You talkin’ to me? - An attention-aware embodied agent

Rahul R. Divekar1,2, Jeffrey O. Kephart2, Lisha Chen1, Xiangyang Mou1, Hui Su1,2

1Rensselaer Polytechnic Institute (RPI), Troy, NY
2IBM, Yorktown Heights, NY
Conversational AI - The Spectrum

Interface: Text Only
Embodiment: Phones, Tablet, Laptop

Interface: Voice, Buttons
Embodiment: Special Hardware

Interface: Voice, Touch
Embodiment: Phones, Cars, etc.

Voice based

* Images from Messenger, Slack, Amazon, Google Home, Tesla, Android
Voice Conversational AI - Types of Conversations

- **One-shot commands**
 - Human: “Alexa, turn on the lights”

- **Multi-round dialogue**
 - Human: “Hey Google, remind me to buy groceries”
 - AI: “When would you like to be reminded?”
 - Human: “Tonight”
 - AI: “Sure”
Voice Conversational AI - You talkin’ to me?

- Wake up word - “Alexa, Hey Google, etc.”
- Extended attention span
Conversational AI - The Spectrum

Interface: Text Only
Embodiment: Cellphone, Tablet, Laptop

Interface: Voice, Buttons
Embodiment: Special Hardware

Interface: Voice, Touch
Embodiment: Phones, Cars, etc.

* Images from Messenger, Slack, Amazon, Google Home, Tesla, Android
Conversational AI - The Spectrum

Interface: Text Only
Embodiment: Cellphone, Tablet, Laptop

Interface: Voice, Buttons
Embodiment: Special Hardware

Interface: Voice, Touch
Embodiment: Phones, Cars, etc.

* Images from Messenger, Slack, Amazon, Google Home, Tesla, Android
Conversational AI - The Spectrum

Interface: Text Only
Embodiment: Cellphone, Tablet, Laptop

Interface: Voice, Buttons
Embodiment: Special Hardware

Interface: Voice, Touch
Embodiment: Phones, Cars, etc.

Interface: Text, voice, body
Embodiment: On screen in sensor-equipped environments

Current Focus

* Images from Messenger, Slack, Amazon, Google Home, Tesla, Android
Smart Environments - Typical Features

- **Interface**: Voice + Body + Text
- Multi-modal dialogue
- Multi-round dialogue
- Multi-person dialogue
Smart Environments - Typical Dialogue

Participants: H1, H2 and AI

H1 -> AI: Celia, show me a plot of exoplanets

H2 -> H1: I’d like to see planets bigger than earth

H2 -> AI: Celia, can you plot planets bigger than earth?

....
Smart Environments - Typical Dialogue

Participants: H1, H2 and AI

H1 -> AI: *Celia*, show me a plot of exoplanets

H2 -> H1: I’d like to see planets bigger than earth

H2 -> AI: *Celia*, can you plot planets bigger than earth?....

H2 -> AI: *Celia*, change the x-axis to log scale

H2 -> AI: *Celia*, tell me more about star x

H2 -> AI: *Celia*, show me planets closest to earth

H2 -> AI: *Celia*, plot the age against mass
Voice Conversational AI - You talkin’ to me?

- Wake-up word - “Alexa, Hey Google, Celia etc.”
- Extended attention span
Voice Conversational AI - You talkin’ to me?

- Wake-up word - “Alexa, Hey Google, Celia etc.” ------- Unnatural, cumbersome
- Extended attention span Side conversation misinterpreted as command
Voice Conversational AI - You talkin’ to me?

- Wake up word - “Alexa, Hey Google, Celia etc.” Unnatural, cumbersome
- Extended attention span Side conversation misinterpreted as command

“Sorry, I do not know how to do that”
Question - How do you know someone is talking to you?
Solution - Find out where the user is looking

- Analogous to making eye contact in human-human conversations
- Use head orientation as a rough estimation
- If, user looks at AI agent
- Then, treat overlapped utterance as command (thresholded)
User Study Setup
Findings #1

- Technology shortcomings
 - Head orientation tracking failure
 - Lag in interpreting change of head orientation
 - Transcription inaccuracies

- User behaviour
 - Head orientation shifts when
 - Trying to recollect
 - Reading from a page
 - Looking for help from partner
 - Looking at other elements on screen (e.g. plot)
 - Stroking chin while thinking (self-occlusion from camera)
 - Example: Show me planets with radius greater than <change in headpose to human participant> umm... <chin stroking> Earth
Findings #2

Good news: Users are willing to change their behavior to help the system infer attention.

E.g. Change in articulation, wait to clear backlog of ASR, etc

Catch: Inform the user about the system’s interpretation of attention (analogous to eye-contact reciprocation)
Watson Avatar (no attention)

Paying attention (Verbal or Head-orientation)

Face Detection Error

Face Detected! Look this way to get attention

Transcript: I want the results of the meeting

No Attention

Transcript: Celia show me a plot of exoplanets

Attention and Intent

Transcript: Celia this is not a command

Attention and No Intent
Transcript: Celia show me a plot of exoplanets.
Outcomes - A test bed for attention awareness

- Multi round interaction
- Multi people interaction
- Multi modal interaction
Further Direction

- Formal usability studies
- Explore other behavioral cues
- Sophisticated models to fuse multi-modal data in real time
- Data collection of interactions
- Using machine learning to make attention decisions
Acknowledgements

Rensselaer Polytechnic Institute (RPI)
Cognitive Immersive Systems Lab (CISL)
IBM
AI Horizons Network (AIHN)
Questions?