figure 4 (left). The onload event of the ad is to navi-
gate the top-level window to www.attacker.com, which looks exactly the same as
www.honest.com (Figure 4 (right)) and contains malicious content. When the ad
on the honest page is loaded, it navigates the top-level window to the attacker’s page.
If the user’s browser shows the address bar of the top-level window, the user may be
able to detect the phishing attack and refrain from interacting with the malicious page.
However, if the user’s browser does not show the address bar, the user cannot detect the
phishing attack.

Experimental Evaluation:
Mobile and tablet browser results: All ten mobile and three tablet browsers allow a
tenant principal of any origin to navigate the top-level window to any source.

The iPhone Safari browser minimizes the top-level address bar for better usabil-
ity once a page is rendered. Moreover, the address bar disappears from view once a
user starts interacting with the content on the page. This behavior is seen in all mo-
bile browsers except Blackberry Mango, Chrome Beta, IE Mobile 8 and Nokia Mini-
Map. IE Mobile browser persistently displays the address bar only in the portrait mode

6 The Chrome, Firefox and Safari desktop browsers allow users to hide the address bar through
options [33].

11

!
! AOL.com - Welcome to AOL

!
!Options Back

!
! AOL.com - Welcome to AOL

!
!Options Back

Phishing (exploiting top-level frame navigation policy)

Fig. 4. Left image: www.aol.comwebpage containing a cross-origin malicious advertisement. The browser displays only

the ‘title’ of the page and does not display the address bar.; Right image: Due to the top-level frame navigation policy, the

malicious ad can redirect the top-level window to www.attacker.com, which looks exactly the same as AOL’s website,

thereby launching a phishing attack. The user cannot detect the attack since the address bar containing the URL of the top

window is not included in the mobile browser’s view due to space constraint. The Nokia Mini-Map and Blackberry Mango

browsers are the most susceptible to this attack. However, all other mobile and tablet browsers (except Chrome Beta and

iPad2 Safari) are also susceptible to this attack due to address bar not being persistently available while browsing.

and never in the landscape mode. The Chrome Beta is the only mobile browser allow-
ing persistent view of the address bar. In the Blackberry Mango and Nokia Mini-Map
browsers, the address bar of the top-level window is never accessible to the user on the
screen while browsing. The web address of the top-level window can be viewed from
Options → Advanced → Page Info in the Nokia Mini-Map browser. In the Blackberry
Mango browser, a user is required to click on the lock icon in the top right corner of
the screen to access the address of the webpage. It is difficult for a user to browse to
this page info every time he wants to access the top level URL. This makes the Black-
berry Mango and Nokia Mini-Map browsers the most susceptible to phishing attacks
by navigation of top-level window to malicious pages, since the user can never detect
the attack unless he intentionally checks the page information and views the webpage’s
address.

Interestingly, Safari on the iPad2 differs slightly from its iPhone version in that
the address bar is present at all times, enabling users to protect themselves from the
phishing attack. However, the Android tablet browsers (both Xoom and Galaxy) exhibit
similar behavior as their mobile version and hide the address bar when a user starts in-
teracting with the webpage. Therefore, the Android tablet browsers are susceptible to
the phishing attack. We also note that due to the smaller screen size of mobile browsers,
the complete URL of a webpage is not necessarily displayed to a user. This makes it
even more difficult for a user to make a decision of the credibility of a website at the
time of page load, when the address bar temporarily flickers at the top of the browser.

Desktop browser results: All five desktop browsers allow a tenant principal of any
origin to navigate the top-level window to any source. However, the desktop browsers

12

always display the address bar in the window. We note that if Chrome’s option to hide
the address bar becomes the widespread default, the ‘Top-Level Frame Navigation’
policy should be reconsidered for all browsers.

5.2 Analysis

When a user interacts with a webpage on a desktop browser by scrolling or zoom-
ing, the top-level address bar is always available to the user. However, because of the
drastically reduced screen size of mobile devices, removing the address bar from view
makes sense in mobile browsers. Because this necessarily pushes the address bar out
of the user’s sight for most of the time while browsing, the current policy for top-level
frame navigation is not appropriate for mobile browsers. We discuss potential solutions
to this problem in Section 6.

