
Code Compression

Charles Lefurgy

http://www.research.ibm.com/people/l/lefurgy

Austin Research Lab

IBM

2

Code Compression

• Compressing ordinary computer programs and executin g
the compressed form .

• Usually refers only to instruction (not data) memor y

Code compression

Instruction set
design

Compilers

Microarchitecture

Systems
architecture

Circuit designData compression

Operating systems

Linkers/Loaders

Emulation

3

The problem

Embedded Microprocessor

ROM
Program

RAM

I/O

CPU

• Microprocessor die cost

– Low cost is critical for high-volume, low-margin embedded systems

– Control cost by reducing area and increasing yield

• Increasing amount of on-chip memory

– Memory is 40-80% of die area [ARM, MCore]

– In control-oriented embedded systems,
much of this is program memory

• How can program memory be reduced?

4

System-on-chip

5

Solution

Embedded Systems

Original Program

ROM
Program

RAM

I/O

CPU

Compressed Program

R
O

MRAM

I/O

CPU

• Code compression
– Reduce compiled code size
– Compress at compile-time
– Decompress at run-time

6

Outline
• Compression methods

– Metrics
– Object code
– Gzip
– Static dictionary
– Adaptive dictionary
– Stream division

• Implementations
– CCRP
– CodePack

• Impact and issues
– Performance
– Energy
– Compiler optimizations

• Alternatives to code compression
– Instruction set design
– Compiler optimizations

• Conclusion

Compression methods

Metrics
Object code
Gzip

Static dictionary
Adaptive dictionary (LZ)
Stream division

8

• Compression ratio
– Ranges from 0 to 1
– 1 is original code size

• Execution time
– Decoding efficiency

• Energy
– Important for battery-operated system

– Compare to system without code compression

• Power
– Especially for hardware implementations

– Chip cooling solution is constrained by maximum power dissipated

Metrics

 sizeoriginal
 sizecompressed

ratio ncompressio =

9

Code generation

• Code representations:
– High level language
– Compiler internal format
– Object code

• What to compress?
– This talk focuses on compressing object code.
– Compressing the high-level language and compiler formats has been

proposed.

Compiler:
front-end
parsing

High level lang.
(C, Java, …)

F() {a=a+4; …}

Object code
(IA32, PowerPC,…)

F(): addi r5,4 …

Compiler:
back-end
code
generation

Compressed code
(Huffman, LZ, …)

100101101…

Compressor

Internal rep.

a 4

+

10

Object code
• Example: PowerPC code from ijpeg benchmark in SPEC9 5

Offset Bytes Assembly code
51ec0 34 e7 ff ff addic. r7,r7,-1
51ec4 81 83 00 18 lwz r12,24(r3)
51ec8 80 63 00 20 lwz r3,32(r3)
51ecc 4d 80 00 20 bltlr
51ed0 81 04 00 00 lwz r8,0(r4)
51ed4 38 84 00 04 addi r4,r4,4
51ed8 39 40 00 00 li r10,0
51edc 54 c9 10 3a rlwinm r9,r6,2,0,29
51ee0 7c 8a 60 40 cmplw cr1,r10,r12
51ee4 81 65 00 00 lwz r11,0(r5)
51ee8 38 c6 00 01 addi r6,r6,1
51eec 7d 29 58 2e lwzx r9,r9,r11
51ef0 40 84 00 1c bge cr1,00051f0c <grayscale_convert+4c>
51ef4 88 08 00 00 lbz r0,0(r8)
51ef8 7c 09 51 ae stbx r0,r9,r10
51efc 39 4a 00 01 addi r10,r10,1
51f00 7c 8a 60 40 cmplw cr1,r10,r12
51f04 7d 08 1a 14 add r8,r8,r3
51f08 41 84 ff ec blt cr1,00051ef4 <grayscale_convert+34>
51f0c 34 e7 ff ff addic. r7,r7,-1
51f10 40 80 ff c0 bge 00051ed0 <grayscale_convert+10>
51f14 4e 80 00 20 blr

Data to be compressed.

