Online appendix for
“Toward breaking the curse of dimensionality: an FPTAS for stochastic dynamic programs with multidimensional actions and scalar states”

Nir Halman ∗ Giacomo Nannicini †
August 22, 2018

1 Additional routines

We report here the pseudocode and running time of the routines taken from [HKL+14, HN16] referenced in the main text of the paper. Given a monotone nondecreasing function ϕ, we define a routine FuncSearchINC(ϕ, D, ℓ, u) that looks for a point x ∈ D such that ℓ ≤ ϕ(x) ≤ u. Implementing this function is straightforward for both discrete domains and real intervals, using binary search.

In Alg. 1 we formally define the routine CompressINC that constructs an oracle for a K-approximation function of a monotone nondecreasing ϕ in the form of a canonical representation.

The main routine used in Algorithm 1 is ApxSetINC. We give its pseudocode in Algorithm 2 for continuous functions that are bounded away from zero; its counterpart for functions over discrete domains is straightforward. It is shown in [HN16] that ApxSetINC determines a K-approximation set with O \(\left(\frac{1}{\epsilon} \log \frac{c_{\text{max}}}{c_{\text{min}}} \right) \) points in O \(\left(1 + t_{\phi} \left(\frac{1}{\epsilon} \log \frac{c_{\text{max}}}{c_{\text{min}}} \right) \log ((B - A)\kappa) \right) \) time. For a function defined over a discrete domain D, the running time of ApxSetINC becomes O \(\left((1 + t_{\phi}) \left(\frac{1}{\epsilon} \log \frac{c_{\text{max}}}{c_{\text{min}}} \right) \log |D| \right) \), see [HKL+14].

Algorithm 1: Function CompressINC(ϕ, [A, B], K).

1: W ← ApxSetINC(ϕ, [A, B], K)
2: return \{ (x, ϕ(x)) | x ∈ W \} as an array of tuples sorted by their first coordinate

Algorithm 2: Function ApxSetINC(ϕ, [A, B], K).

1: x ← A, W ← {A, B}
2: while x < B do
3: x ← FuncSearchINC(ϕ, [x, B], \(K + \frac{1}{2} \phi(x), K\phi(x) \))
4: W ← W ∪ \{x\}
5: return W
2 Proof of Prop. 5.2

Proof. For \(i = 0, \ldots, n \), define:

\[
\psi_i(y) := \begin{cases}
(\Delta_i - \Delta_{i-1})(y - a_i) & \text{if } y \geq a_i, \\
0 & \text{otherwise.}
\end{cases}
\]

Because \(\psi \) is piecewise linear, for all \(y \in [A, B] \) we have \(\psi(y) = \psi(A) + \sum_{i=1}^{n} \psi_i(y) \). We have:

\[
\mathbb{E}_D(\xi(f(x, D))) \leq \mathbb{E}_D(\psi(f(x, D))) \\
= \int_{d_1}^{d_m} \psi(f(x, d))F'(d) \, dd \\
= \psi(A) + \int_{d_1}^{d_m} \sum_{i=1}^{n} \psi_i(f(x, d))F'(d) \, dd \\
= \psi(A) + \sum_{i=1}^{n} \left(\int_{d_1}^{d_m} \psi_i(f(x, d))F'(d) \, dd \right) \\
= \psi(A) + \sum_{i=1}^{n} (\Delta_i - \Delta_{i-1}) \int_{d_1}^{d_m} \max\{0, (bx + e - d - a_i)\} F'(d) \, dd \\
= \psi(A) + \sum_{i=1}^{n} (\Delta_i - \Delta_{i-1}) \int_{d_1}^{d_m} (bx + e - d - a_i) F'(d) \, dd,
\]

where the first inequality is due to \(\psi \) being a \(K_1 \)-approximation function of \(\xi \), and the rest are algebraic manipulations.

We construct a discrete r.v. \(\hat{D} \) that takes values \(d_1, \ldots, d_{m-1} \) with:

\[
\Pr(\hat{D} = d_j) = \begin{cases}
F(d_2) & \text{if } j = 1 \\
F(d_{j+1}) - F(d_j) & \text{if } j = 2, \ldots, m - 1.
\end{cases}
\]

It follows that the CDF \(\hat{F} \) of \(\hat{D} \) is \(\hat{F}(d) = \max\{F(d_{j+1}) : d_j \leq d, j = 1, \ldots, m - 1\} \). In order to compute expected values of continuous functions of \(\hat{D} \) using the classical integration approach, we define the generalized PDF of \(\hat{D} \) as follows:

\[
\hat{F}'(d) := \delta(d - d_1)F(d_2) + \sum_{j=2}^{m-1} \delta(d - d_j)(F(d_{j+1}) - F(d_j)).
\]

