DNNBuilder: an Automated Tool for Building High-Performance DNN Hardware Accelerators for FPGAs

Xiaofan Zhang1, Junsong Wang2, Chao Zhu2, Yonghua Lin2, Jinjun Xiong3, Wen-mei Hwu1, Deming Chen1

1UIUC, 2IBM Research-China, 3IBM T. J. Watson Research Center

ICCAD’18 Best Paper Award
Outline:

1. Background
2. Motivations
3. Automation Flow
4. Accelerator Architecture
5. Design Space Exploration
6. Experimental Results
7. Conclusions
Background

Deploying deep learning workloads in the cloud

Major requirements:
- Throughput performance
- Tail latency
- Power efficiency
Background

Deploying deep learning workloads at the edge

Major requirements:
- Real-time ability
- Energy efficiency design
- Area constraint
Outline:

1. Background
2. Motivations
3. Automation Flow
4. Accelerator Architecture
5. Design Space Exploration
6. Experimental Results
7. Conclusions
Motivation

Try FPGAs for both cloud- and edge-computing

😊 FPGAs deliver improved latency & energy efficiency (vs. CPUs, GPUs)

But..

😢 FPGA have limited computation & memory resources (DSPs, BRAMs)
😢 Large design & test efforts (RTL programming, HW verification...)
😢 Challenges in resource allocation for unbalanced DNN layers

We need

An end-to-end automated tool for mapping DNN to FPGAs
Outline:

1. Background
2. Motivations
3. Automation Flow
4. Accelerator Architecture
5. Design Space Exploration
6. Experimental Results
7. Conclusions
Automation Design Flow

3-step-solution as Design, Generation, & Execution

➢ Low latency
➢ High throughput
➢ Efficient use of FPGA on-chip memory
➢ Auto on-chip resource allocation

To bridge the gap between fast DNN construction in software and slow hardware implementation
Outline:

1. Background
2. Motivations
3. Automation Flow
4. Accelerator Architecture
5. Design Space Exploration
6. Experimental Results
7. Conclusions
Architecture

Overview of the proposed accelerator design

➢ A fine-grained layer-based pipeline structure
 1) Higher throughput
 2) Better support of streaming inputs
 3) Higher efficiency with dedicated design for each DNN layer

➢ A column-based cache scheme
 1) Lower latency, lower on-chip MEM demands
 2) Support HD input
 3) Real-time capability
Architecture

A fine-grained layer-based pipelined architecture

Proposed design vs. General design

Higher throughput vs. recurrent structure
Lower latency vs. conventional pipeline structure

Reduce 7.7x latency for running YOLO
Architecture

Pipelined stages instantiated on FPGA

➢ 2-dim parallelism
KPF - kernel parallel factor
CPF - channel parallel factor

➢ Arbitrary quantization
DW - bit-width for feature map
WW - bit-width for weight/bias
Adjustable parallel factor = CPF x KPF (more/less DSP utilization)

On-chip buffers for sufficient data supply
Architecture

A column-based cache scheme

- Save on-chip memory
- Adjust data reuse factor

For example:
Kernel size = 3
Stride = 1

4 slices cache on-chip instead of keeping the whole feature maps
Architecture

Column-based cache scheme

Reduce 43x BRAM usage for running YOLO

BRAM usage reduction for keep feature maps
320x ~ 7x
43x on average
Outline:

1. Background
2. Motivations
3. Automation Flow
4. Accelerator Architecture
5. Design Space Exploration
6. Experimental Results
7. Conclusions
Design Space Exploration

An automatic resource allocator

Step 1: Computation allocation

\[L_i = \alpha \frac{C_i}{R_i} \quad \text{(1)} \]

\[TP = \frac{1}{\max \{L_i\}} = \frac{1}{\max \{\alpha C_i / R_i\}} \quad \text{(2)} \]

\[L_{total} \geq \frac{\alpha C_i}{R_i} \Rightarrow \sum_i R_i L_{total} \geq \sum_i \alpha C_i \quad \text{(3)} \]

\[L_{total} \geq \alpha \sum_i \frac{C_i}{R_i} \quad \text{(4)} \]

\[\frac{C_1}{R_1} = \frac{C_2}{R_2} \ldots = \frac{\sum C_i}{\sum R_i} \quad \text{(5)} \]

