Large-Scale Matrix Factorization with
Distributed Stochastic Gradient Descent

Rainer Gemulla! Peter J. Haas®> Erik Nijkamp? Yannis Sismanis?

Max-Planck-Institut fiir Informatik 2IBM Almaden Research Center
Saarbriicken, Germany San Jose, CA, USA
rgemulla@mpi-inf.mpg.de {phaas, enijkam, syannis} @us.ibm.com

Revision of IBM Technical Report RJ10481 (March 16, 2011)
February 20, 2013

We provide a novel algorithm to approximately factor large matrices with millions
of rows, millions of columns, and billions of nonzero elements. Our approach rests
on stochastic gradient descent (SGD), an iterative stochastic optimization algorithm.
We first develop a novel “stratified” SGD variant (SSGD) that applies to general loss-
minimization problems in which the loss function can be expressed as a weighted sum
of “stratum losses.” We establish sufficient conditions for convergence of SSGD using
results from stochastic approximation theory and regenerative process theory. We then
specialize SSGD to obtain a new matrix-factorization algorithm, called DSGD, that can
be fully distributed and run on web-scale datasets using MapReduce. DSGD has good
speed-up behavior and handles a wide variety of matrix factorizations. We describe
the practical techniques used to optimize performance in our DSGD implementation.
Experiments suggest that DSGD converges significantly faster and has better scalability
properties than alternative algorithms.

Contents

. Introduction

. Example and Prior Work

. Stochastic Gradient Descent
3.1. Preliminaries e
3.2. SGD for Matrix Factorization

. Stratified SGD
4.1. The SSGD Algorithm
4.2. Convergence of SSGD L L
4.3. Conditions for Stratum Selection

. The DSGD Algorithm

5.1. Interchangeability
52. ASimpleCase
53. TheGeneral Case i i ittt

. DSGD Implementation

6.1. General Algorithmic Details
6.2. MapReduce/Hadoop Implementation

. Experiments

T Setup . ..o e e e
7.2. Relative Performance,
7.3. Scalability e
7.4. Selection Schemes
7.5. Other Loss Functions

. Conclusions

. MapReduce Algorithms for Matrix Factorization

A.l. Specialized Algorithms oL
A.2. Generic Algorithms

. Parallelization Techniques for Stochastic Approximation

. Example Loss Functions and Derivatives

16
16
17
19

21
21
23

25
25
27
30
31
32

33

35
35
41

43

45

1. Introduction

As Web 2.0 and enterprise-cloud applications proliferate, data mining algorithms need to be
(re)designed to handle web-scale datasets. For this reason, low-rank matrix factorization has
received much attention in recent years, since it is fundamental to a variety of mining tasks that are
increasingly being applied to massive datasets [12, 17, 20, 22, 25]. Specifically, low-rank matrix
factorizations are effective tools for analyzing “dyadic data” in order to discover and quantify
the interactions between two given entities. Successful applications include topic detection and
keyword search (where the corresponding entities are documents and terms), news personalization
(users and stories), and recommendation systems (users and items). In large applications, these
problems can involve matrices with millions of rows (e.g., distinct customers), millions of columns
(e.g., distinct items), and billions of entries (e.g., transactions between customers and items). At
such scales, distributed algorithms for matrix factorization are essential to achieving reasonable
performance [12, 13, 25, 32]. In this paper, we provide a novel, effective distributed factorization
algorithm based on stochastic gradient descent.

In practice, exact factorization is generally neither possible nor desired, so virtually all “matrix
factorization” algorithms actually produce low-rank approximations, attempting to minimize a “loss
function” that measures the discrepancy between the original input matrix and product of the factors
returned by the algorithm; we use the term “matrix factorization” throughout to refer to such an
approximation.

With the recent advent of programmer-friendly parallel processing frameworks such as MapRe-
duce, web-scale matrix factorizations have become practicable and are of increasing interest to
web companies, as well as other companies and enterprises that deal with massive data. Indeed,
MapReduce can be used not only to factor an input matrix, but also to efficiently construct the input
matrix from massive, detailed raw data, such as customer transactions. To facilitate distributed
processing, prior approaches would pick an embarrassingly parallel matrix factorization algorithm
and implement it on a MapReduce cluster; the choice of algorithm was driven by the ease with
which it could be distributed. In this paper, we take a different approach and start with an algorithm
that is known to have good performance in non-parallel environments. Specifically, we start with
stochastic gradient descent (SGD), an iterative optimization algorithm which has been shown, in
a sequential setting, to be very effective for matrix factorization [20]. Although the generic SGD
algorithm is not embarrassingly parallel, we can exploit the special structure of the factorization
problem to obtain a version of SGD that is fully distributed and scales to extremely large matrices.

The key idea is to first develop a “stratified” variant of SGD, called SSGD, that is applicable
to general loss-minimization problems in which the loss function L(6) can be expressed as a
weighted sum of “stratum losses,” so that L(6) = w1 L1 (6) + - - - + wqLy(0). At each iteration, the
algorithm takes a downhill step with respect to one of the stratum losses L, i.e., approximately in
the direction of the negative gradient — L’ (). Although each such direction is “wrong” with respect
to minimization of the overall loss L, we prove that, under appropriate regularity conditions, SSGD
will converge to a good solution for L if the sequence of strata is chosen carefully.

We then specialize SSGD to obtain a novel distributed matrix-factorization algorithm, called
DSGD. Specifically, we express the input matrix as a union of (possibly overlapping) pieces, called

“strata.” For each stratum, the stratum loss is defined as the loss computed over only the data points
in the stratum (and appropriately scaled). The strata are carefully chosen so that each stratum has
“d-monomial” structure, which allows SGD to be run on the stratum in a distributed manner. For
example, a stratum corresponding to the nonzero entries in a block-diagonal matrix with k blocks
is d-monomial for all d < k. The DSGD algorithm repeatedly selects a stratum according to the
general SSGD procedure and processes the stratum in a distributed fashion. Stratification is a
technique commonly used to reduce the variance of noisy estimates [4, Sec. V.7], such as gradient
estimates in SGD; here we re-purpose the stratification technique to derive a distributed factorization
algorithm with provable convergence guarantees.

Our contributions are as follows:

1. We present SSGD, a novel stratified version of SGD, that is applicable to any optimization
problem in which the loss function can be represented as a weighted sum of stratum losses.

2. We formally establish sufficient conditions for the convergence of SSGD using results from
stochastic approximation theory and regenerative process theory.

3. We specialize SSGD to obtain DSGD, a novel distributed algorithm for low-rank matrix
factorization. Both data and factors are fully distributed. DSGD has low memory requirements
and scales to matrices with millions of rows, millions of columns, and billions of nonzero
elements.

4. We describe practical techniques for implementing DSGD and optimizing its performance.

5. We show that DSGD is amenable to MapReduce, a popular framework for distributed pro-
cessing.

6. We compare DSGD to state-of-the-art distributed algorithms for matrix factorization. Our
experiments suggest that DSGD converges significantly faster, and has better scalability.

Unlike many prior algorithms, DSGD is a generic algorithm in that it can be used for a variety
of different loss functions. In this paper, we focus primarily on the class of factorizations that
minimize a “nonzero loss.” This class of loss functions is important for applications in which a zero
represents missing data and hence should be ignored when computing loss. A typical motivation for
factorization in this setting is to estimate the missing values, e.g., the rating that a customer would
likely give to a previously unseen movie.

The rest of the paper is organized as follows. In Sec. 2, we introduce the factorization problem
by means of an example, and discuss prior approaches to its solution. Sec. 3 describes the basic
(non-parallel) SGD algorithm and its application to the matrix factorization problem. In Sec. 4
we develop the stratified variant of SGD and establish sufficient conditions for convergence. We
specialize SSGD in Sec. 5 to obtain our DSGD matrix factorization algorithm. We first discuss
the special “interchangeability” structure that we exploit to permit distributed execution of SGD
within a stratum, and then show how to exploit this structure by means of a simple example that
corresponds to processing of a single stratum by DSGD. We then give the general algorithm, which
combines distributed processing within strata and careful selection of a stratum sequence. Practical
implementation considerations are discussed in Sec. 6 and our empirical study of DSGD is described
in Sec. 7. We conclude in Sec. 8.

2. Example and Prior Work

To gain understanding about applications of matrix factorizations, consider the “Netflix problem” [5]
of recommending movies to customers. Netflix is a company that offers tens of thousands of movies
for rental. The company has more than 15M customers, each of whom can provide feedback about
their personal taste by rating movies with 1 to 5 stars. The feedback can be represented in a feedback
matrix such as

Avatar The Matrix Up

Alice ? 4 2
Bob 3 2 ?
Charlie 5 ? 3

Each entry may contain additional data, e.g., the date of rating or other forms of feedback such
as click history. The goal of the factorization is to predict missing entries (?); entries with a high
predicted rating are then recommended to users for viewing. This is an instance of a recommender
system based on matrix factorization, and has been successfully applied in practice. See [20] for an
excellent discussion of the intuition behind this approach.

The traditional matrix factorization problem can be stated as follows. Given an m X n matrix V
and a rank r, find an m X r matrix W and an r X n matrix H such that V = W H. As discussed
previously, our actual goal is to obtain a low-rank approximation V' ~ W H, where the quality of
the approximation is described by an application-dependent loss function L. We seek to find

argmin L(V, W H),
W.H

i.e., the choice of W and H that give rise to the smallest loss. For example, assuming that missing
ratings are coded with the value 0, loss functions for recommender systems are often based on the
nonzero squared loss
2
LInzsL = Z (Vij — [WH]ij) (1)
1,j:Vi;#0

and usually incorporate regularization terms, user and movie biases, time drifts, and implicit
feedback.

In the following, we restrict attention to loss functions that, like Lnzsr, can be decomposed into a
sum of local losses over (a subset of) the entries in V';;. Le., we require that the loss can be written
as

(i.j)€Z
for some training set Z C {1,2,...,m} x {1,2,...,n} and local loss function |, where A;, and

A, ; denote row ¢ and column j of matrix A, respectively. Many loss functions used in practice—
such as squared loss, generalized Kullback-Leibler divergence (GKL), and L, regularization—can
be decomposed in such a manner [28]; see Appendix C for more examples. Note that a given loss
function L can potentially be decomposed in multiple ways. In this paper, we focus primarily on the

class of nonzero decompositions, in which Z = { (i, j) : V;; # 0 } refers to the nonzero entries in
V. As mentioned above, such decompositions naturally arise when zeros represent missing data.
Our algorithms can handle other decompositions as well; see our preliminary results for GKL in
Sec. 7. To avoid trivialities, we assume throughout that there is at least one training point in every
row and in every column of V'; e.g., every customer has rated at least one movie and every movie
has been rated at least once.’

To compute W and H on MapReduce, all known algorithms start with some initial factors
W and H and iteratively improve them. The m X n input matrix V' is partitioned into d; X do
blocks, which are distributed in the MapReduce cluster. Both row and column factors are blocked
conformingly:

Hl H2 L. Hd2
Wl Vll V12 L. V1d2
W2 V21 V22 L. V2d2
Wdl V;lll V;h? . Vd'ldQ

where we use superscripts to refer to individual blocks. The algorithms are designed such that each
block V' can be processed independently in the map phase, taking only the corresponding blocks
of factors W and H as input. Some algorithms directly update the factors in the map phase (then
either d; = m or dy = n to avoid overlap), whereas others aggregate the factor updates in a reduce
phase.

Existing algorithms can be classified into specialized algorithms, which are designed for a
particular loss, and generic algorithms, which work for a wide variety of loss functions. Specialized
algorithms currently exist for only a small class of loss functions. For GKL loss, Das et al. [12]
provide an EM-based algorithm, and Liu et al. [25] provide a multiplicative-update method. In
[25], the latter MULT approach is also applied to squared loss and nonnegative matrix factorization
with an “exponential” loss function (exponential NMF). Each of these algorithms in essence takes
an embarrassingly parallel matrix factorization algorithm developed previously—in [17, 18] for
the EM algorithm and in [22, 23] for the MULT methods—and directly distributes it across the
MapReduce cluster. Zhou et al. [32] show how to distribute the well-known alternating least squares
(ALS) algorithm to handle factorization problems with a nonzero squared loss function and an
optional weighted Lo regularization term. Their approach requires a double-partitioning of V': once
by row and once by column. Moreover, ALS requires that each of the factor matrices W and H
can (alternately) fit in main memory. More details on each of the foregoing algorithms can be found
in Appendix A.

Generic algorithms are able to handle all differentiable loss functions that decompose into
summation form. A simple approach is distributed gradient descent (DGD [13, 16, 26]), which
distributes gradient computation across a compute cluster, and then performs centralized parameter
updates using, for example, quasi-Newton methods such as L-BFGS-B [8]. Partitioned SGD

'Clearly, recommendation is impossible for a customer who has never rated a movie or a movie that has never been
rated; mathematically, the W factors for an empty row or the H factors for an empty column can be set to any
arbitrary value without affecting the loss, so the factorization problem is not well posed in this case.

approaches make use of a similar idea: SGD is run independently and in parallel on partitions of
the dataset, and parameters are averaged after each pass over the data (PSGD [16, 27]) or once
at the end (ISGD [26, 27, 33]). These approaches have not been applied to matrix factorization
before. Similarly to L-BFGS-B, they exhibit slow convergence in practice (see Sec. 7) and need to
store the full factor matrices in memory. This latter limitation can be a serious drawback: for large
factorization problems, it is crucial that both matrix and factors be distributed. Our present work
on DSGD is a first step towards such a fully distributed generic algorithm with good convergence
properties.

