Code Compression

Charles Lefurgy

http://www.research.ibm.com/people/l/lefurgy

Austin Research Lab
IBM

Code Compression

 Compressing ordinary computer programs and_executin g
the compressed form

e Usually refers only to instruction (not data) memor y

Instruction set Compilers Emulation
design J
Linkers/Loaders B Microarchitecture
Code compression
el f Systems
Operating system|s architecture

Data compressi0||1 Circuit design

The problem

e Microprocessor die cost
— Low cost is critical for high-volume, low-margin embedded systems

— Control cost by reducing area and increasing yield
* Increasing amount of on-chip memory
— Memory is 40-80% of die area [ARM, MCore]

— In control-oriented embedded systems,
much of this is program memory

« How can program memory be reduced?

ROM

e Program

Embedded Microprocessor

System-on-chip

Motorola’s 56651 ;
Dual-Core Baseband Processor

24K PRAM 16K X/Y RAM
(PROGRAM RAM) (DATA)

18K X/Y ROM (DATA)

Uy]
=l
<<
w
w
- =
o
@
i
o

PERIPHERALS

MCU RAM/ROM

M+CORE™ DSP56600 CORE

R s B |

&
o

Solution

 Code compression
— Reduce compiled code size ROM
— Compress at compile-time /0 Program
— Decompress at run-time Original Program

U

o

/O
Compressed Program

i
Y

Embedded Systems

Outline

Compression methods
— Metrics

— Object code

— Gzip

— Static dictionary

— Adaptive dictionary

— Stream division
Implementations

— CCRP

— CodePack

Impact and issues

— Performance

— Energy

— Compiler optimizations
Alternatives to code compression
— Instruction set design
— Compiler optimizations
Conclusion

Compression methods

Metrics
Object code
Gzip

Static dictionary
Adaptive dictionary (LZ)
Stream division

Metrics

Compression ratio
— RangesfromOto 1
— 1is original code size

compressedize
original size

compressiaratio =

Execution time

— Decoding efficiency

Energy

— Important for battery-operated system

— Compare to system without code compression
Power

— Especially for hardware implementations
— Chip cooling solution is constrained by maximum power dissipated

Code generation

e Code representations:
— High level language
— Compiler internal format

— Object code
High level lang. Internal rep.
(C, Java, ...) » e
F({a=a+4; ...}
Compiler:
front-end
parsing

 What to compress?

2

Compiler:
back-end
code
generation

Object code
(IA32, PowerPC,...)

F(: addir5,4 ...

2

— This talk focuses on compressing object code.
— Compressing the high-level language and compiler formats has been

proposed.

Compressor

Compressed code
(Huffman, LZ, ...)

100101101...

Object code

 Example: PowerPC code from ijpeg benchmark in SPEC9

Offset Bytes Assembly code
51ecO 34 e7 ff ff addic. | r7,r7,-1
5lec4 81 8300 18 lwz r12,24(r3)
51ec8 8P 63 00 20 lwz r3,32(r3)
51ecc 4f 80 00 20 bltlr

51edO r8,0(r4)

5l1ed4 r4,r4,4

51ed8 0

5ledc r9,r6,2,0,29

51ee0 crl,rl0,r12

5lee4 r11,0(r5)

5lee8 re,re,1

S5leec ro,ror1l

51ef0 4 crl1,00051f0c <grayscale convert+4c>

51ef4 88 08 00 00 Ibz r0,0(r8)

51ef8 7¢ 09 51 ae stbx r0,r9,r10

5lefc 39 4a 00 01 addi ri0,r10,1

51f00 7¢ crl,r10,r12

51f04 7¢l 08 1a 14 add r8,r8,r3

51f08 41 84 ff ec blt crl,00051ef4 <grayscale convert+34>
51f0c 34 e7 ff ff addic. | r7,r7,-1

51f10 4¢ 80 ff cO bge 00051ed0 <grayscale_convert+10>
51f14 4¢ 80 00 20 bir

b Data to be compressed.

5

10

Data compression

Model

— What are the symbols in the input? (instructions, fields, bytes, etc.)
— What are their frequencies? (Fixed or varying?)

Encoder/Decoder

— How to encode a single symbol?
« Most common symbols have the shortest codes

— Example: Huffman

Object code

encode}—V decode}-

Object code

Transmit compressed
object code

11

Why not just use gzip?

Normalized Program Set Size

Vax MIPS 68020

" SPARC RS6000 MPC603

Figure 4. Sum of Program Sizes for Each Machine
(Normalized to the VAX 11/750)

[Kozuch & Wolfe, Int. Conf

. on Computer Design, 1994]

12

Data compression assumptions

For generic data

For computer programs

Type Lossless or lossy. Lossless.