11

• Model
– What are the symbols in the input? (instructions, fields, bytes, etc.)
– What are their frequencies? (Fixed or varying?)

• Encoder/Decoder
– How to encode a single symbol?

• Most common symbols have the shortest codes

– Example: Huffman

Data compression

Object code decoder

model

Object codeencoder

Transmit compressed
object code

12

Why not just use gzip?

[Kozuch & Wolfe, Int. Conf. on Computer Design, 1994]

13

Data compression assumptions

From any instruction or
function boundary.

From beginning only.Decompression entry
point

CodePackGzipExample:

May apply code
optimizations that result
in better compression.
(e.g. register allocation)

Use original data.Data content

Not important. Done at
compile time.

Important for real-time
applications.

Compression speed

Probably word-aligned for
fast decoding.

Bit-aligned.Code alignment

Short (< 1000 bytes).Long.Input context

No restrictions.Single.Number of passes

Finite.Possibly infinite.Data length

Lossless.Lossless or lossy.Type

For computer programsFor generic data

14

Example of dictionary compression

cjump readfile (db)
dm(i7,m7)=r2
dm(i7,m7)=pc
cjump life (db)
dm(i7,m7)=r2
dm(i7,m7)=pc
cjump getscore (db)
dm(i7,m7)=r2
dm(i7,m7)=pc

1
2
3
4
2
3
5
2
3

1 cjump readfile (db)
2 dm(i7,m7)=r2
3 dm(i7,m7)=pc
4 cjump life (db)
5 cjump getscore (db)

Original Indices Dictionary

48-bits wide 48-bits wide16-bits wide

54 bytes 18+30 = 48 bytes

ADI SHARC DSP code. (from go:g2.c in SPEC 95)

Compression ratio = 48/54 = .89

15

SHARC Experiments
• Dictionary compression applied to SHARC DSP program s
• Instructions are 6 bytes long. Contain up to 3 ope rations.

0%

20%

40%

60%

80%

100%

120%

ad
pc

m
dec

g7
21

de
c

ep
ic

gs
m

peg
wit

m
pe

g2
de

c
m

pe
g2

en
c go

vo
rte

x

gh
os

tsc
ri

pt

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

Compression
ratio
Size (bytes)

16

Instruction-based dictionary compression

• Ijpeg benchmark (MIPS gcc 2.7.2.3 -O2)

– 49,566 static instructions
– 13,491 unique instructions

– 1% of unique instructions cover 29% of static instructions

1

10

100

1,000

0 5,000 10,000 15,000

Unique instruction bit patterns

Number

810 (jalr $31,$2)

13,491

17

Byte-oriented Huffman compression
• Symbols are 8-bit bytes
• Bounded Huffman: limit codes to 16-bits max

– Use escape code to encode original byte if code is longer than 16 bits.
• Preselected Bounded Huffman: use the same codes for each program

[Wolfe and Chanin, 1992]

18

From bytes to fields

• MIPS instruction format
– 32-bit fixed-length instructions
– 3 types of instructions

– Fields do not align to byte boundaries
• Poor for 1-byte Huffman encoding

• Stream compression
– Compress each field type separately

– Improve similarity between symbols

op rs rt imm.

op target

op rs rt rd re fnt

B1 B2 B3 B4

I-Type

J-Type

R-Type

Original program Streams compress linearize

c1

c2

c3

c4

+ Compressed
code

19

Semiadaptive Dictionary Compression
• Example of a higher-order model

for code compression
• SADC achieves 50%

compression ratios
– Divide MIPS instruction into

streams for each instruction field.
• Opcode
• Register
• Immediate
• Long immediate

– Markov model for next-bit
probabilities.

– Use arithmetic coding on each
stream.

– Opcode dictionary to encode
frequently used sequences of
opcodes.