3. Stochastic Gradient Descent

In this section, we discuss how to factorize a given matrix via standard (non-parallel) SGD.

3.1. Preliminaries

The goal of SGD is to find the value §* € R* (k > 1) that minimizes a given loss L(f). The
algorithm makes use of noisy observations L'(6) of L'(6), the function’s gradient with respect to
. Starting with some initial value 6y, SGD refines the parameter value by iterating the stochastic

difference equation
9n+1 =0, — EnL/(en)7 (3)

where n denotes the step number and { ¢, } is a sequence of decreasing step sizes. (We assume
throughout that each ¢, is nonnegative and finite.) Since —L’(6,,) is the direction of steepest descent,
(3) constitutes a noisy version of gradient descent. Figure 1 illustrates this process with an example
in which 6 is 2-dimensional.

Stochastic approximation theory can be used to show that, under certain regularity conditions [21],
the noise in the gradient estimates “averages out” and SGD converges to the set of stationary points
satisfying L'(f) = 0. Of course, these stationary points can be minima, maxima, or saddle points.
One may argue that convergence to a maximum or saddle point is unlikely because the noise in
the gradient estimates reduces the likelihood of getting stuck at such a point. Thus { 6,, } typically
converges to a (local) minimum of L. A variety of methods can be used to increase the likelihood
of finding a global minimum, e.g., running SGD multiple times, starting from a set of randomly
chosen initial solutions.

In practice, one often makes use of an additional projection IIz that keeps the iterate in a given
constraint set H. For example, there is considerable interest in nonnegative matrix factorizations [22],
which corresponds to setting H = {6 : § > 0 }. The projected algorithm takes form

Oni1 = g [0n — €, L/ (6,)]. (4)

In addition to the set of stationary points, the projected process may converge to the set of “chain
recurrent” points [2 1], which are influenced by the boundary of the constraint set H.

o0
ST A0

AN
< 1:'(00)
fe=l

&)

=]
fe=l
™
aE
=}
S
[aN]
S

I I I 1
0.5 0.0 0.5 1.0

Figure 1: Example of SGD

3.2. SGD for Matrix Factorization

To apply SGD to matrix factorization, we take 6 to be (W, H) and decompose the loss L as
in (2) for an appropriate training set Z and local loss function [. For brevity, we suppress the
constant matrix V' in our notation. Denote by L. (W, H) = L;j(W,H) = [(V;;, W;., H,;) the
local loss at position z = (i,). Then LW ,H) = > __, L.(W,H) and hence L'(W,H) =
> .cz L.(W, H) by the sum rule for differentiation. DGD methods exploit the summation form
of L: they compute the local gradients L/, in parallel and sum up. In contrast, SGD obtains noisy
gradient estimates by scaling up just one of the local gradients, i.e.,

L'(W,H)=NL(W,H),

where N = |Z| and the training point z is chosen randomly from the training set. Algorithm 1 uses
SGD to perform matrix factorization.

Algorithm 1 SGD for Matrix Factorization

Require: A training set Z, initial values W and H
while not converged do /* step */
Select a training point (7, j) € Z uniformly at random.
Wi, Wi —enNggo—1(Vij, Wi, H.j)
H*J’ — H*J’ — EnN%*jl(Vij, Wi*, H*j)
end while

Note that, after generating a random training point (7, j) € Z, we need to update only W, and
W, and do not need to update factors of the form W, for i’ # i or H,; for j' # j. This

computational savings follows from our representation of the global loss as a sum of local losses.
Specifically, we have used the fact that

0 Lij(W,H) = 0 ifi 27 (5)
OW i 2 | 39l (Vij, Wi, Haj) otherwise
and
0 if j # 5
LL@']‘(W,H): 5]?’é] ©)
OH ml(vzj, Wi, H,;) otherwise

for 1 < k < r. SGD is sometimes referred to as online learning or sequential gradient descent [0].
Batched versions, in which multiple local losses are averaged, are also feasible but often have
inferior performance in practice.

One might wonder why replacing exact gradients (GD) by noisy estimates (SGD) can be beneficial.
The main reason is that exact gradient computation is costly, whereas noisy estimates are quick
and easy to obtain. In a given amount of time, we can perform many quick-and-dirty SGD updates
instead of a few, carefully planned GD steps. The noisy process also helps in escaping local minima
(especially those with a small basin of attraction and more so in the beginning, when the step sizes
are large). Moreover, SGD is able to exploit repetition within the data. Parameter updates based on
data from a certain row or column will also decrease the loss in similar rows and columns. Thus the
more similarity there is, the better SGD performs. Ultimately, the hope is that the increased number
of steps leads to faster convergence. This behavior can be proven for some problems [7], and it has
been observed in the case of large-scale matrix factorization [20].

4. Stratified SGD

In this section we develop a general stratified stochastic gradient descent (SSGD) algorithm, and
give sufficient conditions for convergence. In Sec. 5 we specialize SSGD to obtain an efficient
distributed algorithm (DSGD) for matrix factorization.

4.1. The SSGD Algorithm

In SSGD, the loss function L(6) is decomposed into a weighted sum of loss functions L () as
follows:

L(Q) = wlLl(G) + w2L2(9) + ...+ U]qu(g), (7)

where we assume without loss of generality that 0 < ws < 1 and) ws = 1. We refer to index s
as a stratum, L as the stratum loss for stratum s, and w; as the weight of stratum s. In practice, a
stratum often corresponds to a part or partition of some underlying dataset. In this case, one can
think of L, as the loss incurred on the respective partition; the overall loss is obtained by summing
up the per-partition losses. In general, however, the decomposition of L can be arbitrary; there may
or may not be an underlying data partitioning. Also note that there is some freedom in the choice of

®Q *
=aES el
NN
¢
g_ AN
]
fe=l
™
pe
(=]
=
3 A
=S4
T T T 1
0.5 0.0 0.5 1.0

Figure 2: Example of stratified SGD

the w;; they may be altered to arbitrary values (subject to the constraints above) by appropriately
modifying the stratum loss functions. This freedom gives room for optimization.

SSGD runs standard stochastic gradient descent on a single stratum at a time, but switches strata
in a way that guarantees correctness. The algorithm can be described as follows. Suppose that there
is a (potentially random) stratum sequence { y, }, where each -, takes valuesin {1,...,¢ } and
determines the stratum to use in the nth iteration. Using a noisy observation [A/% of the gradient
L., , we obtain the update rule

Ons1 =T [0, — €Ll (60)]. (8)

The sequence { 7, } has to be chosen carefully to establish convergence to the stationary (or chain-
recurrent) points of L. Indeed, because each step of the algorithm proceeds approximately in the
“wrong” direction, i.e., —L’ (0,) rather than —L/(6,,), it is not obvious that the algorithm will
converge at all. We show in Sec. 4.2 and 4.3, however, that SSGD will indeed converge under
appropriate regularity conditions provided that, in essence, the “time” spent on each stratum is
proportional to its weight.

Figure 2 shows an example of SSGD, where the loss (shown in green) has been decomposed into
two strata (blue and red). When ,, = red, the iterate is “pulled” towards the red optimum; when
Yn, = blue, it moves towards the blue optimum. In the long run, the process converges to the overall
optimum.

4.2. Convergence of SSGD

Appropriate sufficient conditions for the convergence of SSGD can be obtained from general results
on stochastic approximation in Kushner and Yin [21, Sec. 5.6]. These conditions are satisfied in most

10

matrix factorization problems. We distinguish step-size conditions, loss conditions, stratification
conditions, and stratum-sequence conditions.
The two step-size conditions involve the sequence { ¢, }.

Condition 1. The step sizes slowly approach zero in that €,, — 0 and) €,, = 0.
Condition 2. The step sizes decrease “quickly enough” in that y e? < 00

Clearly, the step sizes must decrease to 0 in order for the algorithm to converge (as specified in
Condition 1). However, this convergence must occur at the correct rate. Condition 1 ensures that the
SGD algorithm can move across arbitrarily large distances and thus cannot get stuck halfway to a
stationary point; Condition 2 (“square summability””) ensures that the step sizes decrease to O fast
enough so that converge occurs. The simplest valid choice is €, = 1/n.

The next pair of conditions involve the loss function.

Condition 3. The constraint set H on which L is defined is a hyperrectangle.
Condition 4. L'(0) is continuous on H.

Note that non-differentiable points may arise in matrix factorization, e.g., when L regularization
is used. SSGD is powerful enough to deal with such points under appropriate regularity conditions,
using “subgradients”; see [21] for details.

With respect to stratification, we require that estimates of the gradient defined with respect to a
given stratum are unbiased, have bounded second moment for § € H, and do not depend on the
past. DSGD satisfies these conditions by design. More precisely, the conditions are as given below.
Denote by f)’vnn(ﬁn) the gradient estimate used in the nth step.

Condition 5. The gradient estimates have bounded second moment, i.e.,

sup B |2/, (0] < o0
n

forall0 € H.

This condition ensures that the noise in the gradient estimates is small enough to eventually be
averaged out, and is often fulfilled by choosing the constraint set H appropriately (so that L’ () is
bounded forall s € {1,...,¢} and 0 € H).

Condition 6. The noise in the gradient estimates is a martingale difference, i.e.,

E[L, (0n) |] = L, (6).

Tn,T

where IA/%n is the gradient estimate in the nth step and 7, = o({ €;,0;,7vi,1 < n}) is the o-field
that represents what is known at step n.

Thus, accounting for the entire history, the gradient estimate is required to be unbiased for the
gradient.
Finally, we give a sufficient condition on the stratum sequence.

11

Condition 7. The step sizes satisfy (€, — €nt1)/€n = O(€y,) and the 7y, are chosen such that the
directions “average out correctly” in the sense that, for any 0 € H,

n—1
lim e, ZO [LL.(0)—L'(9)] =0

almost surely.

For example, if €,, were equal to 1/n, then the nth term would represent the empirical average
deviation from the true gradient over the first n steps.

We can now state our correctness result, which asserts that, under the foregoing conditions, the 6,
sequence converges almost surely to the set of limit points of an ODE that is a smoothed version of
the basic SGD recursion. As shown in [21], these limit points comprise the set of stationary points
of L in H, as well as a set of chain-recurrent points on the boundary of H. In our setting, the limit
point to which SSGD converges is typically a good local minimum.

Theorem 1. Suppose that Conditions 1-7 hold. Then the sequence { 0., } converges almost surely
to the set of limit points of the projected ODE

0=—L"0)+=z

in H, taken over all initial conditions. Here, z is the “minimum force” to keep the solution in H [2],
Sec. 4.3].

The conditions used in Theorem 1 can be weakened considerably, but suffice for our purposes.
The theorem follows directly from results in [21]. Indeed, as a special case of [21, Th. 6.1.1],
the desired result follows from Conditions 1, 3, 4, and 5, and two “asymptotic rate of change”
(ARC) assumptions: one on the gradient-estimation noise, given by (6.1.4) in [21], and one on the
differences { L’ (0) — L'(0)}52,, given by (A6.1.3) in [21]. As discussed on pp. 137-138 of [21],
the first ARC assumption is implied by Conditions 2, 5, and 6. The second ARC assumption is
implied by Condition 7; see [21, p. 171].

All but the last of the sufficient conditions for convergence hold by design. Therefore, the crux of
showing that SSGD converges is showing that Condition 7 holds. We address this issue next.

4.3. Conditions for Stratum Selection

The following result gives sufficient conditions on L(#), the step sizes { ¢, }, and the stratum
sequence {7, } such that Condition 7 holds. Our key assumption is that the sequence { -y, }
is regenerative [3, Ch. V1], in that there exists an increasing sequence of almost-surely finite
random indices 0 = 5(0) < (1) < B(2) < --- that serves to decompose { v, } into consecutive,
independent and identically distributed (i.i.d.) cycles { Cy },> with C}, = {V8(k=1)> V8(k—=1)+1>

The cycles need not directly correspond to strata. Indeed, we make use of strategies in which a cycle comprises multiple
strata.

12

- sY8(k)—1 } for k > 1. Le., at each 3(i), the stratum is selected according to a probability
distribution that is independent of past selections, and the future sequence of selections after step
B(i) looks probabilistically identical to the sequence of selections after step $(0). The length 7,
of the kth cycle is given by 7, = (k) — B(k — 1). Letting I, — be the indicator variable for the
event that stratum s is chosen in the nth step, set

n=B(k—1)

for 1 < s < q. It follows from the regenerative property that the pairs { (X (), Tk) } are i.i.d.
for each s. The following theorem asserts that, under regularity conditions, we may pick any
regenerative sequence -y, such that E [X;(s)]| = 0 for all strata.

Theorem 2. Suppose that L(0) is differentiable on H and supge |L5(0)| < oo for 1 < s < q and
0 € H. Also suppose that €, = O(n=%) for some o € (0.5, 1] and that (€, — €p11)/€n = O(€p).
Finally, suppose that { ~y,, } is regenerative with E [Tll/a] <ocoand E[X (s)]=0forl1 <s<q.
Then Condition 7 holds.

The condition E [X (s) | = 0 essentially requires that, for each stratum s, the expected fraction
of visits to s in a cycle equals w;. By the strong law of large numbers for regenerative processes [3,
Sec. VI.3], this condition—in the presence of the finite-moment condition on 7;—also implies that
the long-term fraction of visits to s equals w,. The finite-moment condition is typically satisfied
whenever the number of successive steps taken within a stratum is bounded with probability 1.