Total BW 10 GB/S; Total capability: 100 GOPS

- Conv1 \(\rightarrow \) 15 GOPS
- Conv2 \(\rightarrow \) 15 GOPS
- Conv3 \(\rightarrow \) 21 GOPS
- Conv4 \(\rightarrow \) 8 GOPS
- Conv5 \(\rightarrow \) 5 GOPS

FC layer maximum usage 5 GOPS

CTC: Computation to Communication Ratio (GOPS/Byte)

Mem. bound \(\leftrightarrow \) Comp. bound
Design Space Exploration

An automatic resource allocator

Step2: memory bandwidth adjustment

To meet the BW constraint

Total capability 100 GOPS

Total BW 10 GB/S

Conv3

CTC increase

Required mem. BW drop

CTC: Computation to Communication Ratio (GOPS/Byte)

Mem. bound \rightarrow Comp. bound

Col. 1

Col. 2

Cache one more Col.
Outline:

1. Background
2. Motivations
3. Automation Flow
4. Accelerator Architecture
5. Design Space Exploration
6. Experimental Results
7. Conclusions
Experimental Results

Case study: real-time pedestrian/cyclist/car detection

Yolo9000 with HD input (1280x384, 20FPS) is mapped to Xilinx Zynq 706 FPGA @ 200MHz
Experimental Results

Case study: real-time pedestrian/cyclist/car detection
Experimental Results

Accuracy results after 16-bit & 8-bit quantization

Table 1: Top-1 Accuracy for image classification

<table>
<thead>
<tr>
<th>Network</th>
<th>Float32</th>
<th>Fix16</th>
<th>Fix16+f.-t. in Design</th>
<th>Fix8</th>
<th>Fix8+f.-t. in Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexnet</td>
<td>55.7%</td>
<td>53.3%</td>
<td>55.1% (0.6% ↓)</td>
<td>51.6%</td>
<td>53.4% (2.3% ↓)</td>
</tr>
<tr>
<td>ZF</td>
<td>58.0%</td>
<td>56.3%</td>
<td>57.6% (0.4% ↓)</td>
<td>54.2%</td>
<td>56.2% (1.8% ↓)</td>
</tr>
<tr>
<td>VGG16</td>
<td>68.3%</td>
<td>67.0%</td>
<td>69.3% (1.0% ↑)</td>
<td>63.7%</td>
<td>69.2% (0.9% ↑)</td>
</tr>
</tbody>
</table>

Table 2: Accuracy for object detection (AP@IOU=0.5)

<table>
<thead>
<tr>
<th>Network</th>
<th>Precision</th>
<th>Car</th>
<th>Pedestrian</th>
<th>Cyclist</th>
<th>mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>YOLO (HD)</td>
<td>Float32</td>
<td>88.9%</td>
<td>64.9%</td>
<td>72.5%</td>
<td>75.5%</td>
</tr>
<tr>
<td></td>
<td>Fix16+f.-t. in Design</td>
<td>88.9%</td>
<td>65.0%</td>
<td>73.2%</td>
<td>75.7% (0.2% ↑)</td>
</tr>
<tr>
<td></td>
<td>Fix8+f.-t. in Design</td>
<td>88.9%</td>
<td>65.2%</td>
<td>72.6%</td>
<td>75.6% (0.1% ↑)</td>
</tr>
</tbody>
</table>

*f.-t. in Design represents the accuracy results are collected after retraining and fine-tuning
Experimental Results

Comparison: Embedded FPGAs for edge-devices

<table>
<thead>
<tr>
<th>Reference</th>
<th>[1]</th>
<th>[2]</th>
<th>DNNBuilder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categories</td>
<td>Edge-computing platforms</td>
<td>Edge-computing platforms</td>
<td>Edge-computing platforms</td>
</tr>
<tr>
<td>FPGA chip</td>
<td>Zynq XC7Z045</td>
<td>Zynq XC7Z045</td>
<td>Zynq XC7Z045</td>
</tr>
<tr>
<td>Frequency</td>
<td>150 MHz</td>
<td>100 MHz</td>
<td>200 MHz</td>
</tr>
<tr>
<td>Network</td>
<td>VGG</td>
<td>VGG</td>
<td>VGG</td>
</tr>
<tr>
<td>Precision</td>
<td>Fix16</td>
<td>Fix16</td>
<td>Fix16 (Fix8)</td>
</tr>
<tr>
<td>DSPs (used/total)</td>
<td>780/900</td>
<td>824/900</td>
<td>680/900</td>
</tr>
<tr>
<td>DSP Efficiency</td>
<td>44.0%</td>
<td>69.6%</td>
<td>96.2%</td>
</tr>
<tr>
<td>Performance (GOPS)</td>
<td>137</td>
<td>230</td>
<td>262 (524)</td>
</tr>
<tr>
<td>Power Efficiency (GOPS/W)</td>
<td>14.2</td>
<td>24.4</td>
<td>36.4 (72.8)</td>
</tr>
</tbody>
</table>