Data length Possibly infinite. Finite.

Number of passes Single. No restrictions.

Input context Long. Short (< 1000 bytes).

Decompression entry
point

From beginning only.

From any instruction or
function boundary.

Code alignment

Bit-aligned.

Probably word-aligned for
fast decoding.

Compression speed

Important for real-time
applications.

Not important. Done at
compile time.

Data content

Use original data.

May apply code
optimizations that result
in better compression.

(e.g. register allocation)

Example:

Gzip

CodePack

13

Example of dictionary compression

ADI SHARC DSP code. (from go:g2.c in SPEC 95)

Original Indices Dictionary
cjump readfile (db) 1 1 |cjump readfile (db)
dm(i7,m7)=r2 2 2 1dm(i7,m7)=r2
dm(i7,m7)=pc B> [3]9 3 [dm(i7,m7)=pc
cjump life (db) 4 4 | cjump life (db)
dm(i7,m7)=r2 2 5 |cjump getscore (db)
dm(i7,m7)=pc 3
cjump getscore (db) 5
dm(i7,m7)=r2 2
dm(i7,m7)=pc 3

48-bits wide 16-bits wide 48-bits wide
- _J —
Y 'z
54 bytes 18+30 = 48 bytes

Compression ratio = 48/54 = .89

14

SHARC Experiments

« Dictionary compression applied to SHARC DSP program s

* Instructions are 6 bytes long. Contain up to 3 ope rations.
120% 2,500,000
100% 1% A 2,000,000
80%
/ + 1,500,000
60%
- 1,000,000
40% A/
20% i/‘/ <+ 500,000
O L O O L0 S - '
(@Q’ F & o?® §\ i oS O{\@ R Compression
o> AV SIS W ratio
,0'6Q S (QQ (QQ 6)(\O -4 Size (bytes)

15

Instruction-based dictionary compression

e ljpeg benchmark (MIPS gcc2.7.2.3-02)
— 49,566 static instructions
— 13,491 unique instructions
— 1% of unique instructions cover 29% of static instructions

1,000 1810 (jar $31,$2)
100 -
Number |
10 |
: ‘ 13,491
1 "

0 5,000 10,000 15,000

Unique instruction bit patterns

Byte-oriented Huffman compression

Symbols are 8-bit bytes

Bounded Huffman: limit codes to 16-bits max
— Use escape code to encode original byte if code is longer than 16 bits.

Preselected Bounded Huffman: use the same codes for each program

[Wolfe and Chanin, 1992]

17

From bytes to fields

e MIPS instruction format Bl

— 32-Dbit fixed-length instructions

B2 |

B3 |

B4

— 3 types of instructions I-Type -

— Fields do not align to byte boundaries
* Poor for 1-byte Huffman encoding

e Stream compression 5
— Compress each field type separately ~ R-Type -

rs|rt

imm.

>Type BB target

— Improve similarity between symbols

Original program

i,

Streams compress

rs|rt

linearize

[T T T T T TT] -@—_

@

Compressed

code

18

Semiadaptive Dictionary Compression

Example of a higher-order model
for code compression

SADC achieves 50%
compression ratios
— Divide MIPS instruction into
streams for each instruction field.
* Opcode
* Register
* Immediate
« Long immediate

— Markov model for next-bit
probabilities.

— Use arithmetic coding on each
stream.

— Opcode dictionary to encode
frequently used sequences of
opcodes.

— Semi-adaptive: probabilities and
dictionary are different for each
program.

[Lekatsas & Wolf, 1998]

Lempel-Ziv: adaptive dictionaries

 Encode several symbols at a time

— Create dictionary of recently seen strings of symbols
» Use sliding window of recent input to find matching

strings

— Assumes that next symbols will look similar to ones recently seen.

— Automatically adapts as symbol frequencies change
— Larger window (context) yields better compression

» Basis for popular compression programs: pkzip, gzip , etc.

[Bell, Cleary, and Witten,

Text Compression |

Dictionary

abb

1,3)

ba

(3,2)

bab

8,3)

20

“Wire code”

e Qverview

— [Ernst et al., 1997]
— Wire codes
— Compress compiler representation

 Results
— 1/5 size of SPARC program
— Good for sending code over a network
— Must decompress and compile using just-in-time compiler

»
-

parse linearize move-to Huffman gzip

-front i
coding coding

21

Implementations

General iIssues

CCRP: widely studied method
CodePack: a commercial solution

Issues

 Where to decompress?

— Between memory and L1 cache. (Focus of this talk)
« Part of the memory system. Invisible to core processor.
e Code in the cache can execute without more decompression.
— Improves CPU performance.
— Between L1 cache and instruction execution.
« Part of core processor. Decoder must be modified.
 |Instructions must be decompessed each time they are executed.