Proof. Fix 6 € H and observe that

n—1 n—1
en Z(L’%(e) —L'0)) = e A > (L4(0)Iy,—s — Ly (0)w,)
=0 , =0 s=1 o
= Z Li(0)en (I%_s ws)
s=1 1=0

Since | L/,(8)| < oo for each s, it suffices to show that n = >7 ' (Iy,=s —ws) =3 0for1 < s <gq.
To this end, fix s and denote by ¢(n) the (random) number of complete cycles up to step n. We have

n c(n)
> (Ty=s —wy) =Y Xp(s) + Rip,
=0 k=1

where Ry, = > " B(C(n))(I%:S — ws). Le., the sum can be broken up into sums over complete
cycles plus a remainder term corresponding to a sum over a partially completed cycle. Similar

13

calculations let us write n = Z;(g Tk + Ran, where Ry, = n — B(c(n)) + 1. Thus

Z?:O(I%:s — W) _ 22(2 Xy (s) + Rin

ne c(n) @
et Tk T RZ,n

_ S Xs) (S, Rm>‘ o)

e\ em) T en)
. Ry /c(n)”
c(n) @
(5 7/ c(n) + Ran/e(n))

By assumption, the random variables { X} (s) } are i.i.d. with common mean 0. Moreover, | Xj(s)| <
(1 + ws) 7, which implies that E [| X1(s)|/*] < (1 + ws)Y*E[7/*] < 0. It then follows from
the Marcinkiewicz-Zygmund strong law [9, Th. 5.2.2] that n=® >"7_, Xj(s) = 0. Because each
regeneration point, and hence each cycle length, is assumed to be almost surely finite, it follows that

c(n) £ oo, so that Zzg Xi(s)/c(n)® 225 0asn — oo. Similarly, an application of the ordinary

strong law of large numbers shows that Ez(g mi/c(n) 225 E[71] > 0. Next, note that |Ry ,,| <

(1 + ws)Te(ny+1- S0 that Ry, /c(n)® 2%, 0 provided that 75, /k® 22 0. To establish this latter limit
result, observe that for any € > 0, the assumed finiteness of E [(13 /¢)'/®] implies [10, Th. 3.2.1]
that 3272, Pr[(/€)% > k] < oo, and hence "3 | Pr[7 /k® > €] < occ. It then follows from
the first Borel-Cantelli Lemma (see [10, Th. 4.2.1]) that Pr[7 /k% > € infinitely often | = 0, which
in turn implies [10, Th. 4.2.2] that 73,/k® 2> 0. A similar argument shows that Ry, /c(n) 22 0,
and the desired result follows after letting n — oo in the rightmost expression in (9). O

The conditions on { ¢, } in Theorem 2 are often satisfied in practice, e.g., when ¢, = 1/n or
when €, = 1/[n/k] for some k > 1 with [z| denoting the smallest integer greater than or equal to
x (so that the step size remains constant for some fixed number of steps, as in Algorithm 2 below).
See Sec. 6 for further discussion.

Similarly, a wide variety of strata-selection schemes satisfy the conditions of Theorem 2. Some
simple examples include (1) running precisely cws steps on stratum s in every “chunk” of c steps, and
(2) repeatedly picking a stratum according to some fixed distribution { p; > 0 } and running cws /ps
steps on the selected stratum s. (E.g., we can set p; = w; so that strata are chosen proportional
to their weight and a constant number of steps is run on the selected stratum, or ps = 1/¢ so that
strata are chosen uniformly and at random but the number of steps run on the selected stratum is
proportional to its weight.) For example (1), assume initially that the order of stratum visits within
any two chunks is the same. Then, in the notation of Theorem 2, we have 7, = ¢ and Xj(s) =0
with probability 1 for all k, so the conditions of the theorem hold trivially, with the chunks playing
the role of regenerative cycles. In fact, the order within each chunk is irrelevant, since for any
ordering the pairs { (Yk(s), Tk) } are trivially i.i.d., so that the proof of the theorem goes through
essentially unchanged. For example (2), the steps at which a stratum is randomly selected clearly

14

form a sequence of regeneration points for { v, }. We have

q q
cw
E[Tl]zg Ds S:cg ws = ¢
s=1 s=1

Ps

The sum of the random variables I, —, over a cycle is cw, /p, if stratum s is selected and 0 otherwise,
so that the expected sum is ps(cws/ps) + (1 — ps)0 = cws and hence

BINO]I=E| ¥ (-]

Yn €cycle 1

Moreover, 7; is bounded above by max; cws/ps < 0o, and hence has finite moments of all orders.

To give a better idea of the scope of stratum-selection schemes covered by Theorem 2, we discuss
arandomized procedure in which, after visiting a stratum s, we visit the same stratum at the next step
with probability ps = 1 — (cw,) ™!, and with probability 1 — ps we select a new stratum randomly
and uniformly from the ¢ strata. (Thus the new stratum may correspond to the old stratum.) Here ¢
is a constant that is large enough to ensure that cws > 1 for each s. Denote by sg € {1,2,...,q}
the initial stratum to be visited; we fix s a priori. Then { -, } is regenerative, with the regeneration
points corresponding to the successive steps at which a new stratum is selected and the new stratum
is sg. We can write 7 = Zf\i 1 Vi, where NV is the total number of new-stratum selections, and
V; 1s the number of successive visits to the 7th selected stratum. The random variable N has a
geometric distribution with mean ¢ and, given that stratum s is selected at the ¢th selection epoch,
V; has a geometric distribution with mean cws. Moreover, the V;’s are mutually independent and
independent of IV, and V5, ..., Vv are i.i.d., specifically, each V; (¢ > 1) is distributed as an average
of ¢ — 1 independent geometric random variables with means { w; : s # sg }. It follows that

E[Tl]:E[Vl]—i-E[iV;] :chO+E[N—1]<(q—1)_1chs) :Z;cwszc.

=2 5750

L,ns} — E[wst] = cws — cws = 0.
Yn Ecycle 1

Let N; denote the number of new-stratum selections equal to s in the first cycle. It is not hard to see
that Ny, = 1 with probability 1 and that E [Ny | = 1 for s # s¢. Thus, for each s,

E{ Z I%S}:cwsE[Ns]:cws,

Yn€cycle 1

so that E [X (s)] = 0. Finally, we show that 7, has finite moments of all orders. Using the simple
n B) B BN B

bound (> 7, 2;)” < (nmaxi<i<n)’ < nP)" a) for xy,x0,...,2, > 0and § > 0, we

have E [Tf] <E[N?]m(B,s0)+E[NP(N —1)] > stso (B, s)/(q—1). Here m(B, s) denotes

the (finite) Sth moment of a geometric random variable with mean cw;. The desired result then

15

follows from the fact that V also has a geometric distribution, and hence has finite moments of all
orders.

The above examples are primarily of theoretical interest. In Sec. 6, we focus on some schemes
that are particularly suitable for practical implementation in the context of DSGD.

We conclude by noting that, if L is well behaved, Liapunov-function arguments can be used to
show that, for any sufficiently large hyperrectangle H, the 8,, sequence will fall within H infinitely
often with probability 1, so that the foregoing arguments apply. Moreover, if L is in fact convex,
then the global minimum is the unique limit point; see [15].

5. The DSGD Algorithm

We can exploit the structure of the matrix factorization problem to derive a distributed algorithm
for rank-r matrix factorization via SGD. The idea is to specialize the SSGD algorithm, choosing
the strata such that SGD can be run on each stratum in a distributed manner. We first discuss the
“interchangeability” structure that we will exploit for distributed processing within a stratum.

5.1. Interchangeability

In general, distributing SGD is hard because the individual steps depend on each other: from (4),
we see that 6,, has to be known before 6,,, 1 can be computed. However, in the case of matrix
factorization, the SGD process has some structure that we can exploit.

We focus on loss-minimization problems of the form minimizeye iy L(6) where the loss function
L has summation form: L(0) = .., L.(0).

Definition 1. Two training points z1, zo € Z are interchangeable if for all loss functions L having
summation form, all 0 € H, and € > 0,

L.,(0)
and L, (0)

L7, (0 — eL’,(0))

LL,(0— €L, (0)). 1o

Two disjoint sets of training points Zy, Zo C Z are interchangeable if z1 and zo are interchangeable
forevery z1 € Zy and zo € Zs.

As described in Sec. 5.2 below, we can swap the order of consecutive SGD steps that involve
interchangeable training points without affecting the final outcome.

Now we return to the setting of matrix factorization, where the loss function has the form
LW.H) =3 ez Lij(W, H) with Lij(W, H) = [(Vi;, Wi, H,;j). The following theo-
rem gives a simple criterion for interchangeability.

Theorem 3. Two training points z1 = (i1,71) € Z and zo = (i2, jo) € Z are interchangeable if
they share neither row nor column, i.e., i1 % iz and j1 7 jo.

16

Proof. The result is a direct consequence of the decomposition of the global loss into a sum of local
losses. Specifically, it follows from (5) and (5) that the partial derivatives of L;; (1) depend only
on V;;, Wi, and H,;, and (2) are nonzero only with respect to Wy,..., W, Hy;,..., H,;.
When iy # iz and j; # j2, both (W, H) and (W, H) — L’ (W, H) agree on the values of
Wi, and H ;j, for any choice of (W, H), which establishes the second part of (10). Analogous
arguments hold for the first part. O

It follows that if two blocks of V' share neither rows or columns, then the sets of training points
contained in these blocks are interchangeable.

5.2. A Simple Case

We introduce the DSGD algorithm by considering a simple case that essentially corresponds to
running DSGD using a single “d-monomial” stratum (see Sec. 5.3). The goal is to highlight the
technique by which DSGD runs the SGD algorithm in a distributed manner within a stratum. For a
given training set Z, denote by Z the corresponding training matrix, which is obtained by zeroing
out the elements in V' that are not in Z; these elements usually represent missing data or held-out
data for validation. In our simple scenario, Z corresponds to our single stratum of interest, and the
corresponding training matrix Z is block-diagonal:

H' H?2 ... H¢
wt/z' o .. 0
WE/2 0 22 0 | v
wi\o ... o Zz4

where W and H are blocked conformingly. Denote by Z° the set of training points in block Z°.
We exploit the key property that, by Theorem 3, sets Z* and Z/ are interchangeable for i # j.
For some T" € [1, c0), suppose that we run 7" steps of SGD on Z, starting from some initial point
0o = (W, Hy) and using a fixed step size e. We can describe an instance of the SGD process by a
training sequence w = (2o, 21, . . ., zr—1) of T training points. Figure 1 shows an example of such
a training sequence. Define 0y(w) = 6y and

Ont1(w) = Op(w) + €Y (w),

where the update term Y, (w) = —NL/, (f,(w)) is the scaled negative gradient estimate as in
standard SGD. We can write

T—1
Or(w) =0 +€> Yn(w). (12)
n=0

To see how to exploit the interchangeability structure, consider the subsequence o (w) = w N Z°
of training points from block Z°; the subsequence has length T,(w) = |oy(w)|. The following
theorem asserts that we can run SGD on each block independently, and then sum up the results.

17

Theorem 4. Using the definitions above,

d Ty(w)-1

Or(w) ="0)+€)_ Z Vi (op(w (13)

b=1 k=0

Proof. We establish a one-to-one correspondence between the update terms Y;,(w) in (12) and
Yy (op(w)) in (13). Denote by 2, , the (k + 1)st element in 0 (w), i.e., the (k 4 1)st element from
block Z° in w. Denote by 7(2p,1) the O-based position of this element in w. We have Wrr(zy) = Zb,k-
Now consider the first element 2, o from block b. We have z,, ¢ Z b for all previous elements
n < 7(2,0). Since the training matrix is block-diagonal, blocks have pairwise disjoint rows and
pairwise disjoint columns. Thus by Theorem 3, 2 is interchangeable with each of the z,, for
n < 7(zp0). We can therefore eliminate the z,, one by one:

Y00 (@) = NL’Z,,O(%(Z,,,O)(w)) = =NL, Or(z,0)-1(w))
_ _NIL' (QQ)ZYO(UIJ())

2b,0

Using the same argument, we can safely remove all update terms from elements not in block Z°.
By induction on k, we obtain

m(zp,1)—1
Yii@) ==NL, | fo+e Y Vo)
n=0
k—1
= _NL/ZI, E (90 +€ Z Yw(zbJ)(Jb(w)))
1=0
= Yk(ab(w)). (14)
The assertion of the theorem now follows from
T—1 d Tp(w)—1
07 (w) :e0+eZYn(=0p+e) Z V(o)
b=1 k=0
d Tp(w)—
eSS i
b=1 k=0
where we first reordered the update terms and then used (14). O]

We used the fact that Z is block-diagonal only to establish interchangeability between blocks.
This means that Theorem 4 also applies when the matrix is not block-diagonal, but can be divided
into a set of interchangeable submatrices in some other way.

We now describe how to exploit Theorem 4 for distributed processing. We block W and H
conformingly to Z—as in (11)—and divide processing into d independent tasks I'y,...,I'; as

18

follows. Task I', is responsible for subsequence oy, (w): It takes Z ® Wb, and H" as input, performs
the block-local updates o (w), and outputs updated factor matrices Wﬁew and H f;ewﬁ By Theorem 4,
we have

W new

w' = : and H' =(H}, - HL,).
Wd

new

where W' and H' are the matrices that one would obtain by running sequential SGD on w. Since
each task accesses different parts of both training data and factor matrices, the data can be distributed
across multiple nodes and the tasks can run simultaneously. In Sec. 6, we describe how to efficiently
implement the above idea.