– Semi-adaptive: probabilities and
dictionary are different for each
program.

[Lekatsas & Wolf, 1998]

20

Lempel-Ziv: adaptive dictionaries

• Encode several symbols at a time
– Create dictionary of recently seen strings of symbols

• Use sliding window of recent input to find matching strings
– Assumes that next symbols will look similar to ones recently seen.
– Automatically adapts as symbol frequencies change
– Larger window (context) yields better compression

• Basis for popular compression programs: pkzip, gzip , etc.

[Bell, Cleary, and Witten, Text Compression]

abb (1,3)
ba (3,2)
bab (8,3)
…

Dictionary

21

“Wire code”

• Overview

– [Ernst et al., 1997]
– Wire codes
– Compress compiler representation

• Results
– 1/5 size of SPARC program
– Good for sending code over a network
– Must decompress and compile using just-in-time compiler

HLL

F() {...}

IR

parse linearize

Streams

+ = +

move-to

coding

Indices

1 2 2

Data

+ = <

Huffman
-front

Indices

0 10 10

Data

+ = <
.gz

011101...

gzip
coding

Implementations

General issues

CCRP: widely studied method
CodePack: a commercial solution

23

Issues

• Where to decompress?
– Between memory and L1 cache. (Focus of this talk)

• Part of the memory system. Invisible to core processor.
• Code in the cache can execute without more decompression.

– Improves CPU performance.

– Between L1 cache and instruction execution.
• Part of core processor. Decoder must be modified.

• Instructions must be decompessed each time they are executed.
• Fewer off-chip accesses.

– Improves memory performance.

CPU L1 $
Main memory

(compressed code)

24

More issues

• Blocking: unit of decompression
– Large blocks allow for more context and better compression
– Large blocks slow execution

• Jumps into middle of block: must decompress first instructions
• May jump out of block before reaching the end. Decompress unused

instructions.

• Should dictionary be different for each program?
– Smaller compressed size
– Adapts better to each compiler and program.

– Could be a barrier to wide adoption. Must re-load decoder to
decompress the next program.

25

CCRP: compressed code RISC processor
• Overview

– [Kozuch and Wolfe, 1994]; [Benes et al. 1998]
– Compressed Code RISC Processor (CCPR)
– Huffman encode cache lines
– Address translation for random access to cache lines.

• LAT: line address table
– Programs run from -10% to +30% faster than conventional system.

• Faster when memory is slow or instruction cache miss ratio is high.
• Results

– 73% compression ratio for MIPS
– 0.8mCMOS, 0.75 mm2, decompression output 163 MB/s

Native

G: addi r6,8
load r5,1
...

I-cache lines Memory image

LAT

Decoder

I-cacheAddr. Trans.

CPU

Native

Buffer

insn

Compressed
insn

HuffmanSeparate
I-cache lines

26

 B a se A d d r. L 1 L 2 L 3 L 8 . .
.

b 1 b 2 b 4 b 3

n e 2

b lo c k4

L in e 1 L i-

L in e 3

L in e 4

B y te -a lig n e d
c o m p re s s ed c ac h e
lin es

L AT E n try

CCRP address translation

• LAT: line address table
– Input: a program address
– Output: the corresponding compressed code address

• LAT entry (8 bytes)
– Encodes 8 cache lines. 24-bit base address, 5 bit offsets.
– Base address: first address of the compressed block
– L1…Lk: offset to compressed cache line
– Address of nth cache line = base + L1 + ... + Ln
– LAT overhead is 3% of compressed code.