Notice that \(\hat{D} \preceq D \) in the usual stochastic order, because \(\Pr(\hat{D} > d) \leq \Pr(D > d) \) for all \(d \). Since \(\hat{D} \preceq D \) and \((bx + e - d - a_i) \) is a decreasing function in \(d \), it follows that:

\[
\int_{d_1}^{\max\{d: bx + e - d \geq a_1\}} (bx + e - d - a_i)F'(d) \, dd \leq \int_{d_1}^{\max\{d: bx + e - d \geq a_1\}} (bx + e - d - a_i) \hat{F}'(d) \, dd = \\
(bx + e - d_1 - a_i)F(d_2) + \sum_{j=2}^{m_i(x)} (bx + e - d_j - a_i)(F(d_{j+1}) - F(d_j)) = \\
(bx + e - d_1 - a_i)\hat{F}(d_2) + \sum_{j=2}^{m_i(x)} (bx + e - d_j - a_i)(\hat{F}(d_{j+1}) - \hat{F}(d_j)) = \\
(bx + e - d_{m_i(x)} - a_i)\hat{F}(d_{m_i(x)+1}) + \sum_{k=1}^{m_i(x)-1} (d_{k+1} - d_k)\hat{F}(d_{k+1}).
\]
Putting everything together in (1), we obtain:

\[\mathbb{E}_D(\xi(f(x, D))) \leq \psi(A) + \sum_{i=1}^{n} (\Delta_i - \Delta_{i-1}) \left((bx + e - d_{m_i}(x) - a_i)\tilde{F}(d_{m_i}(x) + 1) + \sum_{k=1}^{m_i(x)-1} (d_{k+1} - d_k)\tilde{F}(d_{k+1}) \right). \]

Because \(\psi(x) \leq K_1 \xi(x) \) for all \(x \) and \(F' \) is nonnegative, we can write:

\[\mathbb{E}_D(\psi(f(x, D))) = \int_{d_1}^{d_m} \psi(f(x, d))F'(d) \, dd \leq K_1 \int_{d_1}^{d_m} \xi(f(x, d))F'(d) \, dd = K_1 \mathbb{E}_D(\xi(f(x, D))). \] (2)

We now construct a discrete r.v. \(\hat{D} \) that takes values \(d_1, \ldots, d_m \) with \(\Pr(\hat{D} = d_j) = F(d_j) - F(d_{j-1}) = \tilde{F}(d_j) - \tilde{F}(d_{j-1}) \). It follows that the CDF \(\tilde{F} \) of \(\hat{D} \) is \(\tilde{F}(d) = \max\{F(d_j) : d_j \leq d, j = 1, \ldots, m\} \). As before, we define the generalized PDF of \(\hat{D} \) as follows:

\[\tilde{F}'(d) := \sum_{j=1}^{m} \delta(d - d_j)(F(d_j) - F(d_{j-1})). \]

Notice that \(D \leq \hat{D} \) in the usual stochastic order, because \(\Pr(D > d) \leq \Pr(\hat{D} > d) \) for all \(d \). Since \(D \leq \hat{D} \) and \((bx + e - d - a_i) \) is a decreasing function in \(d \), it follows that:

\[
\int_{d_1}^{\max\{d:bx+e-d\geq a_i\}} (bx + e - d - a_i)\tilde{F}'(d) \, dd \geq \int_{d_1}^{\max\{d:bx+e-d\geq a_i\}} (bx + e - a_i)\tilde{F}'(d) \, dd =
\sum_{j=1}^{m_i(x)} (bx + e - d_j - a_i)(F(d_j) - F(d_{j-1})) =
\sum_{j=1}^{m_i(x)} (bx + e - d_j - a_i)(\tilde{F}(d_j) - \tilde{F}(d_{j-1})) =
(bx + e - d_{m_i(x)} - a_i)\tilde{F}(d_{m_i(x)}) + \sum_{k=1}^{m_i(x)-1} (d_{k+1} - d_k)\tilde{F}(d_k) \geq
\frac{1}{K_2} (bx + e - d_{m_i(x)} - a_i)\tilde{F}(d_{m_i(x)+1}) + \frac{1}{K_2} \sum_{k=1}^{m_i(x)-1} (d_{k+1} - d_k)\tilde{F}(d_{k+1}),
\]

where the last inequality follows from the fact that \(F(d_{j+1}) \leq K_2 F(d_j) \) for \(j = 1, \ldots, m - 1 \) by definition of \(K \)-approximation set for monotone function. Then we can write:

\[
\mathbb{E}_D(\psi(f(x, D))) = \psi(A) + \sum_{i=1}^{n} (\Delta_i - \Delta_{i-1}) \int_{d_1}^{\max\{d:bx+e-d\geq a_i\}} (bx + e - d - a_i)F'(d) \, dd \geq
\psi(A) +
\frac{1}{K_2} \sum_{i=1}^{n} (\Delta_i - \Delta_{i-1}) \left((bx + e - d_{m_i(x)} - a_i)\tilde{F}(d_{m_i(x)+1}) + \sum_{k=1}^{m_i(x)-1} (d_{k+1} - d_k)\tilde{F}(d_{k+1}) \right) \geq
\frac{\xi(x)}{K_2}. \] (3)