Comparison: High-performance FPGAs for cloud computing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Categories</td>
<td>Cloud-computing platforms</td>
<td>Cloud-computing platforms</td>
<td>Cloud-computing platforms</td>
<td>Cloud-computing platforms</td>
</tr>
<tr>
<td>FPGA chip</td>
<td>Arria10-1150</td>
<td>Arria10-1150</td>
<td>Stratix-V GXAD + CPU</td>
<td>KU115</td>
</tr>
<tr>
<td>Frequency</td>
<td>303 MHz</td>
<td>385 MHz</td>
<td>200 MHz & 2~3 GHz (CPU)</td>
<td>235 MHz</td>
</tr>
<tr>
<td>Network</td>
<td>Alexnet</td>
<td>VGG</td>
<td>Alexnet</td>
<td>VGG</td>
</tr>
<tr>
<td>Precision</td>
<td>Float16</td>
<td>Fix16</td>
<td>Fix16 in FPGA</td>
<td>Fix16 (Fix8)</td>
</tr>
<tr>
<td>DSPs (used/total)</td>
<td>2952/3036</td>
<td>2756/3036</td>
<td>512/512 in FPGA</td>
<td>4318/5520</td>
</tr>
<tr>
<td>DSP Efficiency</td>
<td>77.3%</td>
<td>84.3%</td>
<td>-</td>
<td>99.1%</td>
</tr>
<tr>
<td>Performance (GOPS)</td>
<td>1382</td>
<td>1790</td>
<td>781</td>
<td>2011 (4022)</td>
</tr>
<tr>
<td>Power Efficiency (GOPS/W)</td>
<td>30.7</td>
<td>47.8</td>
<td>-</td>
<td>90.2 (180.4)</td>
</tr>
</tbody>
</table>

Zynq XC7Z045
- LUT: 218,600
- FF: 437,200
- BRAM: 545
- DSP: 900

KU115
- LUT: 663,360
- FF: 1,326,720
- BRAM: 2160
- DSP: 5520

Experimental Results

Comparison: AlexNet inference performance GPU vs FPGA

<table>
<thead>
<tr>
<th>Platform</th>
<th>Precision</th>
<th>Batch</th>
<th>Throughput (img./S)</th>
<th>Power (W)</th>
<th>Efficiency (img./S/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNNBuilder (ZC706)</td>
<td>Fix16, Fix8</td>
<td>1, 2</td>
<td>170, 340</td>
<td>7.2</td>
<td>23.6, 47.2</td>
</tr>
<tr>
<td>GPU-TX2[26]</td>
<td>Float16</td>
<td>2</td>
<td>250</td>
<td>10.7</td>
<td>23.3</td>
</tr>
<tr>
<td>DNNBuilder (KU115)</td>
<td>Fix16, Fix8</td>
<td>3, 6</td>
<td>1126, 2252</td>
<td>22.9</td>
<td>49.2, 98.3</td>
</tr>
<tr>
<td>GPU-TitanX</td>
<td>Float32</td>
<td>128</td>
<td>5120</td>
<td>227.0</td>
<td>22.6</td>
</tr>
</tbody>
</table>

[26] Nvidia. Nvidia Jetson TX2 delivers twice the intelligence to the edge.
Outline:

1. Background
2. Motivations
3. Automation Flow
4. Accelerator Architecture
5. Design Space Exploration
6. Experimental Results
7. Conclusions
Conclusions

➢ We presented DNNBuilder for building DNN accelerator on FPGAs
 1) an automation tool (*Design*, *Generation*, and *Execution*)
 2) a fine-grained layer-based pipeline architecture
 3) a column-based cache scheme
 4) an automatic resource allocation algorithm

➢ We delivered the state-of-the-art performance and power efficiency
 1) the best throughput: 4022 (KU115) and 524 GOPS (ZC706)
 2) the best efficiency: 180.4 (KU115) and 72.8 GOPS/W (ZC706)