27

CodePack

• Overview
– The only widely-deployed code compression method
– IBM

– PowerPC instruction set

– 60% compression ratio, ±10% performance [IBM]
• performance gain due to prefetching

• Implementation
– Binary executables are compressed after compilation

– Compression dictionaries tuned to application

– Decompression occurs on L1 cache miss
• L1 caches hold decompressed data
• Decompress 2 cache lines at a time (16 insns)

– PowerPC core is unaware of compression

28

PowerPC 405 LP

29

CodePack encoding

Encoding for upper 16 bits Encoding for lower 16 bits

32

64

128

256

Tag

Index

Escape

Raw bits

0 1

1 0 0

1 0 1

1 1 0

x x x x x x

xx x x x x x x

xx x x x x x x x

xx x x x x x x x x x x x x x x x1 1 1

0 0

x x x x x

x x x

0 1 x x x x

1 0 0

xx x x x x x x1 0 1

xx x x x x x x x1 1 0

xx x x x x x x x x x x x x x x x1 1 1

0 0

x x x x x

8

16

32

128

256

1 Encodes zero

0 311615

32-bit PowerPC instruction word

30

CodePack system

• CodePack is part of the memory system
– After L1 instruction cache

• Dictionaries
– Contain 16-bit upper and lower halves of instructions

• Index table
– Maps instruction address to compressed code address

main memory

Processor

Dictionaries

Decompressor
Index table

Compressed code

Instruction cache CodePack

Instruction memory hierarchy

31

CodePack decompression

Decompress

Byte-aligned
block address

L1 I-cache
miss address

Fetch index

Fetch
compressed
instructions

Native Instruction

Low dictionary

Compression Block
(16 instructions)

312625650

Index table
(in main memory)

Compressed bytes
(in main memory)

Hi tag Low tag Low indexHi index

High 16-bits Low 16-bits

High dictionary

1 compressed instruction

32

•

• Average: 62%

Compression ratio

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

applu
apsi

cc1

com
pre

ss9
5
fp

ppp go

hydro
2d

ijp
eg

li9
5

m
88

ksim
m

grid

m
peg

2en
c

pegwit
perl

su2c
or

swim

to
m

ca
tv

tu
rb

3d

vorte
x

wave5

Compression ratio

size original
size compressed

ratio ncompressio ====

33

Compression ratio

•

– CodePack: 55% - 63%
– Dictionary: 65% - 82%

size original
size compressed

ratio ncompressio ====

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

cc
1

ghosts
c rip

t go

ijp
eg

mp eg
2enc

pegwit

perl

vo
rte

x

Compression
ratio

Dictionary

CodePack

34

CodePack programs
• Compressed executable

– 17%-25% raw bits: not compressed!
• Includes escape bits
• Compiler optimizations might help

– 5% index table

– 2KB dictionary (fixed cost)

– 1% pad bits

Tags
25%

Indices
51%

Dictionary
1%

Index table
5%

Escape
3%

Raw bits
14%

Pad
1%

go

Impact and Issues

Performance
Energy
Compiler optimization

36

Can code compression improve performance?

• Evidence both ways.

• Yes:
– Fewer main memory accesses required.
– Less swapping, less use of overlays, etc.
– Loading compressed code from disk and compiling it can be faster than

loading native code.
– If compressed instructions can be stored in cache, then caches are

effectively bigger.

• No:
– Decode time can increase latency of executing instruction

• Compressed instruction in L1 cache must be decoded each time they are
executed.

– Increased cache miss latency (CodePack and CCRP)

37

Can code compression save power?

• Many studies, but no definitive answers.
– Results are simulated, not measured on real hardware.

• Yes:
– Less data is transmitted over memory bus: less bit flips.
– Less memory is required.
– Less memory accesses.
– Narrower memory bus can be used.
– If code runs faster, power-down modes can be used more often.

• No:
– Slowdown causes CPU and peripherals to stay in power-up mode longer.
– Time for program to complete has a first-order impact on energy used.

• CPU energy cost overwhelms any gain in memory/bus energy.