We note that our phishing attack is significantly different than the existing phishing
attacks [30, 37, 40] exploiting address bar hiding in mobile browsers. The existing at-
tacks [30, 37] assume that the user is already on a phishing website, spoof the address
bar and then preclude the user from viewing the ‘real’ address bar using Javascript.
Therefore, a successful attack requires an attacker to trick a user into browsing to the
phishing website. Our attack does not assume that a user is already on a phishing web-
site. Instead, an attacker can post an advertisement on any legitimate website and then
redirect the user to a phishing website without requiring any explicit user interaction.
This makes our attack more dangerous and feasible as compared to the attacks that
require user interaction to launch a phishing website. Any legitimate website hosting
cross-origin content becomes vulnerable to our attack. We note that once an attacker
redirects a user to a phishing website by exploiting the top-level frame navigation pol-
icy, existing address bar spoofing techniques [30,37] can be used to increase the success
rate of the attack.

6 Discussion and Potential Solutions

Mobile browsers necessarily make considerations for the constrained platform on
which they run. Unfortunately, in the process of porting their software to these devices,
vendors have introduced a number of new classes of vulnerabilities. While seemingly
unrelated, Table 2 shows that these issues are repeated across many mobile browser
vendors. The vulnerabilities presented in this paper are made even more dangerous by
the constrained nature of the mobile screen as shown in Section 4.2.

A subset of vendors of the evaluated browsers have confirmed the presence of the
vulnerabilities. We note that unavailability of a standard for user event routing and
boundary control may be a cause of these vulnerabilities. Identical vulnerabilities were
observed in browsers irrespective of the rendering engine used or the manufacturer. For
example, the Android Mobile (Webkit) and Opera Mini (Presto) browsers exhibit the
same issues; whereas, the five Webkit-based mobile browsers do not demonstrate all of
the same vulnerabilities. Intuitively, assuming that browsers built by the same company
have some overlap in the development teams suggests that browser components may be
reused across platforms. However, the differences in the presence of vulnerabilities in
the mobile, tablet and desktop browsers built by the same vendor (e.g., Opera) suggests
that new vulnerabilities have been introduced while porting components from existing

13

Type Rendering Browser Name

Attacks

Engine

Vulnerability - Vulnerability - Vulnerability -
Incorrect handling of Cross-origin tenant Inconsistent

user access to modifying self view of
overlapping elements dimensions address bar

Click fraud, Login CSRF, Display Ballooning: PhishingUser Interaction Interception Phishing, Password Stealing

Mobile

Webkit

Android X X X
Blackberry Webkit X

Chrome Beta
iPhone Safari X X

Nokia Mini-Map X X

Presto Opera Mini X X X
Opera Mobile X X

Gecko Firefox Mobile X
Mango Blackberry Mango X
Trident Internet Explorer X

Tablet Webkit
Android on Xoom X X
Android on Galaxy X

Safari on iPad X

Presto, Opera,
Desktop Gecko, Firefox,

Webkit Safari, Chrome,
Trident Internet Explorer

Table 2. Summary of observed display-related vulnerabilities in candidate browsers and respective attacks possible (A

Xdepicts that attack is possible). 1) Equivalent vulnerabilities exist in mobile and tablet browsers with different rendering

engines. 2) Mobile, tablet and desktop browsers from the same vendor do not necessarily implement the same code to handle

display elements in different settings. 3) Desktop browsers are more compliant with security policies for display.

browser software to a new platform. Whether the discovered vulnerabilities are imple-
mentation or design errors in individual browsers is hard to state with certainty. The
pervasive nature of the vulnerabilities hints at a more concerning trend.

We propose solutions for the vulnerabilities discussed in this paper. Browsers should
always route the click, hover and write user events exclusively to the top element in
a stack of overlapped elements. This will provide consistency in handling user event
routing and also prevent the attacks discussed in Section 3.2. Secondly, the attacks
possible due to erroneous boundary control can be prohibited by restricting dimensions
of tenant iframes to those specified by the landlord irrespective of the origins of the
tenant and landlord. We note that the evaluated desktop browsers have implemented
preventive measures against the attacks discussed in the paper.

