
ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

Continuous Object Access Profiling
and Optimizations to Overcome
the Memory Wall and Bloat

Rei Odaira, Toshio Nakatani

IBM Research – Tokyo

© 2012 IBM Corporation
2 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Many Wasteful Objects Hurt Performance.

�Object-oriented programs allocate many objects.
[Zhao et al., 2009]

�Not only many, but also wasteful.
[Mitchell et al. 2007]

– Unused fields, duplicated objects, etc.

� Called Memory Bloat.

Increasing cache misses.

Making the Memory Wall higher.

Increasing GC frequency and overhead.

© 2012 IBM Corporation
3 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Object Optimizations to Overcome Memory Bloat

�Allocation size
truncation
[Odaira et al., 2012]

�Object compression
[Sartor et al., 2008]

�Equal-object merging
[Marinov et al., 2003]

� Lazy allocation, filed reordering, and more.

abc… abc…

abc…

Accessed Not accessed

© 2012 IBM Corporation
4 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Object Optimizations Need Object Access Profiling.

�Allocation size

truncation

– What is the largest

accessed index?

�Object compression

– Are the fields not likely

to be accessed?

�Equal-object merging

– Are the objects equal

and likely immutable?

abc… abc…

abc…

Accessed Not accessed

© 2012 IBM Corporation
5 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Definition: Object Access Profiling

�Which instructions access …

�which fields of …

�which objects …

� allocated at which sites

– … or in which contexts.

1: buffer =
new char[16384];

20: buffer[99] = ...;

Instruction 20 writes to the

99th element of a char
array allocated at 1.

© 2012 IBM Corporation
6 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Goal: Lightweight Accurate Object Access Profiling

� Lightweight

– To be used online continuously.

�Accurate

– Not to miss optimization opportunities.

© 2012 IBM Corporation
7 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Goal: Lightweight Accurate Object Access Profiling

� Lightweight

– To be used online continuously.

�Accurate

– Not to miss optimization opportunities.

However, accurate profiling is heavyweight!!

© 2012 IBM Corporation
8 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Goal: Lightweight Accurate Object Access Profiling

� Lightweight

– To be used online continuously.

�Accurate

– Not to miss optimization opportunities.

�Need to trade off accuracy for low overhead.

� What kind of accuracy is really needed?

(… and what can be compromised?)

However, accurate profiling is heavyweight!!

© 2012 IBM Corporation
9 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Example of Memory Bloat: Over-allocated Buffers

�Programmers often allocate many large buffers.

– E.g. StringBuffer, BufferedReader, etc. in Java.

�But access only the first few dozen elements.

buffer =
new char[16384];

Access buffer;
...

16K elements
Lucene search benchmark

© 2012 IBM Corporation
10 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Example of Memory Bloat: Over-allocated Buffers

�Programmers often allocate many large buffers.

– E.g. StringBuffer, BufferedReader, etc. in Java.

�But access only the first few dozen elements.

buffer =
new char[16384];

Access buffer;
...

Lucene search benchmark

Accessed Not accessed

~100 elements

© 2012 IBM Corporation
11 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Example of Memory Bloat: Over-allocated Buffers

�Programmers often allocate many large buffers.

– E.g. StringBuffer, BufferedReader, etc. in Java.

�But access only the first few dozen elements.

buffer =
new char[16384];

Access buffer;
...

Lucene search benchmark

Accessed Not accessed

The largest accessed index is 99.

© 2012 IBM Corporation
12 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Example (cont’d): Truncating Allocation Size

�Speculatively allocate smaller buffers.

– Need a fallback path for speculation failure

(See our paper).

buffer =
new char[100];

Access buffer;
...

Lucene search benchmark

4x speed-up!

© 2012 IBM Corporation
13 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Must Track Object for Its Entire Lifetime.

� 99 turns out to be the largest accessed index

only after the buffer dies.

buffer = new char[16384]
Access buffer[0]
Access buffer[1]
...
Access buffer[99]
...
Access buffer[50]
...
Access buffer[30]
...
Reclaim buffer

T
im

e

Hmm…, the largest

accessed index

was 99.