5.3. The General Case

We now present the complete DSGD matrix-factorization algorithm. The key idea is to stratify the
training set Z into aset S = { Z1, ..., Z, } of ¢ strata so that each individual stratum Z; C Z can
be processed in a distributed fashion. We do this by ensuring that each stratum is “d-monomial” as
defined below. The d-monomial property generalizes the block-diagonal structure of the example in
Sec. 5.2, while still permitting the techniques of that section to be applied. The strata must cover the
training set in that J?_, Zs; = Z, but overlapping strata are allowed. The parallelism parameter d is
chosen to be greater than or equal to the number of available processing tasks.

Definition 2. A stratum Z is d-monomial if it can be partitioned into d nonempty subsets
ZL 7% ..., Z% such that i # i and j # j' whenever (i,7) € Z% and (i',j') € Z with
b1 # bo. A training matrix Z s is d-monomial if it is constructed from a d-monomial stratum Z,.

There are many ways to stratify the training set according to Def. 2. In our current work, we
perform data-independent blocking; more advanced strategies may improve the speed of convergence
further. We first randomly permute the rows and column of Z, and then create d x d blocks
of size (m/d) x (n/d) each; the factor matrices W and H are blocked conformingly. This
procedure ensures that the expected number of training points in each of the blocks is the same,
namely, N/d2. Then, for a permutation ji, j2,...,jq of 1,2,...,d, we can define a stratum as
Zy =2V uZ%2 . ..U Z%a where the substratum Z% denotes the set of training points that fall
within block Z%. We can represent a stratum Z, by a template Z, that displays each block Z%
corresponding to a substratum Z% of Z,, with all other blocks represented by zero matrices. When
d = 2, for example, we obtain two strata represented by the templates

B le 0 - 0 212
Zl = < 0 Z22> and ZQ = (Z21 0) .
The set .S of possible strata contains d! elements, one for each possible permutation of 1,2, ..., d.

Note that different strata may overlap when d > 2. Also note that there is no need to materialize
these strata: They are constructed on-the-fly by processing only the respective blocks of Z.

3Since training data is sparse, a block Z° may contain no training points; in this case we cannot execute SGD on the
block, so the corresponding factors simply remain at their initial values.

19

Given a set of strata and associated weights { w; }, we decompose the loss into a weighted sum
of per-stratum losses as in (7): LW, H) = >.?_, wsLs(W, H). (As in Sec. 3.2, we suppress the
fixed matrix V' in our notation for loss functions.) We use per-stratum losses of form

Ls(WaH):Cs Z Lij(WaH)> (15)
(3,)€Zs

where c; is a stratum-specific constant; see the discussion below. When running SGD on a stratum,
we use the gradient estimate

L(W,H) = Nyc,Lj;(W,H) (16)

of L’.(W, H) in each step, i.e., we scale up the local loss of an individual training point by the size
Ny = |Z| of the stratum. For example, from the d! strata described previously, we can select d
disjoint strata Z1, Zs, . . . , Z4 such that they cover Z. Then any given loss function L of the form (2)
can be represented as a weighted sum over these strata by choosing w; and ¢, subject to wscs = 1.
Recall that ws can be interpreted as the “time” spent on each stratum in the long run. A natural
choice is to set ws = Ns/N, i.e., proportional to the stratum size. This particular choice leads to
¢s = N/N, and we obtain the standard SGD gradient estimator L,(W, H) = N Li,(W,H). As
another example, we can represent L as a weighted sum in terms of all d! strata; in light of the fact
that each substratum Z* lies in exactly (d — 1)! of these strata, we choose ws = Ny/((d — 1)!N)
and use the value of ¢ = N/Nj as before.

The individual steps in DSGD are grouped into subepochs, each of which amounts to processing
one of the strata. In more detail, DSGD makes use of a sequence { ({x, 7)) }, where & denotes the
stratum selector used in the kth subepoch, and T}, the number of steps to run on the selected stratum.
Note that this sequence of pairs uniquely determines an SSGD stratum sequence as in Sec. 4.1:
== =&, Vn+1 = - = Y+, = &2, and so forth. The { (&, 7)) } sequence is
chosen such that the underlying SSGD algorithm, and hence the DSGD factorization algorithm, is
guaranteed to converge; see Sec. 4.3. Once a stratum & has been selected, we perform T3, SGD
steps on Zg, ; this is done in a parallel and distributed way using the technique of Sec. 5.2. DSGD is
shown as Algorithm 2, where we define an epoch as a sequence of d subepochs. As will become
evident in Sec. 6 below, an epoch roughly corresponds to processing the entire training set once.

When executing Algorithm 2 on d nodes in a shared-nothing environment such as MapReduce, the
input matrix need only be distributed once. Then the only data that are transmitted between nodes
during subsequent processing are (small) blocks of factor matrices. Indeed, if node 7 stores blocks
Wiz, Z2 .. Z"for1 < i < d, then only matrices H', H?, ..., H? need be transmitted.
(If the W matrices are smaller, then we transmit these instead.)

Since, by construction, parallel processing within the kth selected stratum leads to the same update
terms as for the corresponding sequential SGD algorithm on Z¢, , we have established the connection
between DSGD and SSGD. Thus the convergence of DSGD is implied by the convergence of the
underlying SSGD algorithm; see Sec. 4.2.

20

Algorithm 2 DSGD for Matrix Factorization

Require: Z, W, H, cluster size d
W + W()
H + HO
Block Z/W / H intod x d/d x 1/1 x dblocks
while not converged do /* epoch */
Pick step size ¢
fors=1,...,ddo /*subepoch */
Pick d blocks {ZV1, ... Z%4} to form a stratum
forb=1,...,ddo /*in parallel */
Run SGD on the training points in Z%* (step size = €)
end for
end for
end while

6. DSGD Implementation

In this section, we discuss some practical issues around DSGD. We first discuss some general
algorithmic details, including initialization considerations and practical methods for choosing the
training sequence for the parallel SGD step, selecting strata, and picking the step size . We then
discuss issues specific to MapReduce platforms, specifically, Hadoop.

6.1. General Algorithmic Details

As above, a “subepoch” corresponds to processing a stratum and an “epoch”—roughly equivalent to
a complete pass through the training data—corresponds to processing a sequence of d strata.

Initialization. Some care must be taken when choosing initial factor values W and Hy. In
the case of nonzero squared loss Lnzst., for example, choosing Wy = 0 and Hg = 0 results
in the factors remaining equal to zero at all future DSGD iterations. For GKL loss, we cannot
have W, = 0 for any ¢ or H,; for any j, since then the loss function is ill defined. In our
implementation, we generate initial factor values using a pseudorandom number generator, which
ensures that all initial values are nonzero.

Training sequence. When processing a subepoch (i.e., a stratum), we do not generate a global
training sequence and then distribute it among blocks. Instead, each task generates a local training
sequence directly for its corresponding block. This reduces communication cost and avoids the
bottleneck of centralized computation. Practical experience suggests that good results are achieved
when (1) the local training sequence covers a large part of the local block, and (2) the training
sequence is randomized. We consider the following strategies for processing block Z¥:

e Sequential selection (SEQ). Scan Z “ in the order it is stored.
o With-replacement selection (WR). Randomly select training points from Z*; each point may
be selected multiple times.

21

e Without-replacement selection (WOR). Randomly select training points from Z* such that
each point is selected precisely once; i.e., generate an ordering of the points randomly and
uniformly from the set of all such orderings, and select points according to this ordering.

The first two strategies are extremes: SEQ satisfies (1) but not (2), whereas WR satisfies (2) but not
(1). A compromise—which worked best in our experiments—is WOR; it ensures that many different
training points are selected while at the same time maximizing randomness. Note that Theorem 2
implicitly assumes WR but can be extended to cover SEQ and WOR as well. (In brief, redefine a
stratum to consist of a single training point and redefine the stratum weights ws accordingly.)

Update terms. When processing a training point (7, j) during an SGD step on stratum s, we
use the gradient estimate L',(6) = N L;;(0) as in standard SGD; this corresponds to a choice of
¢s = N/Njg in (16). For (i, 7) picked uniformly and at random from Z;, the estimate is unbiased for
the gradient of the stratum loss L¢(6) given in (15).

Stratum selection. Recall that the stratum sequence (&, T}) determines which of the strata is
chosen in each subepoch and how many steps are run on that stratum. We choose training sequences
such that T}, = N¢, = |Z¢,|; this ensures that we can make use of all the training points in the
stratum. For the data-independent blocking scheme given in Sec. 5.3, each block Z% occurs in
(d — 1)! of the d! strata. Thus we do not need to process all strata to cover the entire training set.
As above, we want to process a large part of the training set in each epoch, while at the same time
maximizing randomization. To select a set of d strata to visit during an epoch, we use strategies
similar to those for intra-block training point selection:

o Sequential selection (SEQ). Pick a sequence of d strata that jointly cover the entire training
matrix. Then cycle through this sequence and ignore all other strata.

o With replacement selection (WR). Repeatedly pick a stratum uniformly and at random from
the set of all strata until d strata have been processed.

o Without replacement selection (WOR). Pick a sequence of d strata such that the d strata jointly
cover the entire training set; the sequence is picked uniformly and at random from all such
sequences of d strata.*

Taking the scaling constant ¢, in (15) as N/N;, we can see that all three strategies are covered by
Theorem 2, where each epoch corresponds to a regenerative cycle. We argue informally as follows.
Recall that if Theorem 2 is to apply, then ws must correspond to the long-term fraction of steps run
on stratum Zg. For SEQ, this means that all but d of the weights are zero, and the remaining weights
satisfy ws = Ns/N. For WR and WOR, we have ws; = N;/((d — 1)!N), since we select each
stratum s equally often in the long run, and always perform N steps on stratum s. The question is
then whether these choices of w; lead to a legitimate representation of L as in (7). One can show

*This can be performed efficiently by randomly permuting the rows and columns of a matrix of form
1 2 .- d
2 3 ... 1

d 1 .- d-—1

The (k, 7)-entry then contains the column index of the block to pick from row 4 in the kth subepoch.

22

that { w; } satisfies (7) for all Z and L of form (2) if and only if

Z WsCs = 1 (17)

$:Zs D7

for each substratum Z%. Direct verification shows that (17) holds for the above choices of ws when
¢s = N/Ns.

Step sizes. The stochastic approximation literature often works with step size sequences roughly
of form ¢, = 1/n® with « € (0.5, 1]; and Theorem 2 guarantees asymptotic convergence for such
choices. In practice, one may want to deviate from these choices to achieve faster convergence over
the finite number of steps that are actually executed. We use an adaptive method for choosing the
step size sequence. We exploit the fact that—in contrast to SGD in general—we can determine the
current loss after every epoch. Thus we can check whether an epoch decreased or increased the
loss. With this observation in mind, we employ a heuristic called bold driver, which is often used
for gradient descent. Starting from an initial step size €y, we (1) increase the step size by a small
percentage (say, 5%) whenever we see a decrease of loss, and (2) we drastically decrease the step
size (say, by 50%) if we observe an increase of loss. Within each epoch, the step size remains fixed.
Given a reasonable choice of €g, the bold driver method worked extremely well in our experiments.
To pick ¢, we leverage the fact that we have many compute nodes available. We replicate a small
sample of Z (say, 0.1%) to each node. We then try different step sizes in parallel. Initially, we make
a pass over the sample for step sizes 1,1/2,1/4,...,1/2971; this is done in parallel at all d nodes.
The step size that gives the best result is selected as €y. As long as our loss decreases, we repeat a
variation of this process after every epoch, where we try step sizes within a factor of [1/2, 2] of the
current step size. Eventually, the so-chosen step size will become too large and the value of the loss
will increase. Intuitively, this happens when the iterate has moved closer to the global solution than
to the local solution of the sample. As soon as we observe an increase of loss, we switch to the bold
driver method for the rest of the process.

6.2. MapReduce/Hadoop Implementation

MapReduce is a parallel computation framework that was originally developed at Google [14], and
implemented later as part of the Apache Hadoop open-source project [2]. The MapReduce frame-
work was originally designed to scan and aggregate large datasets in a robust and scalable manner in
a shared-nothing cluster of commodity servers, where each server has its own local memory and
disk storage, and inter-server communication occurs over a network. The framework processes
Jjobs, where each job consists of a map stage and a reduce stage. In the Hadoop implementation of
MapReduce, data is physically stored as a collection of files on the Hadoop Distributed File System
(HDFS). A namenode coordinates access to the file system data and maintains a directory tree of all
files in the system. The Hadoop InputFormat operator partitions the raw input data into logical splits,
and allows Hadoop to correctly parse splits into input records. The map stage scans the splits of the
input data set, transforming each input record according to a user-defined map function and also
extracting a grouping key for the record; the splits are processed in parallel by a set of independent
mapper tasks. The reduce stage shuffles the output records from the map stage across the network

23

and groups them according to the grouping key, aggregates each group according to a user-defined
reduce function, and writes out the result; the groups are processed and written out in parallel by a
set of independent reducer tasks. As mentioned above, mapper and reducer tasks are executed on a
cluster of servers, each of which has a fixed number of concurrent processing slots; a task is assigned
to a single slot and processes one split or one group at a time. Whenever there are not enough map
slots to simultaneously process all of the input splits during the map stage, Hadoop processes the
data in a sequence of waves, where the number of waves roughly equals the total number of splits
divided by the total number of slots. (Waves can overlap a bit when different splits have different
processing times). Since tasks can run independently, Hadoop can make progress on a job as slots
become available, can load balance across heterogeneous environments, and can tolerate failures.