Although borrowing desktop browser policies addresses the vulnerabilities in user
event routing and boundary control, the small screen size of mobile devices demands
more restrictive policies than those implemented in desktop browsers to prevent the
phishing attack discussed in Section 5. We propose using Gazelle’s top-level frame nav-
igation policy [47] allowing only tenants with the same origin and the user to navigate
the top-level window. This approach would better balance issues of usability, specif-
ically screen real-estate, and security. A more extreme solution would be removing
support for the top-level frame navigation policy from mobile browsers; however, le-
gitimate webpages relying on this mechanism for functionality may break. Offloading
security decisions to the cloud [16] would be another alternative solution to the generic
problem of tension between security and usability on small mobile screens. Most crit-
ically, borrowing the top-level frame navigation policy to the mobile environment is
evidence that security and usability teams are not interacting closely enough with each
other. Any solutions should be applied with input from both groups.

14

The relevance of our observations goes well beyond web browsing. A significant
amount of research effort has recently focused on the security of mobile applications [27–
29]. These studies have generally centered around applications built for specific plat-
forms. However, an increasing number of applications are becoming highly dependent
on the browser. In particular, applications by a number of popular companies (e.g.,
ESPN, Facebook) are actually wrappers around the browser and point their users to
specific webpages within a target domain. The advantage to this approach is that it al-
lows companies to ensure a relatively consistent user experience across all platforms
with minimal development effort. As a consequence, however, such “applications” now
also potentially become vulnerable to the kinds of attacks discussed in this paper.

7 Related Work
Desktop browsers have been shown to be vulnerable to a variety of attacks in the

past including Cross Site Scripting [19], Cross Site Request Forgery [22], clickjack-
ing [3, 4, 39] and phishing. In addition to weak security policies, implementation errors
in the browser code [15,25], inconsistencies in access control policies [41], slow adop-
tion of security techniques [48] and incorrect handling of privileges in browser exten-
sions [20] further increase the threats to the browser and the user. To protect browsers
from attacks, a range of defenses have been proposed including implementing new
HTTP headers [22], enforcing new security policies [31,34,42] and algorithms [14,19]
and development of tools to find potential security vulnerabilities in browsers [18].

Providing strong isolation between cross-domain principals in a browser is another
defense technique proposed by researchers in the past. The OP Web browser [32] was
the first to design a small browser kernel to enforce new browser security features and
handle resources. Gazelle [47] and Chrome [24] also proposed new browser architec-
tures for separating the functionality of the browser from security mechanisms and poli-
cies. Tang et al [43] continued the design philosophy through the Illinois browser OS
by directly mapping browser abstractions to hardware abstractions.

Web browsers have become one of the most popular applications on today’s smart
phones. In addition to malicious mobile applications affecting user privacy [27,28] and
potentially harming the cellular network [45], the increasing user base of mobile plat-
forms has made mobile browsers an attractive target for attackers [2,5,6,8,11,30,37,40].
Moreover, mobile browsers implement only a subset of the recommended SSL indica-
tors from the desktop world thus eliminating the opportunity for even expert users to
avoid attacks such indicators might signal [17]. Researchers have already begun to think
about defending against attacks on mobile phones using smart CDNs [35]. Although
mobile browsers will be targets of security attacks in the coming years, security issues
in mobile browsers will be new since the devices have serious limitations compared to
desktops. However, a large-scale security analysis of the differences between mobile
and desktop browsers has not yet been performed.

8 Conclusion
Constrained screen size fundamentally changes the browsing experience on mobile

phones. Crowded layout, the inability to consume large amounts of content concurrently
and the difficulty in discerning boundaries between different objects on a webpage make

15

it hard for users to browse the web in the manner to which they are accustomed. In re-
sponse to these problems and to alleviate these difficulties, mobile browsers have been
changed significantly from their desktop counterparts. However, the impact of these
changes on security has not been studied. In this paper, we perform the first large-scale
comparison of display security between the most popular mobile, tablet and desktop
browsers and demonstrate that the differences are far from simply cosmetic. We iden-
tify and implement a number of attacks based on two new classes of vulnerabilities
found only on mobile and tablet browsers, and then present solutions to address the
vulnerabilities. We then identify a third class of vulnerability that exploits the small
screen size of mobile devices and a universally implemented policy in all browsers.
Our results and feedback from browser vendors exemplify that new vulnerabilities have
been introduced while porting browser software to mobile platforms and that usabil-
ity should be considered while designing solutions instead of blindly porting desktop
browser code to the mobile environment.