» Fewer off-chip accesses.

— Improves memory performance.

CPU

L1$

Main memory
(compressed code)

23

More Issues

* Blocking: unit of decompression
— Large blocks allow for more context and better compression

— Large blocks slow execution
« Jumps into middle of block: must decompress first instructions

« May jump out of block before reaching the end. Decompress unused
instructions.

« Should dictionary be different for each program?
— Smaller compressed size
— Adapts better to each compiler and program.

— Could be a barrier to wide adoption. Must re-load decoder to
decompress the next program.

24

CCRP: compressed code RISC processor

e Qverview

— [Kozuch and Wolfe, 1994]; [Benes et al. 1998]

— Compressed Code RISC Processor (CCPR)

— Huffman encode cache lines

— Address translation for random access to cache lines.
o LAT: line address table

— Programs run from -10% to +30% faster than conventional system.
« Faster when memory is slow or instruction cache miss ratio is high.

 Results
— 73% compression ratio for MIPS
— 0.8mCMQOS, 0.75 mm?, decompression output 163 MB/s

Decoder
Compressed
-’ » insn Native
insn
Addr. Trans. I-cache

Buffer

Separate Huffman
I-cache lines

CPU

25

CCRP address translation

 LAT: line address table
— Input: a program address
— Output: the corresponding compressed code address

o LAT entry (8 bytes)
— Encodes 8 cache lines. 24-bit base address, 5 bit offsets.
— Base address: first address of the compressed block

— L1...Lk: offset to compressed cache line
— Address of nth cache line =base + L1 + ... + Ln
— LAT overhead is 3% of compressed code.

Base Addr.

L

L

LAT Entry

bl b2 b3 b4
Line 1 Li-
ne 2 Ling 3
Line 4
Byte-aligned

compressed cache

lines

26

CodePack

e Overview
— The only widely-deployed code compression method

IBM
PowerPC instruction set

60% compression ratio, £10% performance [IBM]
« performance gain due to prefetching

e Implementation

Binary executables are compressed after compilation
Compression dictionaries tuned to application

Decompression occurs on L1 cache miss
» L1 caches hold decompressed data
 Decompress 2 cache lines at a time (16 insns)

PowerPC core is unaware of compression

27

PowerPC 405 LP

28

CodePack encoding

32-bit PowerPC instruction word

0 15 16 31

Encoding for upper 16 bits Encoding for lower 16 bits

gl00 110 0 Encodes zero

32101 16 |10 1

641100 321100

0 ofxx]
0 1poxxxx] o 1pocxx]
10 x| 10 0xxxxx]
110X xxxx | 11 0o xxx |
22 1fooooooaoocooooe | [22 2fooooooaooooooo |

2561110 2561110

. Escape
] rRaw bits

Tag

. Index

29

CodePack system

e CodePack is part of the memory system
— After L1 instruction cache

« Dictionaries
— Contain 16-bit upper and lower halves of instructions

e Index table
— Maps instruction address to compressed code address

A

[Ditonares | bicons
[] } Decompressor LH'} ."‘ . 'l': A &l l‘l{ﬂnll

Processor .
Instruction cache CodePack

main memory

Instruction memory hierarchy

CodePack decompression

Fetch index <

Fetch
compressed <
instructions

Decompress <

Y4

N7

56 2526 31
L1 I-cache
miss address N ,
Byte-aligned

block address

Compression Block
(16 instructions)

1 compressed instruction |Hi tag| Low tag

Index table
(in main memory)

Compressed bytes
(in main memory)

High dictionary Low dictionary

Native Instruction

31

Compression ratio

compressedize

« COMmpressiaratio =

original size

 Average: 62%

100%
90%
80%
70%
60%

Compression ratio 50%
40%

30%

20%

10%

0%

\\) 6\ C’» (0 Q QO b Qq
@QQ fb.Q < ®66Q> \QQQ b\oq, \\Q

32

Compression ratio

« compressiaratio =

compressedize

original size

— CodePack: 55% - 63%
— Dictionary: 65% - 82%

100%

90%
80% -
70%

O Dictionary
B CodePack

60%

Compression 0%

ratio 40%

30%
20%

10%

0%

33

CodePack programs

« Compressed executable

— 17%-25% raw bits: not compressed!
* Includes escape bits
« Compiler optimizations might help

— 5% index table
— 2KB dictionary (fixed cost)
— 1% pad bits

Indices
51%

go

Tags
25%

Dictionary
1%

Escape
3%

Raw bits
14%

Index table
5%

34

Impact and Issues

Performance
Energy
Compiler optimization

Can code compression improve performance?

Evidence both ways.

Yes:
— Fewer main memory accesses required.
— Less swapping, less use of overlays, etc.