A key advantage of the DSGD algorithm is that it can be implemented on Hadoop using map-only
jobs, avoiding the expensive shuffling of data over the network that would be required in a reduce
phase. A straightforward DSGD implementation, as discussed in Section 5.2, uses a single job for
parallel processing of a single stratum. In this case, multiple jobs are required to perform a single
DSGD iteration. Although this solution achieves scalability and fault-tolerance, its performance
suffers because of Hadoop’s internal overheads for spawning and coordinating jobs.

Although we expect that some of these overheads will diminish as Hadoop matures, we nonethe-
less employ several optimizations in order to achieve good preliminary performance. Key to these
optimizations is careful organization and management of the data. Recall from Section 5.2 that we
partition the Z matrix into d X d blocks, and block W and H conformingly (into d blocks each),
as in (11). In our implementation, the input data to the Hadoop mappers is the data in Z, and we
configure the InputFormat operator so that the splits of Z correspond one-to-one with the blocks
of Z (so that we can refer to “splits” or “blocks” of Z interchangeably). The matrices W and H
are also stored in HDFS but are not directly handled by InputFormat. Instead, we manually ensure
that these matrices are stored in multiple files W', wW2,.... W H' H? ... ,H? where each
file corresponds to a single block of W or H (so that we can refer to “files” or “blocks” of W and
H interchangeably). The naming conventions of the files allow a mapper that is processing a given
block Z% of Z to identify and retrieve the corresponding files (and hence blocks) W* of W and
HI of H using the namenode. As mentioned in Sec. 5.3, the data can be arranged so that, for each
block Z“, the corresponding block W is stored locally, so that only the block H7 might need to
be transmitted over the network. (The W block is transmitted and the H7 block is stored locally if
the W blocks are smaller than the H blocks.)

With this setup, our optimizations are as follows. First, data is stored in Java primitive arrays rather
than Java objects to avoid the performance bottleneck caused by “immutable record decoders” [19].
Next, we use block-wise 1/0 to read entire matrix blocks at once; this avoids expensive per-record
processing costs.

Finally, we submit a single map-only job per epoch (complete data-matrix scan) rather than a
map-only job per subepoch (stratum scan) to reduce Hadoop’s high overhead in spawning jobs and
to allow some overlapping of subepoch processing. In other words, the job processes all the blocks
of Z. The details are as follows.

1. In general, Hadoop processes splits in descending size order (in a bin-packing greedy fashion)

24

during the map stage in order to minimize the number of waves it requires. We “fool” the
system by overloading the split get Length () function and manipulating the reported split
sizes, thus gaining control over the order in which splits are processed. In this way, we
can ensure that, at any time point, the current wave is processing only those splits of Z
belonging to the stratum for the current subepoch (or for the next subepoch, as discussed
below). Each map task processing a block Z% explicitly fetches (using low-level HDFS calls)
the corresponding blocks W and H” as described above, performs the local SGD updates,
and outputs the new files W_ and HY_, which represent the updated versions of blocks
W'and HY.

2. If there are idle map slots available while processing the current stratum, then we can use
these slots to partially process splits belonging to the next stratum. Specifically, a map task
assigned to a block Z*' for the next stratum immediately begins to parse the corresponding
split received from HDFS into individual records and then—if using the WOR or WR training
sequence for records in the block (Sec. 6.1)—randomly shuffles the records. Such parsing and
shuffling operations take quite some time, so overlapping this task with the processing of the
current stratum yields significant performance improvements. To ensure correctness, the map
task waits for the files W%, and H'_, from the previous stratum processing to appear in the
HDFS namenode before starting to perform the actual SGD updates. In this way, processing
of the next stratum can overlap partially with processing of the current stratum to maximize

performance, without loss of correctness.

7. Experiments

We compared various matrix factorization algorithms with respect to their convergence properties,
runtime efficiency, and scalability. We found that the convergence speed of DSGD is on par or better
than alternative methods, even when these methods are specialized to the loss function. In terms of
overall performance, we found that DSGD is significantly faster, produces more stable results, and
has better scalability properties.

7.1. Setup

We implemented our new DSGD method on top of MapReduce, along with the PSGD, ISGD, DGD,
ALS, and MULT methods discussed in Sec. 2. The DGD algorithm uses the L-BFGS quasi-Newton
method as in [13]. DSGD, PSGD, and L-BFGS are generic methods that work with a wide variety
of loss functions, whereas ALS and MULT are restricted to quadratic loss functions and GKL,
respectively. We used two different implementations and compute clusters; one for in-memory
experiments and one for large scale-out experiments on very large datasets.

The in-memory implementation is based on R and C, and uses R’s snowfall package to
implement MapReduce. It targets datasets that are small enough to fit in aggregate memory, i.e.,
with up to a few billion nonzero entries. We block and distribute the input matrix across the cluster
before running each experiment. The factor matrices are communicated via Samba mount points.

25

The R cluster consists of 16 nodes, each running two Intel Xeon ES530 processors with 8 cores at
2.4GHz. Every node has 48GB of memory.

The second implementation is based on Hadoop [2], an open-source MapReduce implementation.
The Hadoop cluster is equipped with 40 nodes, each with two Intel Xeon E5440 processors and 4
cores at 2.8GHz and 32 GB of memory.

For our experiments with all SGD-based approaches, we used adaptive step size computation
based on a sample of roughly 1M data points, switching to the bold driver as soon as an increase in
loss was observed. The time for step size selection is included in all of our performance plots. For
ISGD, we performed (parallel) step size computation using the parameters of only the first partition;
this step size worked well for all partitions. Unless stated otherwise, we used WOR selection for
both training sequences (all approaches) and stratum sequences (DSGD only).

We used the Netflix competition dataset [5] for our experiments on real data. The dataset contains
a small subset of movie ratings given by Netflix users, specifically, l00M anonymized, time-stamped
ratings from roughly 480k customers on roughly 18k movies. For larger-scale experiments on
the in-memory implementation, we used a synthetic dataset with 10M rows, 1M columns, and 1B
nonzero entries. We first generated matrices W* and H™ by repeatedly sampling values from the
Gaussian(0,10) distribution. We then sampled 1B entries from the product W*H*, and added
Gaussian(0,1) noise to each sample; this procedure ensured the existence of a reasonable low-rank
factorization. For all experiments, we centered the input matrix around its mean. The starting points
W and H were chosen by sampling entries uniformly and at random from [—0.5, 0.5]; we used
the same starting point for each algorithm to ensure fair comparison. Unless stated otherwise, we
used rank r = 50.

We used four well-known loss functions in our experiments: plain nonzero squared loss (Lnzsr),
nonzero squared loss with an L9 regularization term (L), nonzero squared loss with a nonzero-
weighted Ly term (Lnzyr2), and generalized KL divergence (Lgkr):

InzsL = Y, (Vi — [WH];)? (18)
(i,5)€Z
L1 = LnzsL +)\(||WH12: + HHHIQ:)
Lnzio = Lzt + A(|INiW|E + [HN||F)

Lk = Y (Vijlog Vi /[WH;; — Vij) + > [WH]Jy,

(i,j)eZ ,J
where N1 (IN2) is a diagonal matrix that rescales each row (column) of W (H) by the number of
nonzero entries of Z in that row (column), and || A||r denotes the Frobenius norm of a matrix A
(see App. C). Lnzio has been used successfully on the Netflix data [20], and Lgkr. has applications
in text indexing [17]. We used “principled” values of A throughout. E.g., we used values of A = 50
and A = 0.05 for Ly, and Lnyzro on Netflix data, respectively, and A = 0.1 for Ly ; on synthetic
data, the former values because they yielded the best movie recommendations on held-out data,
and the latter because it is “natural” in that the resulting minimum-loss factors correspond to the
“maximum a posteriori” Bayesian estimator of W and H under the Gaussian-based procedure used
to generate the synthetic data.

26

5
|
]

o DSGD o DSGD
2 A ALS) A ALS
- + LBFGS £ + LBFGS
X PSGD - Y- X PSGD
. §_ ISGD . S <
5 o 5
= S =
i E g4
2 7 "
Q = Q
A A
[l
= S
3 =
o]
<t
| | | | | | | | | |
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Wall clock time (hours) Wall clock time (hours)
(a) Netflix, NZSL (b) Netflix, L2, A = 50
[l
fe=l j==}
== S5y,
— &X‘XXxxxx-xxxx X=X X
2 A
= o CTA—A—A—A—_A—A—_A_A
< =4 o
2 S o
= 2 = o o o DSGD
g ~ 2 3 o A ALS
2 2 e o X PSGD
g = 8 °
— — Oo
=) o 0
2— —
=3 %%QZEMN\
o0
— o)
| | | | | | | | | |
0.0 0.5 1.0 1.5 2.0 0 5 10 15 20
Wall clock time (hours) Wall clock time (hours)
(¢) Netflix, NZL2, A = 0.05 (d) Synthetic data, L2, A = 0.1

Figure 3: Performance in terms of wall-clock time

7.2. Relative Performance

We first evaluated the relative performance of the matrix factorization algorithms. For various loss
functions and datasets, we ran 100 epochs—i.e, scans of the data matrix—with each algorithm and
measured the elapsed wall-clock time, as well as the value of the loss after every epoch. We used

64-way distributed processing on 8 nodes (with 8 concurrent map tasks per node).’

Representative results are given in Figure 3, which displays the achieved loss as a function of

wall clock time, and in Figure 4, which displays the loss as a function of the number of epochs.

As can be seen from Figure 3, DSGD converges about as fast as—or faster than—alternative

Note that for all approaches but ISGD and ALS, 64-way distributed processing is excessive for the Netflix data; the
execution time is dominated by latencies. We nonetheless used 64-way processing to get a consistent view over

datasets of various sizes.

27

Loss (millions)

Loss (millions)
100 120 140 160 180 200

X+ Do

DSGD
ALS
LBFGS
PSGD
ISGD

80
1

Epoch
(a) Netflix, NZSL

X+ Do

DSGD
ALS
LBFGS
PSGD

ISGD

Epoch
(¢) Netflix, NZL2, A = 0.05

Loss (millions)

Loss (billions)

o= K
Pk ‘f'_ o DSGD
+ A ALS
- + LBFGS
2| R X PSGD
1 5 ISGD
alk?l
(=}
2
2
(=
=
—
| | | | | |
0 20 40 60 80 100
Epoch
(==
(=1
(=)
(=)
=]
8 “"AAA
=]
o DSGD
S A ALS
x PSGD
(==}
2
— = X
T T T T T T
0 20 40 60 80 100
Epoch

(d) Synthetic data, L2, A = 0.1

Figure 4: Performance in terms of epochs

28

methods, with the DSGD performing markedly better for Lnzsp loss over the Netflix data and
for Ly, loss over both the Netflix dataset and the large synthetic dataset. Comparing the various
SGD-based approaches, we observe that ISGD and PSGD exhibit consistently inferior performance,
and offer the following explanation. The matrix-factorization problem is “non-identifiable” in that
the loss function has many global minima that correspond to widely different values of (W, H).
Averages of (W, H) values from different partitions, as computed by ISGD and PSGD, do not
correspond to good overall solutions, and the algorithms may not converge to a local minimum of
the global loss, or may converge very slowly. E.g., in the example of Figure 2, ISGD would converge
to a point on the line between the red and blue minima. Of the ISGD and PSGD algorithms, it is
not surprising that ISGD has the worst convergence behavior; recall that ISGD computes a local
optimum of each partition of the dataset via SGD, and averages only once after all 100 epochs.®
PSGD improves on ISGD by averaging parameters after every epoch, but it is still outperformed
by most other approaches. DSGD performs best; its usage of stratification instead of averaging
significantly improves convergence speed. For the remainder of our discussion, we focus on DSGD
as the best SGD-based algorithm and compare it with L-BFGS and ALS. L-BFGS is clearly inferior
to the other two algorithms. Indeed, we do not give results for L-BFGS in Figures 3d or 4d because
its centralized parameter-update step ran out of memory when faced with very large data. In the
other three experiments, L-BFGS is able to execute more epochs per unit time than the other
algorithms—e.g., for the Lnzsy experiment, DSGD ran 43 epochs, ALS ran 10 epochs, and L-BFGS
ran 61 epochs in the first hour—but the per-epoch decrease in loss is relatively small. In general, the
foregoing differences in runtime are explained by different computational costs (highest for ALS,
which has to solve m + n least-squares problems per epoch) and synchronization costs (highest for
PSGD, which has to average all parameters in each epoch).

ALS achieves performance roughly comparable to DSGD for Lyzp, loss over Netflix data, taking
about 15 more minutes to get within the vicinity of the minimal loss but ultimately yielding a slightly
lower loss (about 1% less than that of DSGD) after two hours. ALS is clearly inferior to DSGD,
however, in the other three experiments. The differences are more noticeable in Figure 3 than in
Figure 4, since they reflect the larger execution time per epoch for ALS as indicated above; see
also Figure 5a. For the first experiment—Lyzsy, loss over Netflix data—the lack of a regularization
term makes the factorization difficult for ALS because the search space is relatively large and there
are many equivalent solutions. Specifically, we observed that ALS conducted large moves through
the parameter space; the factors grew without bound. On the synthetic data with Ly,, ALS is very
effective in the first epoch, but then converges slowly. We have observed similar behavior on very
small matrices, with ALS getting stuck when moving along “valleys” of small loss in which both
W and H change simultaneously. DSGD does not suffer from these problems and has superior
convergence properties.

In summary, the overall performance of DSGD was consistently more stable than that of alternative
algorithms. The speed of convergence was comparable or faster.

®The intermediate points shown in Figure 3 have been obtained by pausing ISGD after every epoch in order to average
parameters and compute the loss. The time to do so is not included in the wall-clock time of ISGD.