© 2012 IBM Corporation
14 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

But No Need to Track Every Object.

�Observation:

Objects allocated at the same site (or context)

tend to have the same access pattern.

buffer =
new char[16384];

Access buffer;
...

Track

No need to track

© 2012 IBM Corporation
15 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Prior Work is Heavyweight and/or Inaccurate.

�Pointer analysis in Just-In-Time (JIT) compilation

Accurate analysis is heavyweight.

Lightweight analysis is inaccurate (too conservative).

�Code instrumentation

Accurate profiling needs to instrument many accesses.

Lightweight instrumentation cannot track objects’

lifetimes.

– E.g. Bursty Tracing [Arnold et al., 2001; Hirzel et al., 2001]

infrequently samples consecutive accesses.

© 2012 IBM Corporation
16 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Barrier Profiler: Accurate and Lightweight Profiler

�Memory-protection-based

– Can track objects’ lifetimes.
buffer =

new char[16384];
if (sample(buffer))
protect(buffer);

...
Access buffer[0]
Access buffer[1]
...
Access buffer[99]
...
Access buffer[50]
...
Access buffer[30]
...
Reclaim buffer

© 2012 IBM Corporation
17 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Barrier Profiler : Accurate and Lightweight Profiler

�Memory-protection-based

– Can track objects’ lifetimes.

�Per-object protection

– Barrier Pointers

buffer =
new char[16384];

if (sample(buffer))
protect(buffer);

...
Access buffer[0]
Access buffer[1]
...
Access buffer[99]
...
Access buffer[50]
...
Access buffer[30]
...
Reclaim buffer

© 2012 IBM Corporation
18 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Barrier Profiler : Accurate and Lightweight Profiler

�Memory-protection-based

– Can track objects’ lifetimes.

�Per-object protection

– Barrier Pointers

�Profile-directed overhead

reduction

– Sample objects adaptively.

buffer =
new char[16384];

if (sample(buffer))
protect(buffer);

...
Access buffer[0]
Access buffer[1]
...
Access buffer[99]
...
Access buffer[50]
...
Access buffer[30]
...
Reclaim buffer

© 2012 IBM Corporation
19 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Barrier Profiler : Accurate and Lightweight Profiler

�Memory-protection-based

– Can track objects’ lifetimes.

�Per-object protection

– Barrier Pointers

�Profile-directed overhead
reduction

– Sample objects adaptively.

– Can stop profiling an object.

� Lightweight

� Small errors in profiling

buffer =
new char[16384];

if (sample(buffer))
protect(buffer);

...
Access buffer[0]
Access buffer[1]
...
Access buffer[99]
...
Access buffer[50]
...
Access buffer[30]
...
Reclaim buffer

Stop profiling this object.

© 2012 IBM Corporation
20 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Barrier Profiler : Accurate and Lightweight Profiler

�Memory-protection-based

– Can track objects’ lifetimes.

�Per-object protection

– Barrier Pointers

�Profile-directed overhead
reduction

– Sample objects adaptively.

– Can stop profiling an object.

� Lightweight

� Small errors in profiling

buffer =
new char[16384];

if (sample(buffer))
protect(buffer);

...
Access buffer[0]
Access buffer[1]
...
Access buffer[99]
...
Access buffer[50]
...
Access buffer[30]
...
Reclaim buffer

© 2012 IBM Corporation
21 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Simple Page Protection Does Not Work.

�How about directly protecting target objects?

Race condition

– Thread A temporarily disables protection to access

an object.

– Thread B can access the object without an exception.

Too coarse-grained

Heap

Protected page

Object being profiled

© 2012 IBM Corporation
22 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Barrier Pointers to Enable Per-Object Protection

�Reserve a protected region outside of the heap.

– The same size as the heap, for simplicity.

– More virtual-memory efficient methods in our paper.

– No need to assign real memory to the protected region.

Protected regionHeap

Virtual address space

Same size

© 2012 IBM Corporation
23 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Barrierization

�Convert all pointers to a target object to

barrier pointers.