— Loading compressed code from disk and compiling it can be faster than
loading native code.

— If compressed instructions can be stored in cache, then caches are
effectively bigger.

NoO:

— Decode time can increase latency of executing instruction

« Compressed instruction in L1 cache must be decoded each time they are
executed.

— Increased cache miss latency (CodePack and CCRP)

36

Can code compression save power?

Many studies, but no definitive answers.
— Results are simulated, not measured on real hardware.

Yes:
— Less data is transmitted over memory bus: less bit flips.
— Less memory is required.
— Less memory accesses.
— Narrower memory bus can be used.
— If code runs faster, power-down modes can be used more often.

NoO:

— Slowdown causes CPU and peripherals to stay in power-up mode longer.

— Time for program to complete has a first-order impact on energy used.
 CPU energy cost overwhelms any gain in memory/bus energy.

37

Compliler optimizations for code compression

Example: Instruction selection

— Repetition improves compression

— Choose PC-relative or absolute branches for similarity
— Improves compression ratio by over 10% for Spec95
— Reduces dictionary size by 50% for some benchmarks
— Removes many “singleton” instructions

80d4: e59f0010 Idr r0,&"hello”

PC-relative branches to 80d8: eb000237 Dl 89bc <printf>
same target cause different | 80dc: e59f000c Idr r0,&"goodbye”
instruction words 80e0: eb000235 Dl 89bc <printf>

U

80d4: e59f0010 Idr r0,&"hello”

Using absolute addressing 80d8: eb0089bc bla 89bc <printf>
makes instruction words 80dc: e59f000c Idr rO,&”goodbye”

the same and Compresgime 80e0: eb0089bc bla 89bc <printf>

38

Alternatives to code compression

New instruction sets
Compiler optimizations

Alternatives to code compression

 New instruction set
— ARM Thumb
— Smaller, but could still compressed more.

e Compiler optimization for small code-size
— Limited effect on code size. 10% is typical.
— Procedure abstraction

40

Thumb

Thumb instruction set is based on ARM.
— Processor can switch between ARM and Thumb instruction sets.
16-Dbit instructions (ARM is 32-bit)
8 32-bit general registers (ARM has 16)
Destructive (2 register) instructions
Load/store architecture

Removed instructions

— Multiply-accumulate

— Atomic memory operations

— Reverse subtract

— Co-processor operations

— Conditional Execution

— In-line shifts

[Microprocessor Report, 1995]

41

Thumb performance

Compression ratio = 0.7

Runs faster narrow busses.
— Instructions can be read with
fewer memory accesses
Runs slower on wide busses.
— 15-20% more dynamic
Instructions are executed.
Hybrid programs
— Use Thumb for infrequently used
functions. (Most of the program.)

— Use ARM for the few
performance-critical functions.

— Best compilers help you decide
how to trade-off code size and
performance.

[Microprocessor Report, 1995]

42

Compiler optimizations for small code

* Procedure abstraction [Standish, 1976]
— Use function call mechanism to abstract common code
— Apply to source code, compiler IR, or object code

/I Count 2 lists /| Count 2 lists

FO {

a = total;

FO {
a = G(a_ptn);
b =G(b_ptn);

b = total; J
}

Conclusions

Does code compression help size?
— Yes. 30-50% reduction for object code. 80% reduction for compiler IR + JIT.

Does code compression help performance?

— Possibly, in the right situations. (slow memory, narrow bus)

— Often decompression step causes systems to run slower.

— Hybrid programs (compressed and native code) can reduce performance impact.

Does code compression help energy consumption?
— Helps memory and bus power (fewer accesses)
— May not help full system power. Remains to be demonstrated.

Future?

— No new industrial solutions in last few years.
» But still new ISAs. Thumb-2 can mix 16-bit and 32-bit instructions freely.
« Larger register sets (IA-64, MMX, Vectors)

— Sensors networks. An ideal application?

— Cell phones. Ever smaller with more features.

— DRAM scaling is slowing: 4x/3years 2x/3years (driven by PC market)
— Main memory compression (compress/decompress in memory controller)

44

References

A. Beszeédes et al., “Survey of Code-Size Reduction Methods”, ACM
Computing Surveys , Vol. 35, No. 3, September, 2003, pp. 223-267.

— Code compaction and compression.

“Software Techniques for Program Compaction”, Guest editors B. De
Sutter and K. De Bosschere, Communications of the ACM , Vol. 46, No.
8, August, 2003, pp. 33-34.

The Code Compression Bibliography

— 150+ citations.

T. C. Bell, I. H. Witten, and J. G. Cleary, Text Compression , Prentice
Hall, 1990.

— Good reference on non-lossy data compression.

45

End