29

2168s

ZOIOO

=
s Y v 5
g 32 B ALS g 1x
5 B LBFGS g
g g s
z Z 39
£ £ g "
Q E Q
G &2
3 z S
2, 1 0.48x
o 8] o
£ 3 k|
E] E §_ 0.25x 0.28x
1) o 1)
E] =
= =

(=) (=)

50 100 200 8 16 32 64
Rank r #cores
(a) Effect of r (R@64) (b) Increasing cores (Hadoop, 6.4B entries)

(==l (==l

D _ =

(= (=]
= 23.8x =
o o o
s 2 3 27
= = = 1x 1x
=} =}
3 2 84
c:; - & 3
3 S84 g
a g Q. -
() ()
£ £ =7
oo L 4
5 == 6.6x 5 s
o o xR
G 2.3x G
= 1x 1.3x l—l =
~ o E— ~ o

100M 400M 1.6B 6.4B 25.68B 1.6B@5 6.4B @ 20 25.6B @ 80
Data size (# nonzero entries) Data size @ cores
(c) Increasing data (Hadoop @ 32) (d) Increasing data and cores (Hadoop)

Figure 5: Scalability

7.3. Scalability

Next, we studied various scalability issues in our shared-nothing MapReduce environment. We
examined the effect of scaling up the approximation rank 7, and then explored the scalability of
DSGD on a Hadoop cluster by scaling up the dataset size, the number of cores, and then both the
dataset size and number of cores. Overall, the gradient descent methods scale better with increasing
rank than ALS, and DSGD has good scalability properties on Hadoop, provided that the amount of
data processed per core does not become so small that system overheads start to dominate.

To explore the effect of increasing the approximation rank, we used the Netflix data with Lz 2
loss and the same R-cluster setup as before (64 cores, 8 nodes); note that the value » = 50
corresponds to our relative-performance experiments. The results are displayed in Figure 5a. As
observed previously, ALS is significantly slower than DSGD and L-BFGS. ALS spends most

30

of its time on constructing and solving (in the least-squares sense) systems of linear equations.
Since the number of both equations and variables increases with rank—construction is O(N7?),
solving is O((m + n)r3)—the performance degrades significantly as 7 increases. L-BFGS performs
centralized updates of the factors; these centralized updates become a bottleneck as the rank (and
thus factor size) increases. The impact of increased rank on DSGD appears rather mild, mainly
because factors are fully distributed. As the rank increases further and gradient estimation becomes
the major bottleneck, we expect to see a more pronounced increase in runtime.

Our remaining experiments focus on the performance of DSGD on the Hadoop cluster. Figure 5b
depicts scale-up results as we repeatedly double the number of cores while keeping the data size
constant at 6.4B entries. Figure 5c plots the runtime per epoch as we repeatedly quadruple the data
(while keeping the number of cores constant at 32), and Figure 5d shows scale-out results, in which
we scale both data and cores simultaneously.

As can be seen in Figure 5b, DSGD initially achieves roughly linear speed-up as the number
of cores is repeatedly doubled, up to 32 cores. After this point, speed-up performance starts to
degrade. The reason for this behavior is that, when the number of cores becomes large, the amount
of data processed per core becomes small—e.g., 64-way DSGD requires 642 blocks, so that the
amount of data per block is only ~ 25MB. The actual time to execute DSGD on the data becomes
negligible, and the overall processing times become dominated by Hadoop overheads, especially
the time required to spawn a task. (Hadoop is designed for tasks that run at least on the order of
minutes.) A similar phenomenon can be seen in Figure 5c, where the elapsed time is sublinear
in the data size for small datasets (< 1.6B entries); for larger datasets, overheads no longer mask
performance, and the runtime increases linearly with dataset size. In our scale-out experiments
(Figure 5d), the impact of Hadoop overheads is more muted, since scaling up the data size offsets
the overhead effect caused by increasing the number of cores. E.g., the processing time initially
remains constant as the dataset size and number of cores are each scaled up by a factor of 4, with
the overall runtime increasing by a modest 30% as we scale to very large datasets on large clusters.
The foregoing overhead effects can potentially be ameliorated by improving scheduling in Hadoop
or using an alternative parallel runtime system such as Spark [31].

7.4. Selection Schemes

Finally, we evaluated the impact of different strategies for selecting both strata and training sequences.
The runtime cost for the various alternatives are comparable, but the speed of convergence differs
significantly. Figure 6 shows exemplary results for 64-way SGD on the Netflix data with Lnz; o,
where we plot all combinations of options for training-point and stratum selection. Sequential
stratum selection performed worst: the curves corresponding to this scheme cluster at the upper
right of the plot, whereas the curves for the randomized strategies cluster at the lower left; i.e., any
form of randomized stratum selection helped significantly. For randomized selection schemes, the
WOR strategy for selecting training points yielded the best results. Overall, WOR selection for
both training points and strata ensures a good balance between randomization and processing many
different data points.

31

SEQ/SEQ

Loss (in millions)
82
|

o WOR/WOR PP LS

T T T T T T
0 20 40 60 80 100

Epoch

Figure 6: Effect of stratum selection (line color) and training sequence (line type)

o DSGD
v MULT

1.6

Loss (billions)
0.8 10 12 14
| | | |
7‘4
Iy

0.6

COOCOCO0C0C000
NAAAAAAV

| |
10 20 30 40 50

Epoch

Figure 7: GKL on Netflix data (R@64)

7.5. Other Loss Functions

To show that DSGD can be applied to a variety of loss functions, we implemented Lgk—a loss
function that is used for nonnegative matrix factorization and that does not ignore zeros in the V
matrix—and ran the resulting factorization algorithm on the Netflix data, along with the loss-specific
MULT algorithm of Das et al. [12]. DSGD performs respectably compared to MULT (Figure 7),
reaching the vicinity of the minimum loss more rapidly—roughly 7 epochs for DSGD versus 27
epochs for MULT—and achieving an ultimate loss that is only modestly greater than that of MULT.
Our implementation is a first cut; we are currently refining it further.

32

8. Conclusions

We introduced DSGD, a novel algorithm for large-scale matrix factorization. DSGD is fully
distributed and can handle matrices with millions of rows, millions of columns, and billions of
nonzero entries. In contrast to most alternative algorithms, DSGD is generic in that it supports a
wide variety of loss functions that arise in practice. Our experiments indicate that DSGD is on
par or faster than specialized algorithms in terms of runtime, convergence properties, and memory
requirements. Recent work [29, 30] is yielding versions of the DSGD algorithm for environments
besides MapReduce, such as shared-nothing MPI and multithreaded shared memory architectures, as
well as platforms such as Spark [24]. The DSGD idea is also being adapted to solve other problems,
such as cubic spline interpolation for massive time series [15].

References

[1] R. Albright, J. Cox, D. Duling, A. Langville, and C. Meyer. Algorithms, initializations, and
convergence for the nonnegative matrix factorization. Technical Report Math 81706, NCSU,
2006.

[2] Apache Hadoop. https://hadoop.apache.orgq.
[3] S. Asmussen. Applied Probability and Queues. Springer, 2nd edition, 2003.

[4] S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and Analysis. Springer,
2007.

[5] J. Bennett and S. Lanning. The Netflix prize. In KDD Cup and Workshop, 2007.

[6] C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics.
Springer, 2007.

[7] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In NIPS, volume 20, pages
161-168. 2008.

[8] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Comput., 16(5):1190-1208, 1995.

[9] Y. S. Chow and H. Teicher. Probability Theory: Independence, Interchangeability, Martingales.
Springer, 2nd edition, 1988.

[10] K. L. Chung. A Course in Probability Theory. Elsevier, third edition, 2001.

[11] A. Cichocki and R. Zdunek. Regularized alternating least squares algorithms for non-negative
matrix/tensor factorization. In ISNN ’07: Proc. of the 4th international symposium on Neural
Networks, pages 793-802, 2007.

33

https://hadoop.apache.org

[12] A.S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scalable online
collaborative filtering. In WWW, pages 271-280, 2007.

[13] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and J. McPherson. Ricardo:
Integrating R and Hadoop. In SIGMOD, pages 987-998, 2010.

[14] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In
OSDI, 2004.

[15] P.J. Haas and Y. Sismanis. On aligning massive time-series data in Splash. In VLDB BigData
Workshop, 2012.

[16] K. B. Hall, S. Gilpin, and G. Mann. MapReduce/Bigtable for distributed optimization. In
NIPS LCCC Workshop, 2010.

[17] T. Hofmann. Probabilistic latent semantic indexing. In SIGIR, pages 50-57, 1999.

[18] T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst.,
22(1):89-115, 2004.

[19] D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The performance of MapReduce: An in-depth study.
PVLDB, 3(1):472-483, 2010.

[20] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.
IEEE Computer, 42(8):30-37, 2009.

[21] H.J. Kushner and G. Yin. Stochastic Approximation and Recursive Algorithms and Applica-
tions. Springer, 2nd edition, 2003.

[22] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788-791, 1999.

[23] D.D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS, pages
556-562, 2000.

[24] B. Li, S. Tata, and Y. Sismanis. Sparkler: Supporting large-scale matrix factorization. In
EDBT, 2013. To appear.

[25] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang. Distributed nonnegative matrix
factorization for web-scale dyadic data analysis on mapreduce. In WWW, pages 681-690,
2010.

[26] G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. Efficient large-scale
distributed training of conditional maximum entropy models. In NIPC, pages 1231-1239.
2009.

[27] R. McDonald, K. Hall, and G. Mann. Distributed training strategies for the structured percep-
tron. In HLT, pages 456-464, 2010.

34

[28] A.P. Singh and G. J. Gordon. A unified view of matrix factorization models. In ECML PKDD,
pages 358-373, 2008.

[29] C. Teflioudi, F. Makari, and R. Gemulla. Distributed matrix completion. In /CDM, pages
655-664, 2012.

[30] C. Teflioudi, F. Makari, R. Gemulla, P. J. Haas, and Y. Sismanis. Shared-memory and shared-
nothing algorithms for matrix completion, 2013. Submitted.

[31] M. Zaharia, N. M. M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. Technical Report UCB/EECS-2010-53, EECS Department,
University of California, Berkeley, May 2010.

[32] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative filtering
for the Netflix Prize. In AAIM, pages 337-348, 2008.

[33] M. A. Zinkevich, M. Weimer, A. J. Smola, and L. Li. Parallelized stochastic gradient descent.
In NIPS, pages 2595-2603, 2010.

A. MapReduce Algorithms for Matrix Factorization

We review some algorithms for finding an m x r matrix W and an r x n matrix H such that
V ~ W H for a given m X n input matrix V/, in the sense of minimizing a specified loss function
L(V,W H) computed over N training points. We focus on algorithms that have been shown to
work in a distributed setting—in which d tasks can perform computations in parallel—on very large
matrices. All algorithms are of an iterative nature. They start with some initial factors W and
H), which are repeatedly updated until some convergence criteria is met. Interesting properties
of such algorithms include supported loss functions, convergence properties, whether they support
non-negativity or box constraints, time and space complexity, and how distribution is achieved. An
overview of the algorithms is given in Table 1.

A.1. Specialized Algorithms

The specialized algorithms below are each designed for a certain class of loss functions. In all cases,
distributed processing is achieved by partitioning the input matrix and splitting up linear algebra
computations across nodes.

Alternating Least Squares. In its standard form, the method of alternating least squares
optimizes
LsL =Y (Vi — [WH]J;;)*.

1,

35

"UoT)RIN
12d qol dejq auo 1snf uni 03 sa1391e1S SUD{OO] PAZIOISND Asn am ‘uoneudwadwr doopeH Ino uy “syo0[q p Surssadcoid yoea ‘yoodaqns 1od qol dejy auQ
(@OSQ) 9rduwrexa ue 03 10 {(STV) peraryoe are sentadoid swmunt pasordwr YoIYM U0 sIoZLre[naI 10 ssof oy1oads 03 ‘(I TNIA) SIOZIIR[NSI 10 SaSSO[JURIJJIP
0) I9Ja1 AeW SALITUQ 9saY) ‘soLnuQ o[dnnuw aAey swWyLIo3[e awos A[oandadsar ‘paindwiod usaq aaey sudIpeIs aouo sivyowered [[e ojepdn 03 owin oy pue .swq
JuarpeIs [eoo] & Ainduwod 03 SpoyIdw paseq-jusipelsd Aq parmbar owm ay) joudp ddig pue /77 "suonouny ssof A[qeHUAIIP ATeNIqIe 9[puey Ued WyjLIo3[e
oy Jey) sueaws JiIp,, “K[oAnoadsar ‘wyyuioS[e oy Jo uonerat 1ad sqol eonpar pue ‘sqol dew ‘sueds ejep Jo roquunu 9y 0} JIOJAI SUWN[OD Y PUE ‘A ‘SULOS L,

(“N1-P)O 0 WP 1 (ar0qe se) TTIZN ‘T1 ISZN
A[Suraiojuod i ¥ M
AL(N1-P)O 0 P I ‘orenbs poxoo[q A HP P ansa
pajeorider fr 2 m
(Mu+tw)o+1L(N-P)O T 1 I Kreniqre pouonnred A B B ansd
A[Surtuioyuod g % M
ang + Ap(N-P)O T 1 1 1021 PAYO0[q A ‘HP ‘Hp [c11ao
(v +w) +aN]P)O T ¢ 4 (on0qe se) - TS
A[Surtuioyuod i ¥ M
(UN{-P)O T T (4 1021 PAY20[q A - IO [C7] IINN
A[Suruiojuod i ¥ M
(N{-P)O 1 I I 1021 PAYI0[q A - ID [C1] WA
(gt + [pt(u+w) + 4N _P)O 0 T z (9a0qe se) 71 1S
suwn[od AqQ fif 3 A
([pt(u+w) + Nl P)O 0 € 4 ‘SMOIAQ M ® A TIZNTT ISZNIS [l STV
uonedyd [owry, Y JN Sueds] gumuonnie JIZLIB[NSIIY SSOT] WYILIOZ[Y

36

L UONBZ110108,] XLIBJA J0J SWILIOS[Y 2onpaydeN :1 9[qeL

The method alternates between finding the best value for W given H, and finding the best value of
H given W. This amounts to computing the least squares solutions to the following systems of
linear equations

Vi* - Wz*Hn = 07
V= WanH,; =0,

where the unknown variable is underlined. This specific form suggests that each row of W can be
updated by accessing only the corresponding row in the data matrix V', while each column in H
can be updated by accessing the corresponding column in V. This facilitates distributed processing;
see below. The equations can be solved using a method of choice. We obtain

W« (H,Hy)""H, VT,
Hyp — (W W) "WV

for the unregularized loss shown above. When an additional Ly regularization term of form
M|[W |2 + || H||3) is added, we obtain

Wi « (HH+X)"'H, V", (192)
H,.; <« (WZ+1Wn+1+)\I)—1WTv_ (19b)

Since the update term of H,,; depends on W, 1, the input matrix has to be processed twice to
update both factor matrices.