By combining inequalities (2) and (3) we get the desired approximation ratio.
It is easy to verify that \(\tilde{\xi} \) has increasing slopes and is therefore a convex piecewise linear increasing function. To conclude, we discuss how to compute a representation of \(\xi \) in terms of breakpoints and slopes. By examining the expression:

\[
\tilde{\xi}(x) = \psi(A) + \sum_{i=1}^{n} (\Delta_i - \Delta_{i-1}) \left((bx + e - d_{m_i}(x) - a_i)\hat{F}(d_{m_i}(x)+1) + \sum_{k=1}^{m_i(x)-1} (d_{k+1} - d_k)\hat{F}(d_{k+1}) \right),
\]

we see that the slope of each term of the summation changes whenever \(m_i(x) \) changes. There are at most \(m \) such changes for each term, and their location can be computed in \(O(m) \) time because for term \(i \) the breakpoints are of the form \(d_j - e + a_i \) for \(j = 1, \ldots, m \). We then obtain, in \(O(mn) \) time, \(n \) sorted lists with \(m \) elements each. These lists can be merged in \(O(mn \log n) \) time, yielding a superset of the breakpoints of \(\xi(x) \). To compute the slopes we only need an additional \(O(m) \) time to preprocess the \(m - 1 \) partial sums \(\sum_{k=1}^{m-1} (d_{k+1} - d_k)\hat{F}(d_{k+1}) \), since the value of \(\hat{F} \) at all queried points is known and available in the approximation set that induces \(\hat{F} \). The overall time requirement is therefore \(O(mn \log n) \).

\[\square\]

3 \((\Sigma, \Pi)\)-approximation functions and their calculus

These results are taken from [HN16].

Proposition 3.1 (Adapted from Prop. 3.7 in [HN16]) Let \(\varphi : [A, B] \to \mathbb{R}^+ \) be a \(\kappa \)-Lipschitz continuous convex function. Then, for every constants \(\Sigma > 0 \) and \(\Pi = 1 + \epsilon > 1 \), one can construct a piecewise-linear convex \((\Sigma, \Pi)\)-approximation function \(\tilde{\varphi} \) for \(\varphi \) with \(p := O\left(\frac{1}{\epsilon} \log \frac{\kappa \varphi_{\max}}{\Sigma} \right) \) pieces in \(O\left((1 + t_\varphi)(\frac{1}{\epsilon} \log \frac{\epsilon \varphi_{\max}}{\Sigma} \log \frac{\kappa(B - A)}{\Sigma}) \right) \) time, with explicitly computed breakpoints and slopes. Moreover, the value of \(\tilde{\varphi}(\cdot) \) can be determined in \(\log p \) time at any point in \([A, B]\).

Proposition 3.2 (Calculation of \((\Sigma, \Pi)\)-approximation Functions) For \(i = 1, 2 \) let \(\Sigma_i \geq 0 \), \(\Pi_i \geq 1 \), let \(\varphi_i : D \to \mathbb{R}^+ \) be an arbitrary function over continuous domain \(D \), and let \(\tilde{\varphi}_i : D \to \mathbb{R}^+ \) be a \((\Sigma_i, \Pi_i)\)-approximation of \(\varphi_i \). Let \(\psi_i : D \to D \), and let \(\alpha_i \in \mathbb{R}^+ \). The following rules hold:

1. \(\varphi_1 \) is a \((0, 1)\)-approximation of itself.
2. (linearity of appr.) \(\alpha_1 \tilde{\varphi}_1 + \alpha_2 \) is a \((\alpha_1 \Sigma_1, \Pi_1)\)-approximation of \(\alpha_1 \varphi_1 + \alpha_2 \).
3. (summation of appr.) \(\tilde{\varphi}_1 + \tilde{\varphi}_2 \) is a \((\Sigma_1 + \Sigma_2, \max\{\Pi_1, \Pi_2\})\)-approximation of \(\varphi_1 + \varphi_2 \).
4. (composition of appr.) \(\tilde{\varphi}_1(\psi) \) is a \((\Sigma_1, \Pi_1)\)-approximation of \(\varphi_1(\psi) \).
5. (minimization of appr.) \(\min\{\tilde{\varphi}_1, \tilde{\varphi}_2\} \) is a \((\max\{\Sigma_1, \Sigma_2\}, \max\{\Pi_1, \Pi_2\})\)-approximation of \(\min\{\varphi_1, \varphi_2\} \).
6. (maximization of appr.) \(\max\{\tilde{\varphi}_1, \tilde{\varphi}_2\} \) is a \((\max\{\Sigma_1, \Sigma_2\}, \max\{\Pi_1, \Pi_2\})\)-approximation of \(\max\{\varphi_1, \varphi_2\} \).
7. (approximation of appr.) If \(\varphi_2 = \varphi_1 \) then \(\tilde{\varphi}_2 \) is a \((\Sigma_2 + \Pi_2 \Sigma_1, \Pi_1 \Pi_2)\)-approximation of \(\varphi_1 \).

References
