Refinement-Based Context-Sensitive Points-To Analysis for Java

Manu Sridharan, Rastislav Bodík
UC Berkeley

PLDI 2006
What Does Refinement Buy You?

Increased scalability: enable new clients

- **Memory**: orders of magnitude savings
- **Time**: answer for a variable comes back in 1 second
- Suitable for IDE

Cast Safety Client

Precision:

![Bar chart showing precision of casts proved safe.](image-url)
Approach: Focus on the Client

Demand-driven: only do requested work

Client-driven refinement: stop when client satisfied

Example:
- client asks: “can x point to o?”
- we refine until we answer NO (the good answer) or we time out
Context-Sensitive Analysis Costly

Context-sensitive analysis (def):
 • Compute result as if all calls inlined
 • But, collapse recursive methods

Exponential blowup (code growth)
Why Not Existing Technique?

Most analyses approximate same way in all code
 • E.g., k-CFA
 • Precision lost, esp. for data structures

Our analysis focuses precision where it matters
 • Fully precise in the limit
 • Only small amount of code analyzed precisely
 • First refinement algorithm for Java
Points-To Analysis Overview

Compute objects each variable can point to

 For each var x, **points-to set** pt(x)

Model objects with **abstract locations**

1: x = new Foo() yields pt(x) = \{ o_1 \}

Flow-insensitive: statements in any order
Points-To Analysis as CFL-Reachability

1) Assignments
 x = new Obj(); // o₁
 y = new Obj(); // o₂
 z = x;

2) Method calls
 id(p) { return p; }
 a = id(x);
 b = id(y);

3) Heap accesses
 c.f = x;
 c.g = y;
 d = c.f;

\[
\text{pt}(x) = \{ o \mid o \text{ flowsTo } x \}
\]

flowsTo: balanced call parens
Summary of Formulation

Graph represents program

Compute reachability with two filters

- Language of balanced call parens
- Language of balanced field parens
Single path problem

Problem: show path is unbalanced
Goal: reduce number of visited edges
Insight: enough to find one unbalanced paren
Approximation via Match Edges

Match edges connect matched field parens

- From source of open to sink of close
- Initially, all pairs connected

Use match edges to skip subpaths
Refining the Approximation

Refine by removing some match edges

- Exposes more of original path for checking

Soundness: Traverse match edge

assume field parens balanced on skipped path

Remove where unbalanced parens expected

- Explore deeper levels of pointer indirection
Refinement With Both Languages

Match edges enable approximation of calls

- Only can check calls on match-free subpaths

Match edge removal more call checking

- Key point: refine heap and calls together
Evaluation
Experimental Configuration

Implemented in Soot framework

Tested on large benchmarks x 2 clients
 • SPECjvm98, Dacapo suite
 • Downcast checking, factory method props

Refine context-insensitive result

Timeout for long-running queries
Precision: Cast Checking

![Bar chart showing precision of cast checking on various projects. The x-axis represents the project names, and the y-axis shows the percentage of casts proved safe. The chart compares two methods: 1-ObjSens (Milanova / Lhotak) and Refine.]
Scalability: Time and Memory

Average query time **less than 1 second**
- Interactive performance (for IDE)
- At most 13 minutes for casts,
 4 minutes for factory client

Very low memory usage: at most 35MB
- Of this, 30MB for context-insensitive result
- Compare with >2GB for 1-ObjSens analysis
Demand-Driven vs. Exhaustive

Demand advantage: no caching required
- Hence, low memory overhead
- No engineering of efficient sets
- Good for changing code; just re-compute

Demand advantage: faster for many clients
- Often only care about some variables

Demand disadvantage: slower querying all vars
- At most 90 minutes for all app. vars
- But, still good precision, memory
Conclusions

Novel refinement-based analysis

- More precise for tested clients
- Interactive performance for queries
- Low memory: could scale even more
- Relatively easy to implement

Insight: refine heap and calls together

- Useful for other balanced-paren analyses?