In contrast to SVD, ALS does not produce an orthogonal factorization and it might get stuck in
local minima. However, ALS can handle a wide range of variations for which SVD is not applicable,
but which are important in practice. Examples include non-negativity constraints [1], sparsity
constraints [1, 11], weights [11], regularization [11, 32], or the restriction to nonzero entries [32].
In general, ALS is applicable when the loss function is quadratic in both W and H.

Zhou et al. [32] proposed a distributed version of ALS for Lyzst,, see Eq. (1). We first describe a
variation for Lgy, and then outline how to optimize Lnzsr. In both cases, the algorithm runs two
Map-only jobs per iteration, one to compute W, ; and one to compute H ,, 1. Each of the jobs
uses a different partitioning of V/, either by rows or by columns. For example, we use the row
partitioning to compute W ,,1: Each mapper reads a set of rows of V/, the corresponding rows of
W, and the entire matrix H ,,. The ¢th mapper then solves the part of equation (19a) that concerns

itS rows:)

T T T
Wn+17i*<—(Han+/\I) H,V, |,
—_———
coefficient matrix right-hand side

where W, 1 ;. denotes the rows of W, read by the ith mapper, and similarly for V';,. For
Lg1, the coefficient matrix is shared across rows, which allows us to reuse computation (e.g., a QR
factorization of the coefficient matrix). The matrix H 1 is computed analogously. The overall time
complexity is O(d~1[N7 + (m + n)r?] 4+ r3) time.” For LnzsL, we modify the algorithm so that it

"The right-hand sides can be constructed in O(Nr) time. The coefficient matrix can be constructed in O((m + n)r?)
time, and reduced to an upper-triangular form in O(r*) time (not parallel). For each of the m + n equation systems,
back-substitution takes O(r?) time.

37

uses a different coefficient matrix for each system of equations, i.e., for each mapper. Intuitively,
we remove equations that correspond to zero entries of V' from the least-squares problem. This is
achieved by using

W£+1,i* — HYHEHD)" +)\I)il H,V,

n k)

coefficient matrix right-hand side

where H £§) consists of just the columns of H ,, that have non-zero entries in the respective column
of V.. The computation of H 1 is analogous. The time complexity increases to O(d~![Nr? +
(m +n)r¥)).5

Expectation Maximization (EM). Hofmann et al. [17, 18] proposed an EM algorithm to
minimize the KL divergence Lk, in the context of “probabilistic latent semantic analysis” (pLSA).
As we discuss below, the algorithm can be seen as a matrix factorization algorithm. Let V be
non-negative and ZZ j Vij= 1.7 Then, V' corresponds to a probability distribution over pairs (4, j).
pLSA factors this probability distribution as follows

Pr(i,j]~ Y Prz]Pr[i|z]Pr[j]|z], (20)

where z € { z1,..., 2, } is a latent variable and follows a multinomial distribution over r topics. If
we identify Pr[i,5] = V;, Pr[z] = Z,, (where Z is a diagonal 7 X r matrix), Pr [i | z] = W7_,

and Pr[j | z] = H;, we obtain the following equivalent matrix factorization

V~WZH'

Note that W’ (H') describes a conditional probability distribution; thus each of its columns (rows)
sums to 1.
Model fitting is performed as follows. In the E-step, we compute the probability Pr |z | 4, j | that
entry (i, 7) is explained by topic z:
Priz]|Pr[i|z]|Pr[j|z]

Prizlid) = s e i [2] Pr)| 2] @D

In the M-step, the parameters are updated. Using normalization constants K, = >, . V; Pr{z [4, j],
we set

1

Prij|z] = ?ZVijPr[z]i,j] (22a)

Prli|z] = KLZVUPr[zu,j] (22b)
g

Priz] = K, (22¢)

¥We can construct all coefficient matrices in O(Nr?) time. Solving each system takes O(r*) time.
IfR = Z” Vi; # 1, we normalize V' by dividing each element by R.

38

It can be shown that the KL divergence between the distribution V' and the fitted distribution (20) is
non-increasing in every EM iteration. The EM algorithm converges to a stationary point of Lkj .

We now transform the EM algorithm into the language of linear algebra. This will allow us to
uncover similarities between the EM algorithm and the multiplicative update rules described later,
and also facilitates exposition of distributed EM. In what follows, we set W = W' and H = ZH’,
i.e., we factor Z into the parameter matrix H. Z can be readily factored out after convergence, if
desired. The E-step (21) becomes

. W..H ..
P = | —— 23
r(z],7] { WH L (23)
where division is performed element-wise. Let K,, = diag(Ky, 1,. .., Ky,) be the matrix of the

normalization constants used in the (n + 1)st M-step. Inserting (23) directly into the equations (22),
we obtain the following update rules:

;H—l «— [WTLO(V/Wan)H;rL] K;l (243)
w1 — KN [WI(V/W,.H,)oH,] (24b)
Zny1 = Ky, (24c)

where o denotes element-wise multiplication. Note that K ! is easy to compute as K, is a
diagonal matrix. Since all resulting matrices describe (conditional) probability distributions, they
are normalized appropriately. By construction, we have

K, = diag(colSums [W,, o (V /W, H,)H,])
= diag(rowSums [WL(V /W ,H,) o H,)),

where colSums[A]; = > A;; and rowSums[A]; = > A;; for a matrix A. is the If we compute
W41 and H, 4 directly, we arrive at the following final update rules

Wi — Wyo(V/W,H,)H"! (25a)
W1 — Wy diag(1l/ colSums[W, . 1]) (25b)
H,, « WYV/W,H,)oH,, (25¢)

where Wn+1 is an intermediate variable that is normalized to obtain W, 1.

Das et al. [12] show how to distribute the EM algorithm using MapReduce. The idea is to partition
matrix V into d; X ds blocks, W into d; conforming blocks, and H into dy conforming blocks.
Only one MapReduce job is needed to perform one EM iteration. To make this work, we first push
the normalization of Wn+1 in equations (25) into the (n + 2)nd iteration:

Woit < WoK;'o(V/W,K'H,) H" (26a)
K, <+ diag(colSums[W . 1]) (26b)
H,, + [W,K1"(V/W,K,'H,)oH,. (26¢)

39

where Wo =Wy ar~1d K = diag(colSums Wy). Each mapper reads a block of V, the corre-
sponding blocks of W,, and H ,,, and the entire matrix K ,,. For each nonzero element of V', the
mapper computes the quantity

Paij = Pr(z|6,j] = Wai K, (Vij /Wi K, " Hy,) H)

n,zz n,zj’
and outputs pairs (%, p.|i;), (J, Pz|ij)> (2, D2ji;)- Thus there is one group per row, one per column,
and one per topic. The reducer for row ¢ computes W, ;1 ;s using the transformation:

Wn—i—Liz <~ Wn,izK;L,lzz o (Vz*/wn,z*Kngn)HT

n,z%

=Y WK, L o(Vij/W, K, ' Hy) H,
J
= szh'j-
J
Similarly,
Hygz < Y Daij
i

Kn—l—l,zz <~ sz\ij
0]
Thus reducers simply sum up the entries within each group. Since summation is distributive,
preaggregation can be performed in a combine step at each mapper. To output the result in blocked
form, groups are assigned to reducers according to the blocking—e.g., a single reducer processes all
rows (groups) of the first block of Wn+1. Assuming m,n = O(NN), the overall time complexity
per iteration is O(d~ 1 NT).

Multiplicative updates (MULT). Lee et.al [22] proposed multiplicative update rules for non-
negative matrix factorization under Lgky . Later [23], they refined the Lk rules and developed
rules for Lg; . The refined update rules can be seen as a rescaled version of gradient descent, where
the step sizes are computed individually for each parameter. In all cases, the rules are multiplicative
in that each factor gets multiplied by some update term, which varies from method to method. Each
iteration is non-increasing in the loss, and the factor matrices converge to a stationary point of the
loss function.
We first consider the rules for GKL given in [22]:

Woii < Wyuo(V/W,H,)H" (27a)
W1 — W,y diag(1/ colSums[W,1]) (27b)
Hn+1 < W;FLJrl(V/Wn—&-lHn) © Hn; (27C)

These are almost the update rules (25) of EM, but W, is used instead of W,, when computing
H, 1. As a consequence, updates of W and H cannot be performed simultaneously anymore, and

40

two scans of V are required. The refined rules for GKL are
Wit < W0 (V/W,H,)H! diag(1/ rowSums[H,]),
H, 1 < H, odiag(1/ colSums[W,, 1)W1 (V/W 1 H,).
These update rules can be seen as symmetric versions of (27); they work better in practice. Thus,

when we refer to MULT for Lgki, we refer to the refined rules above. The time complexity remains
O(Nr). The rules for Lgy, are given by:

wlv
H, 1+ H,0o— 2
H WIW,.H,
VH,

w 41— W, o .
" " W.H, 1 H

Sparsity of V is readily exploited: W'V and VH IL 1 each can be computed in a single scan of
the nonzero elements of V. The overall time complexity is O(N7 + (m + n)r?).

Liu et al. [25] give MapReduce versions of MULT; the underlying ideas are the same as for
distributed EM [12]. Minor modifications are needed to match the refined rules or the Lg; rules.

A.2. Generic Algorithms

Generic algorithms can be used to solve our generalized problem statement. We first discuss gradient
descent, which has been applied successfully to large-scale matrix factorization. We then summarize
some recent work in the area of distributed SGD.

Gradient descent (GD). Gradient descent is a well-known optimization technique. The idea is
to compute the direction of steepest descent at the current value of the parameters, and then take a
small step in this direction. We describe the algorithm in terms of the local loss functions L;;. The
gradients are given by:

0 0 0
LW H) = Ly i (Wi, Hy) = —L;i (W, H,;),
o OV H) =l 3 LW) = 3 W)

(’L,,j)EZ jEZi*
where Z;, = {j: (i,7) € Z }. This means that the gradient w.r.t. W, depends on H and row i of
both the loss matrix L and W. Similarly, we have

0 0
L H — 71/1 i*)H*‘ 3

where Z,; = {i: (i,j) € Z }. The gradient w.r.t. to W is given by the matrix of first-order partial
derivatives

BVZVHL(WH, H,)

L(W,,H,

WTY - %L(Wmﬂn) = oW (.)
BV‘(?m*L(Wn’ Hn)

41

Similarly,

0
v 0 9 (W
H, = 5 LWy, Hy) = (ﬁL(WmHn) L ”’H"))‘

Then, GD performs the following iteration

W1 =W, —e, WY
H, =H,—c,H.

If the conditions on { €, } and L given in Sec. 4.2 hold, and a projection term is added to the above
equations, the algorithm converges asymptotically to the set of limit points of the projected ODE
0=-I' (0) + z, where § = (W, H) and, as before, z is the minimum force to keep the solution in
the constraint region.

GD converges very slowly and many iterations may be required to approach a stationary point.
To get reasonable convergence speed, Newton or quasi-Newton methods replace the step sizes by
(estimates of) the inverse Hessian of L at the current parameter estimate. A scalable and memory-
efficient method is L-BFGS-B [8]. If L is non-convex, GD may get stuck in a local optimum.
Especially in its standard form, GD is thus not well suited for loss functions that have many “small
bumps”, i.e., many bad local minima.

Both first-order and second-order GD methods can be distributed using MapReduce [26, 13]. The
key idea of this approach to arbitrarily partition the loss matrix across a cluster of nodes. Each node
sums up the partial gradients of its part of the data, the partial gradients are then summed up at the
reducers. The authors argue that this can be done conveniently by using a query language on top of
MapReduce. Once the gradient has been computed, a master node will perform the update of the
parameter values using, for example, the L-BFGS-B method.