– Add the constant offset.

�Barrier pointers point to the protected region.

�Done at object allocation time.

Protected regionHeap

Original

pointer Barrier pointer
Add offset

© 2012 IBM Corporation
24 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Barrier Pointers Enable Per-Object Profiling.

�Accesses via the barrier pointers cause exceptions.

– Profiling in the exception handler.

☺ Accesses to the other objects cause no exception.

�Subtle issues explained in our paper:

– Handling pointers to the middle of an object.

– Executing atomic memory accesses.

Protected regionHeap

Barrier pointer

© 2012 IBM Corporation
25 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Unbarrierization

�Restore the original pointer from the barrier pointer.

– Subtract the constant offset.

☺ Can access the object without disabling protection.

☺No race condition

Protected regionHeap

Subtract offset
Original

pointer Barrier pointer

© 2012 IBM Corporation
26 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Barrier Profiler Samples Objects at Allocation Time.

�Per n-MB allocation.

– n = 8, by default, but it is adaptive.

Protected regionHeap

8 MB

Barrierize

© 2012 IBM Corporation
27 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Experiments

� Implemented in 32-bit IBM J9/TR 1.6.0 SR6.

�Metrics

– Accuracy
� Smaller errors in profiles than Bursty Tracing

(Details in our paper)

– Performance overhead

�Simulated Bursty Tracing
(access-sampling-based code instrumentation).

– Accuracy estimated using offline perfect tracing.

– Overhead calculated based on full-instrumentation
overhead and sampling ratio (200:1).

© 2012 IBM Corporation
28 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Experimental Environment and Benchmarks

�Environment

– 4-core 2-SMT 4.7-GHz POWER6, 32-GB main memory

– Linux 2.6.18, 1 GB Java heap

�Benchmarks

– SPECjvm2008, DaCapo 9.12, and SPECjbb2005.

– Only allocation-intensive programs shown in this talk.

© 2012 IBM Corporation
29 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

0

5

10

15

co
m

pi
le

r.c
om

pi
le

r

de
rb

y

se
ria

l
su

nf
lo

w
xm

l.t
ra

ns
fo

rm
xm

l.v
al

id
at

io
n

co
m

pi
le

r.s
un

flo
w

fo
p

jy
th

on
lu

se
ar

ch

pm
d

su
nf

lo
w

 (D
aC

ap
o)

to
m

ca
t

xa
la

n
S

PE
C

jb
b2

00
5

G
eo

. m
ea

n

O
v
e
rh

e
a
d
 (

%
)

Bursty Tracing Barrier Profiler

Performance Overhead

�Bursty Tracing: 9.2%, Barrier Profiler 1.3%

– Without the profile-directed overhead reduction, the
overhead of Barrier Profiler was 75.2%.

9.2%

1.3%

L
o
w

e
r is

 b
e
tte

r

© 2012 IBM Corporation
30 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Online Object Optimizations Using Barrier Profiler

�Online compression of character arrays

– 8.6% speed-up in SPECjbb2005.

�Online truncation of allocation sizes

– 36% speed-up in “lusearch”, with 1 GB Java heap

– 4x speed-up in “lusearch”, 6% speed-ups in “xalan”,

with 2x minimum Java heap.

© 2012 IBM Corporation
31 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Conclusion

�Barrier Profiler:

accurate and lightweight object access profiler

– Smaller errors in profiles than Bursty Tracing

– 1.3% performance overhead on average

�Indispensable to continuous online profiling.

�Online object optimizations using Barrier Profiler

– Online truncation of allocation sizes

– Online compression of character arrays

�Enabled for the first time by Barrier Profiler.

© 2012 IBM Corporation
32 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Thank you!

�Questions?

ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

Backup

© 2012 IBM Corporation
34 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Advanced Barrier Pointers

�Shift right/left for barrierization/unbarrierization.

– Objects are 8-byte aligned.

�Protected region can be 1/8 of the Java heap.