References
1. 150 Highest Paying Adsense Keywords Revealed! http://earns-adsense.blogspot.com/2008/04/

150-highest-paying-adsense-keywords.html
2. Android Browser Exploit. http://threatpost.com/en_us/blogs/

researcher-publishes-android-browser -exploit-110810
3. Chrome, Firefox get clickjacked. http://www.zdnet.com.au/chrome-firefox-get-clickjacked-3392

94633.htm/
4. Facebook clickjacking. http://personalmoneystore.com/moneyblog/2010/08/18/

facebook-clickjacking-social-network -scams/
5. iPhone overflow clickjacking. http://ejohn.org/blog/clickjacking-iphone-attack/
6. iPhones Safari Vulnerable To DoS Attacks. http://www.iphonebuzz.com/

iphone-safari-dos-bug-discovered -162212.php
7. Mobile Browser Market Share. http://gs.statcounter.com/#mobile_

browser-ww-daily-20120307-20120405
8. Overflow clickjacking. http://research.zscaler.com/2008/11/clickjacking-iphone-style.

html
9. Paying by the Click. http://www.nytimes.com/2007/10/15/us/15bar.html?ref=us

10. Same-origin policy. http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy
11. Web-based Android attack. http://www.infoworld.com/d/security-central/

security-researcher-releases-web- based-android-attack-317?source=rss_
security_central/

12. Opera Presto 2.1 - Web standards supported by Opera’s core. http://dev.opera.com/articles/view/
presto-2-1-web-standards-supported -by/ (2011)

13. The WebKit Open Source Project. http://webkit.org/ (2011)
14. Adida, B.: Beamauth: two-factor web authentication with a bookmark. In: Proceedings of the ACM Conference on

Computer and Communications Security (CCS) (2007)
15. Aggarwal, G., Bursztein, E., Jackson, C., Boneh, D.: An Analysis of Private Browsing Modes in Modern Browsers. In:

USENIX Security Symposium (2010)
16. Amrutkar, C., van Oorschot, P.C., Traynor, P.: An Empirical Evaluation of Security Indicators in Mobile Web Browsers.

Georgia Tech Technical Report GT-CS-11-10 (2011)
17. Amrutkar, C., van Oorschot, P.C., Traynor, P.: Measuring SSL Indicators on Mobile Browsers: Extended Life, or End

of the Road? In: Proceedings of the Information Security Conference (ISC) (2012)
18. Bandhakavi, S., King, S.T., Madhusudan, P., Winslett, M.: VEX: Vetting Browser Extensions For Security Vulnerabil-

ities. In: Proceedings of the USENIX Security Symposium (SECURITY) (2010)
19. Barth, A., Caballero, J., Song, D.: Secure Content Sniffing for Web Browsers, or How to Stop Papers from Reviewing

Themselves. In: Proceedings of the IEEE Symposium on Security and Privacy, Oakland (2009)
20. Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting Browsers from Extension Vulnerabilities. In: Proceedings of

the 17th Network and Distributed System Security Symposium (NDSS) (2010)
21. Barth, A., Jackson, C.: Protecting Browsers from Frame Hijacking Attacks. http://seclab.stanford.edu/

websec/frames/navigation/
22. Barth, A., Jackson, C., Mitchell, J.C.: Robust Defenses for Cross-Site Request Forgery. In: Proceedings of the ACM

Conference on Computer and Communications Security (CCS) (2008)
23. Barth, A., Jackson, C., Mitchell, J.C.: Securing frame communication in browsers. In: Proceedings of the USENIX

Security Symposium (SECURITY) (2008)
24. Barth, A., Jackson, C., Reis, C., The Google Chrome Team: The security architecture of the chromium browser. http:

//seclab.stanford.edu/websec/chromium/chromium-security-architecture.pdf

16

25. Barth, A., Weinberger, J., Song, D.: Cross-origin javascript capability leaks: detection, exploitation, and defense. In:
Proceedings of the USENIX Security Symposium (SECURITY) (2009)

26. Blog, G.M.A.: Smartphone user study shows mobile movement under way. http://googlemobileads.
blogspot.com/2011/04/smartphone-user-study-shows-mobile.html (2011)

27. Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: Detecting Privacy Leaks in iOS Applications. In: Proceedings of
the ISOC Networking & Distributed Systems Security (NDSS) Symposium (2011)

28. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.: TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on Smartphones. In: Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI) (2010)

29. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A Study of Android Application Security. In: Proceedings of the
USENIX Security Symposium (2011)

30. Felt, A.P., Wagner, D.: Phishing on Mobile Devices. In: Proceedings of the IEEE Web 2.0 Security and Privacy Work-
shop (W2SP) (2011)

31. Grier, C., King, S.T., Wallach, D.S.: How I Learned to Stop Worrying and Love Plugins. In: In Web 2.0 Security and
Privacy (2009)

32. Grier, C., Tang, S., King, S.T.: Secure Web Browsing with the OP Web Browser. In: Proceedings of the IEEE Sympo-
sium on Security and Privacy (Oakland) (2008)

33. Gus Andrews: Has the address bar had its day? http://www.netmagazine.com/features/
has-address-bar-had-its-day

34. Huang, L.S., Weinberg, Z., Evans, C., Jackson, C.: Protecting browsers from cross-origin CSS attacks. In: Proceedings
of the ACM Conference on Computer and Communications Security (CCS) (2010)

35. Livshits, B., Molnar, D.: Empowering Browser Security for Mobile Devices Using Smart CDNs. In: Proceedings of the
Workshop on Web 2.0 Security and Privacy (W2SP) (2010)

36. Luttrell, M.: Majority of users prefer mobile browser over apps. http://www.tgdaily.com/
mobility-brief/55884-majority-of-users-prefer-mobile-browser-over-apps (2011)

37. Niu, Y., Hsu, F., Chen, H.: iPhish: Phishing Vulnerabilities on Consumer Electronics. In: Usability, Psychology, and
Security (2008)

38. Ruderman, J.: Same Origin Policy for JavaScript. http://www.mozilla.org/projects/security/
components/same-origin.html

39. Rydstedt, G., Bursztein, E., Boneh, D., Jackson, C.: Busting Frame Busting: A Study of Clickjacking Vulnerabilities at
Popular Sites. In: Proceedings of the IEEE Web 2.0 Security and Privacy Workshop (W2SP) (2010)

40. Rydstedt, G., Gourdin, B., Bursztein, E., Boneh, D.: Framing Attacks on Smart Phones and Dumb Routers: Tap-jacking
and Geo-localization Attacks. In: Proceedings of the USENIX Workshop on Offensive Technology (WOOT) (2010)

41. Singh, K., Moshchuk, A., Wang, H.J., Lee, W.: On the Incoherencies in Web Browser Access Control Policies. IEEE
Symposium on Security and Privacy (Oakland) (2010)

42. Tang, S., Grier, C., Aciicmez, O., King, S.T.: Alhambra: a system for creating, enforcing, and testing browser security
policies. In: Proceedings of the International Conference on World Wide Web (www) (2010)

43. Tang, S., Mai, H., King, S.T.: Trust and protection in the Illinois browser operating system. In: Proceedings of the
USENIX Conference on Operating Systems Design and Implementation (OSDI) (2010)

44. The Open Mobile Alliance: Wireless Application Protocol (WAP) 1.0 Specification Suite. http://www.
wapforum.org/what/technical_1_0.htm (1998)

45. Traynor, P., Lin, M., Ongtang, M., Rao, V., Jaeger, T., La Porta, T., McDaniel, P.: On Cellular Botnets: Measuring the
Impact of Malicious Devices on a Cellular Network Core. In: Proceedings of the ACM Conference on Computer and
Communications Security (CCS) (2009)

46. Wang, H.J., Fan, X., Howell, J., Jackson, C.: Protection and communication abstractions for web browsers in Mashu-
pOS. In: Proceedings of 21st ACM SIGOPS symposium on Operating systems principles (2007)

47. Wang, H.J., Grier, C., Moshchuk, A., King, S.T., Choudary, P., Venter, H.: The Multi-Principal OS Construction of the
Gazelle Web Browser. In: Proceedings of the USENIX Security Symposium (SECURITY) (2009)

48. Zhou, Y., Evans, D.: Why Aren’t HTTP-only Cookies More Widely Deployed? In: Proceedings of the IEEE Web 2.0
Security and Privacy Workshop (W2SP) (2010)

17

