Continuous Object Access Profiling I
and Optimizations to Overcome =
the Memory Wall and Bloat

Rei Odaira, Toshio Nakatani

IBM Research — Tokyo

ASPLOS 2012 | March §, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

Many Wasteful Objects Hurt Performance.
= Object-oriented programs allocate many objects.
[Zhao et al., 2009]

* Not only many, but also wasteful.
[Mitchell et al. 2007]

— Unused fields, duplicated objects, etc.

—> Called Memory Bloat.

©® Increasing cache misses.
© Making the Memory Wall higher.

® Increasing GC frequency and overhead.

ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

| IBM Research - Tokyo

[
|
]
@

Object Optimizations to Overcome Memory Bloat

. . Accessed Not accessed
= Allocation size e PN

truncation
[Odaira et al., 2012]

= Object compression
[Sartor et al., 2008]

= Equal-object merging [@be..

L4 L4 . .
““““

[Marinov et al., 2003] ™., G e

= Lazy allocation, filed reordering, and more.

| ASPLOS 2012 | March 5, 2012

© 2012 IBM Corporation

| IBM Research - Tokyo

[
|
]
@

Object Optimizations Need Object Access Profiling.

Accessed Not accessed
A

A
(N N

= Allocation size
truncation

—What is the largest
accessed index?

= Object compression

— Are the fields not likely
to be accessed?

= Equal-object merging

— Are the objects equal
and likely immutable?

| ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

| IBM Research - Tokyo

Definition: Object Access Profiling

= Which instructions access ... | ::fvff:;a?[16384];
= which fields of ... V
= which objects ...
= allocated at which sites v
— ... or in which contexts. =201 buffer[99] = ...

o0 04..

| ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

| IBM Research - Tokyo

Goal: Lightweight Accurate Object Access Profiling
= Lightweight
— To be used online continuously.

= Accurate

— Not to miss optimization opportunities.

| ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

| IBM Research - Tokyo

Goal: Lightweight Accurate Object Access Profiling
= Lightweight
— To be used online continuously.

= Accurate

— Not to miss optimization opportunities.

7 | ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

| IBM Research - Tokyo

Goal: Lightweight Accurate Object Access Profiling
= Lightweight

— To be used online continuously.

= Accurate

— Not to miss optimization opportunities.

= Need to trade off accuracy for low overhead.

- What kind of accuracy is really needed?
(... and what can be compromised?)

| ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

[
|
]
@

Example of Memory Bloat: Over-allocated Buffers

= Programmers often allocate many large buffers.
—E.g. StringBuffer, BufferedReader, etc. in Java.

= But access only the first few dozen elements.

L ucene search benchmark

16K elements
I N

buffer =
new char[16384];

v

Access buffer: A7J

ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

[
|
]
@

Example of Memory Bloat: Over-allocated Buffers

= Programmers often allocate many large buffers.
—E.g. StringBuffer, BufferedReader, etc. in Java.

= But access only the first few dozen elements.

L ucene search benchmark
Accessed Not accessed
A DN

[N\ N
buffer = e0coooo0
new char[16384]; - —
v ~100 elements

Access buffer; J

ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

[
|
]
@

Example of Memory Bloat: Over-allocated Buffers

= Programmers often allocate many large buffers.
—E.g. StringBuffer, BufferedReader, etc. in Java.

= But access only the first few dozen elements.

L ucene search benchmark

Accessed Not accessed
X AL
(N ~

buffer =

new char[16384];
3 [[{]eee[]]
ACCesSsS buffer'; J - YX XXX

11 ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

Example (cont'd): Truncating Allocation Size

= Speculatively allocate smaller buffers.

— Need a fallback path for speculation failure
(See our paper).

L ucene search benchmark

puffer - TTFAT]
hew char[100];

§ [EFE=sl] 4x speed-up!
Access buffer: J Lo]]

°
ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

| IBM Research - Tokyo

Must Track Object for Its Entire Lifetime.

= 99 turns out to be the largest accessed index
only after the buffer dies.

buffer = new char[16384]
Access buffer[0]
Access buffer[1]

Access buffer[99]

Time

Access buffer[50]

Access buffer[30]

Il?-eclzlaim buffer «

13 | ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

But No Need to Track Every Object.

= Observation:
Objects allocated at the same site (or context)
tend to have the same access pattern.

_Track
buffer = . XXX XXX
new char[16384]; _
+ R/ eoo (XN NN
Access buffer; J “““ Y| |eee cccccee

“No need to track

ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

Prior Work is Heavyweight and/or Inaccurate.

= Pointer analysis in Just-In-Time (JIT) compilation
© Accurate analysis is heavyweight.

® Lightweight analysis is inaccurate (too conservative).

= Code instrumentation
© Accurate profiling needs to instrument many accesses.

© Lightweight instrumentation cannot track objects’
lifetimes.

— E.g. Bursty Tracing [Arnold et al., 2001; Hirzel et al., 2001]
iInfrequently samples consecutive accesses.

ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

Barrier Profiler. Accurate and Lightweight Profiler

= Memory-protection-based

— Can track objects’ lifetimes.