38

Compiler optimizations for code compression

• Example: Instruction selection
– Repetition improves compression
– Choose PC-relative or absolute branches for similarity

– Improves compression ratio by over 10% for Spec95

– Reduces dictionary size by 50% for some benchmarks

– Removes many “singleton” instructions

80d4: e59f0010 ldr r0,&”hello”
80d8: eb000237 bl 89bc <printf>
80dc: e59f000c ldr r0,&”goodbye”
80e0: eb000235 bl 89bc <printf>

80d4: e59f0010 ldr r0,&”hello”
80d8: eb0089bc bla 89bc <printf>
80dc: e59f000c ldr r0,&”goodbye”
80e0: eb0089bc bla 89bc <printf>

PC-relative branches to
same target cause different
instruction words

Using absolute addressing
makes instruction words
the same and compressible

Alternatives to code compression

New instruction sets
Compiler optimizations

40

Alternatives to code compression

• New instruction set
– ARM � Thumb
– Smaller, but could still compressed more.

• Compiler optimization for small code-size
– Limited effect on code size. 10% is typical.

– Procedure abstraction

41

Thumb

• Thumb instruction set is based on ARM.
– Processor can switch between ARM and Thumb instruction sets.

• 16-bit instructions (ARM is 32-bit)

• 8 32-bit general registers (ARM has 16)

• Destructive (2 register) instructions

• Load/store architecture
• Removed instructions

– Multiply-accumulate
– Atomic memory operations
– Reverse subtract

– Co-processor operations
– Conditional Execution
– In-line shifts

[Microprocessor Report, 1995]

42

Thumb performance

• Compression ratio = 0.7

• Runs faster narrow busses.
– Instructions can be read with

fewer memory accesses

• Runs slower on wide busses.
– 15-20% more dynamic

instructions are executed.

• Hybrid programs
– Use Thumb for infrequently used

functions. (Most of the program.)
– Use ARM for the few

performance-critical functions.

– Best compilers help you decide
how to trade-off code size and
performance.

[Microprocessor Report, 1995]

43

// Count 2 lists

F() {
total = 0;
while (a_ptr) {

total++;
a_ptr = a_ptr->next;

}
a = total;

total = 0;
while (b_ptr) {

total++;
b_ptr = b_ptr->next;

}
b = total;

}

Compiler optimizations for small code

• Procedure abstraction [Standish, 1976]
– Use function call mechanism to abstract common code
– Apply to source code, compiler IR, or object code

// Count 2 lists

int G(p) {
total = 0;
while (p) {

total++;
p = p->next;

}
return(total);

}

F() {
a = G(a_ptr);
b = G(b_ptr);

}

44

Conclusions

• Does code compression help size?
– Yes. 30-50% reduction for object code. 80% reduction for compiler IR + JIT.

• Does code compression help performance?
– Possibly, in the right situations. (slow memory, narrow bus)
– Often decompression step causes systems to run slower.
– Hybrid programs (compressed and native code) can reduce performance impact.

• Does code compression help energy consumption?
– Helps memory and bus power (fewer accesses)

– May not help full system power. Remains to be demonstrated.

• Future?
– No new industrial solutions in last few years.

• But still new ISAs. Thumb-2 can mix 16-bit and 32-bit instructions freely.

• Larger register sets (IA-64, MMX, Vectors)

– Sensors networks. An ideal application?
– Cell phones. Ever smaller with more features.

– DRAM scaling is slowing: 4x/3years � 2x/3years (driven by PC market)
– Main memory compression (compress/decompress in memory controller)

45

References

• A. Beszédes et al., “Survey of Code-Size Reduction Methods”, ACM
Computing Surveys , Vol. 35, No. 3, September, 2003, pp. 223-267.
– Code compaction and compression.

• “Software Techniques for Program Compaction”, Guest editors B. De
Sutter and K. De Bosschere, Communications of the ACM , Vol. 46, No.
8, August, 2003, pp. 33-34.

• The Code Compression Bibliography
http://www.iro.umontreal.ca/~latendre/codeCompressi on/
– 150+ citations.

• T. C. Bell, I. H. Witten, and J. G. Cleary, Text Compression , Prentice
Hall, 1990.
– Good reference on non-lossy data compression.

End