Algorithm 3 PSGD/ISGD for Matrix Factorization

Require: Z, W, H, degree of parallelism d
W « Wo
H + HQ
Randomly divide Z into d partitions Z1, ..., Zy
while not converged do /* epoch */
Pick step size €
Distribute W and H /* ISGD: only in first iteration */
forb=1,...,ddo /*inparallel */
Run SGD on the training points in Z° (step size = €)
end for
Collect W and H from all nodes and average /* ISGD: only in last iteration */
end while

42

Y. 0 Y- 0
5 4 Y2 %96,\ Ye %910XY17()
?
8
3 Yi 65 Y5 8y Yo
o
1 Yo 0, Ya 0g, Yg

1T 1T 1T 1T 1T T 11
2 3 4 5 6 7 8 9 10

Time

og
—

Figure 8: Pipelined SGD (d = 3,1, = 3,t, = 1)

Partitioned stochastic gradient descent (PSGD, ISGD). PSGD and ISGD both are recent
approaches to distribute SGD without using stratification; see Algorithm 3. The idea is to partition
the data randomly into d partitions, and run SGD independently and in parallel on each partition.
Results are averaged in a parameter mixing step after either each epoch (PSGD [16, 27]) or once
after convergence on each partition (ISGD [26, 27, 33]); observe that PSGD requires periodic syn-
chronization between the partition-processing tasks whereas, for ISGD, processing on the different
partitions can proceed in a mutually independent fashion. Both approaches can be implemented
naturally on MapReduce. Compared to DSGD, ISGD is slightly more efficient (since there is no
synchronization) whereas PSGD is slightly less efficient (since there are additional averaging steps).
In the setting of matrix factorization, it is possible to reorder a set of rows of W and corresponding
columns of H without affecting the value of the loss function. It follows that the loss function has
many global minima that correspond to many different values of the factor matrices. In ISGD, the
SGD processes on different partitions tend to converge to different solutions; the average of these
local solutions is usually not a global loss minimizer. PSGD performs better and does converge, but
it is outperformed by DSGD and, in some cases, even L-BFGS; see Sec. 7.

B. Parallelization Techniques for Stochastic Approximation

For completeness, we summarize standard approaches for parallel stochastic approximation [21,
Ch. 12]. These approaches do not map naturally to MapReduce, and are designed for the case in
which the computation of the update term is expensive (e.g., requires a simulation) and communica-
tion is rather cheap (e.g., few parameters). Neither assumption holds for matrix factorization, but
our approaches are inspired by the techniques below.

Pipelined stochastic gradient descent. The pipelined computation model is based on a
“delayed update” scheme in which the gradient estimate used in the nth step is based on the

43

parameter value from the (n — d)th step, where d is the number of available processors, e.g.,
en—i-l =0p — €Yy g,

where Y, = L (0x) for k > 0. (We fix the step size € for ease of notation.) This permits a scheme
in which d 4 1 processors compute gradient estimates and parameter values in a pipelined fashion.
Figure 8 illustrates the technique for the case d = 3, assuming that it takes ¢, = 3 time units to
compute a gradient and ¢,, = 1 time unit to update a parameter value. The scheme is initiated
by choosing 0y and setting 03 = 02 = 0; = 0p. At time n = 0, processor 1 begins to compute
the update term Y. This computation completes at time n = 3 (marked with a “|”), at which
point processor 1 begins to compute 4 = 63 — €Y), finishing at time n = 4 (marked with an
“x”"). Similarly, processor 2 begins to compute the update term Y] at time n = 1. Attime n = 4,
this computation completes, and processor 2 uses the value of 6, that has just been computed
by processor 1 to compute 5 = 64 — €Y7, finishing this computation at time n = 5. The other
processors behave similarly. This scheme can be extended to handle variable updating delays.

Decentralized stochastic gradient descent In the distributed and decentralized network
model, both parameter updates and computation of update terms take place in a distributed and
decentralized fashion. This powerful model is a generalization of the pipelined computation model.
Both the components of the parameter vector and the loss function are distributed across the set of d
processors. Processor p is responsible for component 07 and partial loss L, () such that:

01
92 d
0= . and L(0) =) L,(0)

The processors operate in parallel and (potentially) at different speeds; communication is asyn-
chronous. Thus at any given point in “real time” (wall clock time), each processor resides at a
different time point in “iterate time” (step number). More specifically, the (n + 1)st iteration at
processor p involves the following steps:

1. Estimate én,p. Obtain an estimate émp of the entire parameter vector by using 6% for the pth
component (the current value of the component managed by p) and the most recently received
value for all other components (from step 5).

2. Compute update terms. For each processor ¢ (including p), compute (or estimate) update term

~

q __
Yip = 004

3. Communicate update terms. For each processor ¢, send er{p to q.

44

4. Compute 07 41~ Add all unprocessed update terms Y? to 0,. This includes update terms
received from other nodes as well as the update term Y;?,, computed in the previous step. Do
not wait for any “missing” update terms, and if multiple update terms have been received
from a single processor g, process them all.

or . =0h +e Z { unprocessed update terms Y? } .

5. Broadcast 6% 1~ Broadcast the new parameter component to all other nodes.

Weak convergence results for this process model are discussed in [21, Ch. 12]. The proofs proceed
by a careful treatment of “iterate time”, and then use appropriate time scale changes to obtain “real
time” results.

C. Example Loss Functions and Derivatives

Table 2 displays the definitions of several commonly used loss functions as mentioned in Section 7:
nonzero squared loss (Lnzsr), non-zero squared loss with Lo regularization (L), nonzero squared
loss with a nonzero-weighted Ly term (LNZLz) KL divergence (LKL) and generalized KL divergence
(Lgkr). In the table, = (X, >, ”)1/2'

Our methods for obtaining a rank-r approximate factorization V W H of an m X n input
matrix V require that we represent each loss function L as a sum of local losses over points in the
training set Z, i.e., LW, H) = > ; »c, Lij(W, H), where Lij(W,H) = [(Vij, Wi, H.j)
for an appropriate function [, so that the gradient of L can be decomposed as a sum of local-loss
gradients: L'(W,H) = >, yc, Li;(W,H). For each loss function L considered, Table 2
gives formulas for the components of the local-loss gradient L;j. In these formulas, N;. and
N,; denote the number of nonzero elements in row 7 and column j of the matrix V. Moreover,
J=A{1,...om}x{1l,....n}and B ={1,...,d} x {1,...,d}. Finally, for a u X v matrix
A, the quantities rowSums(A) and colSums(A) denote the v x 1 column vector containing the
row sums of A and the 1 x v row vector containing the column sums of A; thus, for example,
colSums(W) and rowSums(H) are each vectors of length 7.

As can be seen, special care has to be taken with regularization terms when representing L as a
sum of local losses. In the case of Ly, for example, we proceed as follows. Recall from Sec. 2 our
running assumption that there is at least one training point in every row and in every column of V.
Since Z = { (¢,7) : V'j; > 0}, this means that N;, > 0 and N,; > 0 for all 7 and j. Then we have

W’L*
w2 = Zuwz*np - ZNM Wi

z*

B S Ry S LA

i=1 j=1 (ijez "

(28)

45

and, similarly, | H||z = 2t)ez [Hxj |2/N.;. (Here I[A] denotes the indicator function of A.)
These results lead directly to the representation of Ly, in Table 2. A similar algebraic manipulation
is used to represent LNz 2.

The case of Lgkr. merits additional discussion. First recall that, after randomly permuting the
rows and column of the training matrix Z, we partition Z into d? blocks, and partition each of the
factor matrices conformingly into d blocks as W = (W1 ... W9T and H = (H',..., H?).
As before, we denote by Z° the set of training points that lie in block b € B. A stratum comprises d
blocks, selected such that each pair of blocks has no row or column indices in common. We originally
required that the local loss at a point (7, j) € Z be of the form I(V;;, W, H ;) mentioned above,
which ensures that SGD can be run independently within each block in the stratum. Observe,
however, that we need only require that the local losses be of the form [(V;;, Wb g b(*j)),
where b(ix) denotes the block of W that contains W;, and b(xj) denotes the block of H that
contains H ;. This looser definition preserves the interchangeability structure, so that updates to
parameter values for a given block will not affect parameter values corresponding to other blocks,
and SGD can still be executed in a distributed manner within the stratum. We represent Lgky as a
sum of losses in this looser sense. In addition to allowing a more general representation of each local
loss, we also use two different decompositions of Lgkr. The first (resp., second) representation is
more amenable to calculating derivatives with respect to the Wy, (resp., H ;) factors.

Denote by]\72k (resp., N, fj) the number of training points in substratum Z° that appear in row i
(resp., column j) of the training matrix Z:

Ni=[{i:G) ez} and NG =|{i: (i) € 2"}.

We assume that N, > 0 for each row 4 that intersects block Z° and that N f:j > 0 for each column j

that intersects Z°; otherwise, we can always add additional (zero-valued) training points to the
training set Z.' For b € B, denote by J1 {z i,7) € Zb} and J2 {] i,7) € Zb}
the sets of first indices and second indices of points—both zero and nonzero—in block b. Set
Qb = ZieJ{’ Zjng [W H];; and note that

Qb = Z Z W.H,; = Z Wiy - rowSums(Hb) = Z % . rowSums(Hb),

ieJ? jetb ieJb (ij)ezb =™

"For each such added point (4, j), we define the quantity V';; log(V;;/[W H];;) that appears in the definitions of
LW and L] below—as well as the quantity V';;/[W H];; that appears in the definitions of 9L} /OW ;; and
/BHk]—to be equal to O for all W and H.

46

where the final equality follows from a manipulation as in (28). We then have

Vi
LGKL = Z (VU 10g [WH] — Vz‘j) + Z [WH]Z]
(i,5)eZ (i,5)ed
Vi
= Z(Z (Vijlog m——-— [WH} -Vi)+ Qb>
beB *(i,j)ezb
= Z Z (sz log ———— [WH] -V + N rowSums(Hb)).
beB (i,5)ezb %

Thus we obtain the representation Lggy, = Z(ez LZ-V}/, where

Zhj)
Vi W i
=Vl -V, Sums (H**J)
ij log m———— [WH] ij+ —= NG - rowSums().

This is a local loss of the “loose” form discussed above. This representation of Lgky is convenient

for computing derivatives with respect to the W factors. Observe that for each (i, j) € Z, we have
/ OW i1, = 0 for i’ # i, so that—if we are running SGD on a block Z and are estimating

the gradient based on a sampled training point (4, j) € Z’—only the elements of W ;, need to be

updated, and we retain computational efficiency as in Algorithm 1. In a similar manner, we can

derive an alternate representation Lgky, = Z(L ez Lz iR where
H H b(ix)
Lij = Vijlog ez — Vij + —~ N . colSums (W),
*J

[WH Jij

This decomposition is useful for computing derivatives with respect to the H factors. With an abuse
of notation, we write 9L;;/OW ;, for oLY / OW i, and OL;; /O H |, for oLt / O0H ;. Although the
“gradient” L/ ; that we have just defined i 1s not actually the gradient of some Well defined local loss

function L;;, it nonetheless holds that (i.j)EZb L ; is equal to the gradient of Lggp on Z b, which
is all that we need for DSGD. The final derivative formulas are given in Table 2.

Table 2: Examples of loss functions and derivatives

Loss Function Definition and Derivatives

LnzsL Inzsu= Y, (Vi — [WH]y)?
(1,5)eZ
0
g, i = 72V — [WHI)Hy,
0
9 L= -2V, — [WHi,))W,
3ij J (J [ij) k

47

Table 2: Examples of loss functions and derivatives (continued)

Loss Function

Definition and Derivatives

Lio = Lanzst + A (W + || H|3)

Ly
Wz' 2 H*' 2
= ez |(Vig — [WH];)? + A (LRl 4 L)
0 Wik
0 H,,
0ij J (VJ [W]j)Wk+ i
Lz Lnzi :LNZSL+)\(HN1WH12:+ HHN2H12:)
=Yipez [(Vij = WH])? + X (IWallf + |1 H . [17)]
o0
mLU = —Q(Vij — [WH]Z])H]W + QAVVZ]C
0
V..
L Lyt = Vil iJ
KL KL Z (Vijlog [WH]ZJ)

(4,5)€Z

Lii=—Hjp:; v
oW Y MW H)],;
— L =-W; Y
OHy; Y "W H],;

48

Table 2: Examples of loss functions and derivatives (continued)

Loss Function Definition and Derivatives

La Lok = 32 (Viglog gt = Vig) + 3 (WHJ,
(lvj)EZ V ng’j)ej
- Z Z (V%J log ——"-— WH] - Vii+ N rowSums(H))
beB (z j)EZb Tk
Vi H,;
- Z Z (V” log] - Vii+ N—bj colSums(Wb)>
beB (i,j)eZb y
.. b(x7)
o Lij def 0O LY = —Hy, Vi rowSums(H ")),
OW iy Wi ¥ (W HJ,; N}
LL-J def 0 Lf{ — W, Vij colSums(W?”"™)),

49

	1 Introduction
	2 Example and Prior Work
	3 Stochastic Gradient Descent
	3.1 Preliminaries
	3.2 SGD for Matrix Factorization

	4 Stratified SGD
	4.1 The SSGD Algorithm
	4.2 Convergence of SSGD
	4.3 Conditions for Stratum Selection

	5 The DSGD Algorithm
	5.1 Interchangeability
	5.2 A Simple Case
	5.3 The General Case

	6 DSGD Implementation
	6.1 General Algorithmic Details
	6.2 MapReduce/Hadoop Implementation

	7 Experiments
	7.1 Setup
	7.2 Relative Performance
	7.3 Scalability
	7.4 Selection Schemes
	7.5 Other Loss Functions

	8 Conclusions
	A MapReduce Algorithms for Matrix Factorization
	A.1 Specialized Algorithms
	A.2 Generic Algorithms

	B Parallelization Techniques for Stochastic Approximation
	C Example Loss Functions and Derivatives