ASPLOS 2012 | March 5, 2012

buffer =

new char[16384];
1f (sample(buffer))
protect(buffer);

Access buffer|
Access buffer|

Access buffer

Access buffer

Access buffer

ﬁéaann buffer

0]
1]

[99]

[50]

(30

© 2012 IBM Corporation

S
B

AR £ 4

IBM Research - Tokyo

Barrier Profiler : Accurate and Lightweight Profiler

= Memory-protection-based

_ o buffer =
— Can track objects’ lifetimes. new char[16384]:
. : if (sample(buffer))
= Per-object protection protect (buffer):

— Barrier Pointers Access buffer[%

0]
Access buffer[1] ixg
Aééess buffer[99]

Access buffer[50]

AR £ 4

Access buffer[30]

ﬁéaann buffer

17 ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

Barrier Profiler : Accurate and Lightweight Profiler

= Memory-protection-based

— Can track objects’ lifetimes.

= Per-object protection

— Barrier Pointers

= Profile-directed overhead
reduction

— Sample objects adaptively.

ASPLOS 2012 | March 5, 2012

buffer =
new char[16384];
1f (sample(buffer))
protect(buffer);

Aééess buffer[0]
Access buffer[1]

Access buffer[99]

Access buffer[50]

Access buffer[30]

ﬁéaann buffer

© 2012 IBM Corporation

IBM Research - Tokyo

Barrier Profiler : Accurate and Lightweight Profiler

= Memory-protection-based
— Can track objects’ lifetimes.

= Per-object protection
— Barrier Pointers

= Profile-directed overhead
reduction

— Sample objects adaptively.
— Can stop profiling an object.

v" Lightweight
v Small errors in profiling

v

buffer =
new char[16384];
1f (sample(buffer))
protect(buffer);

Aééess buffer[0] iﬁ%
Access buffer[1] ixg

Access buffer:99]§x$

N\

é’gqp prlofil?r;g this object.

Access buffer[30]

ééaann buffer

© 2012 IBM Corporation

ASPLOS 2012 | March 5, 2012

| IBM Research - Tokyo

@

Barrier Profiler : Accurate and Lightweight Profiler

= Per-object protection
— Barrier Pointers

v

20 | ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

| IBM Research - Tokyo

Simple Page Protection Does Not Work.

= How about directly protecting target objects?

® Race condition

— Thread A temporarily disables protection to access
an object.

— Thread B can access the object without an exception.

© Too coarse-grained

Protected page

Obiject being profiled

21 | ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

Barrier Pointers to Enable Per-Object Protection

= Reserve a protected region outside of the heap.
— The same size as the heap, for simplicity.
— More virtual-memory efficient methods in our paper.

—No need to assign real memory to the protected region.

Same size
Virtual address SQ

Protected region

22 ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

Barrierization

= Convert all pointers to a target object to
barrier pointers.

— Add the constant offset.
= Barrier pointers point to the protected region.

= Done at object allocation time.

Protected region

Original » Add offset | |
pointer e == / Barrier pointer

23 ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

Barrier Pointers Enable Per-Object Profiling.

= Accesses via the barrier pointers cause exceptions.
— Profiling in the exception handler.

© Accesses to the other objects cause no exception.

= Subtle issues explained in our paper:
— Handling pointers to the middle of an object.
— Executing atomic memory accesses.

Protected region

ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

Unbarrierization
= Restore the original pointer from the barrier pointer.
— Subtract the constant offset.

© Can access the object without disabling protection.

© No race condition

Protected region

o et
Original F ¢ _ _
pointer ubtract offset 7 Barrier pointer
25 ASPLOSERIZ U © 2012 IBM Corporation

| IBM Research - Tokyo

Barrier Profiler Samples Objects at Allocation Time.

= Per n-MB allocation.
—n = 8, by default, but it is adaptive.

Protected region

S/

Barrlerlze

26 | ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

Experiments
* Implemented in 32-bit IBM J9/TR 1.6.0 SR6.

= Metrics

— Accuracy
- Smaller errors in profiles than Bursty Tracing
(Details in our paper)

— Performance overhead
= Simulated Bursty Tracing
(access-sampling-based code instrumentation).
— Accuracy estimated using offline perfect tracing.

— Overhead calculated based on full-instrumentation
overhead and sampling ratio (200:1).

ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

Experimental Environment and Benchmarks

= Environment
—4-core 2-SMT 4.7-GHz POWERG, 32-GB main memory
—Linux 2.6.18, 1 GB Java heap

= Benchmarks
— SPECjvm2008, DaCapo 9.12, and SPECjbb2005.

— Only allocation-intensive programs shown in this talk.

28 ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

[
1T
]
@

| IBM Research - Tokyo

Performance Overhead
= Bursty Tracing: 9.2%, Barrier Profiler 1.3%

— Without the profile-directed overhead reduction, the
overhead of Barrier Profiler was 75.2%.