Protected regionJava heap

Virtual address space

Original pointer Barrier pointerShift right + add offset

Subtract offset + shift left

© 2012 IBM Corporation
35 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Java heap

Utilizing OS-protected Region

� Linux occupies the highest 1/4 of a virtual
space.

– Inaccessible from users.

�Set/clear the topmost 2 bits for
barrierization/unbarrierization.

Linux OS regionJava heap

Virtual address space

Original pointer Barrier pointerShift right + set topmost 2 bits

Clear topmost 2 bits + shift left

0xC0…000

© 2012 IBM Corporation
36 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

How to Evaluate Accuracy

� Profile all of the accesses to all of the allocated objects. (= Full trace)

– Using the barrier pointer framework.

� Calculate the percentages of allocated bytes satisfying the following
properties, at each allocation site.

– Write-only objects

– Immutable objects

– Non-accessed bytes

� Compare the profilers’ results with the full trace, using the absolute
differences of the calculated percentages.

� Simulated Bursty Tracing: estimate the accuracy by sampling 10,000
memory accesses after skipping 2,000,000 accesses in the full trace.

© 2012 IBM Corporation
37 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Online Adjustment of Allocation Sizes

� Focus on “growable array” programming pattern.

– E.g. StringBuffer in Java.

– Speculation failure check is already coded.

�Programmers use a new API to wrap the target

allocation sites.

� Feedback the best size to each allocation site.

Buffer Buffer

When more

elements needed

© 2012 IBM Corporation
38 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

New API

public final classclassclassclass System {{{{
1: public static char[] getCharArrayOfBestSize(int defaultSize) {{{{
2: returnreturnreturnreturn new char[defaultSize];
3: }}}}

...
}}}}
public classclassclassclass BufferedReader {{{{

4: public BufferedReader(Reader in) {{{{
5: this.in = in;
6: //this.cb = new char[8192]; // Original implementation
7: this.cb = System.getCharArrayOfBestSize(8192);
8: this.length = this.cb.length;
9: }}}}

...
}}}}

© 2012 IBM Corporation
39 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Overhead Reduction Exploits Boringness.

� Interesting properties:

– Properties of objects which object optimizations exploit.

– E.g. Write-only, immutable, non-accessed, etc.

�Boring objects:

– Objects that no longer satisfy interesting properties.

– E.g. objects once read are no-longer write-only.

� Stop profiling of such objects by unbarrierization.

�Boring allocation sites:

– Sites that have allocated many boring objects.

� Reduce sampling frequency at such sites.

© 2012 IBM Corporation
40 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Techniques for Overhead Reduction

� Adaptive object sampling:

Reduce sampling frequency at the sites that have

allocated many uninteresting objects.

� Adaptive unbarrierization:

Stop profiling of objects that no longer satisfy

interesting properties.

– GC-time unbarrierization.

– Execution-time temporary unbarrierization

load reg1,[obj_reg,offset]
…
…
load reg2,[obj_reg,offset]

profile_access(object);
if (object is not interesting

&& obj_reg is not used
for pointer comparison)

obj_reg =
unbarrierize(obj_reg);

© 2012 IBM Corporation
41 ASPLOS 2012 | March 5, 2012

IBM Research - Tokyo

Accuracy (Errors against Perfect Profiles)

�Barrier Profiler mostly resulted in smaller errors

than Bursty Tracing.

L
o
w

e
r is

 b
e
tte

r

0

10

20

30

40

50

60

co
m

pi
le

r.c
om

pi
le

r

de
rb

y

se
ria

l
su

nf
lo

w
xm

l.t
ra

ns
fo

rm
xm

l.v
al

id
at

io
n

co
m

pi
le

r.s
un

flo
w

fo
p

jy
th

on
lu

se
ar

ch

pm
d

su
nf

lo
w

 (D
aC

ap
o)

to
m

ca
t

xa
la

n

S
PE

C
jb

b2
00

5
G

eo
. m

ea
n

P
ro

fi
le

 e
rr

o
r

(%
)

Bursty Tracing Barrier Profiler

Errors in estimating the allocation percentage of write-only bytes