[Bursty Tracing M Barrier Profiler

15
Q)
= o || e
= 10 92% || 2
© D
-GC) -
- 0p)
2 5| g
D
O —
ﬁ
D
0 v
¢ & @& & & & LSS OGP ESES Y
o((\Q\ Ge} "00&\ e,\)& @Q%\O '\\6’8\\ @0& © § \\,‘.'06(0\ Qé\ OQ \9&0 _\g} ‘0(19 .6\0 1 3 A)
@ NS A N & &
& € & K S 23
S P ’o\)(\

29 | ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

Online Object Optimizations Using Barrier Profiler

= Online compression of character arrays
—8.6% speed-up in SPECjbb2005.

= Online truncation of allocation sizes
— 36% speed-up in “lusearch”, with 1 GB Java heap

—4x speed-up in “lusearch”, 6% speed-ups in “xalan”,
with 2x minimum Java heap.

%{1) ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

Conclusion

= Barrier Profiler:
accurate and lightweight object access profiler

— Smaller errors in profiles than Bursty Tracing

—1.3% performance overhead on average
v'Indispensable to continuous online profiling.

= Online object optimizations using Barrier Profiler
— Online truncation of allocation sizes

— Online compression of character arrays

v'Enabled for the first time by Barrier Profiler.

ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

[
@

| IBM Research - Tokyo

Thank you!

= Questions?

32 | ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

ASPLOS 2012 | March §, 2012 © 2012 IBM Corporation

| IBM Research - Tokyo

Advanced Barrier Pointers

= Shift right/left for barrierization/unbarrierization.

— Objects are 8-byte aligned.

= Protected region can be 1/8 of the Java heap.

Virtual address space

Proteated

region

Original pointer w / Barrier pointer

guﬂrac! o#se! + SHIH |e1‘t

34 | ASPLOS 2012 | March 5, 2012

© 2012 IBM Corporation

| IBM Research - Tokyo

[
|
]
@

Utilizing OS-protected Region

= Linux occupies the highest 1/4 of a virtual
space.

— Inaccessible from users.

= Set/clear the topmost 2 bits for
barrierization/unbarrierization.

0xCO0...000

Virtual address space

A 4

Linux OS region

Original pointer W / Barrier pointer
&r !opmos! 7 bits + shift left

35 | ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

[
1T
..||
]
@

How to Evaluate Accuracy

Profile all of the accesses to all of the allocated objects. (= Full trace)
— Using the barrier pointer framework.

Calculate the percentages of allocated bytes satisfying the following
properties, at each allocation site.

— Write-only objects
— Immutable objects
— Non-accessed bytes

Compare the profilers’ results with the full trace, using the absolute
differences of the calculated percentages.

Simulated Bursty Tracing: estimate the accuracy by sampling 10,000
memory accesses after skipping 2,000,000 accesses in the full trace.

ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

Online Adjustment of Allocation Sizes

= Focus on “growable array” programming pattern.
—E.g. StringBuffer in Java.

— Speculation failure check is already coded.

= Programmers use a new APl to wrap the target
allocation sites.

= Feedback the best size to each allocation site.

ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

New API

@

public final class System {
1: public static char[] getCharArrayofBestSize(int defaultSize) {
return new char[defaultSize];

N

3: }
i.-

public class BufferedReader {
: public BufferedReader(Reader in) {
this.in = 1in;
//this.cb = new char[8192]; // Original implementation
this.cb = System.getCharArrayOfBestSize(8192);
this.length = this.cb.length;

O oO~NO VTN

38 ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

Overhead Reduction Exploits Boringness.

= Interesting properties:
— Properties of objects which object optimizations exploit.
— E.g. Write-only, immutable, non-accessed, etc.
= Boring objects:
— Objects that no longer satisfy interesting properties.
— E.g. objects once read are no-longer write-only.

- Stop profiling of such objects by unbarrierization.

= Boring allocation sites:
— Sites that have allocated many boring objects.

- Reduce sampling frequency at such sites.

ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

[
1T
..||
]
@

Techniques for Overhead Reduction

= Adaptive object sampling:
Reduce sampling frequency at the sites that have
allocated many uninteresting objects.

= Adaptive unbarrierization:
Stop profiling of objects that no longer satisfy
Interesting properties.

— GC-time unbarrierization.

— Execution-time temporary unbarrierization

profile_access(object);
1f (object is not interesting
&& obj_reg 1s not used
for pointer comparison)
\ Obj_reg =
unbarrierize(obj_reg);

load regl, [obj_reg,offset

load reg2, [obj_reg, offsetff’:‘:’"

ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

IBM Research - Tokyo

[
1T
.|||
]
@

Accuracy (Errors against Perfect Profiles)

= Barrier Profiler mostly resulted in smaller errors
than Bursty Tracing.

60 @ Bursty Tracing M Barrier Profiler
o 50
2 —
= 2
s 40
> :
© 30 7}
)
= 20 S
®))
y —
o 10 ®
v -
0
& S N < N Q N Q o o o NI Qo
@Q@ be’(o & o%o (\’;@ ‘\\85\\0 0&0 © \A\o 6@'2’\0 & o \0@0 ~\5§b Q‘I/QQ @Q(b
e}’oo @1‘@ W ~\@"‘6 N $\O{b ((/c'}\o <
NG N »
N RS & X
O)

Errors in estimating the allocation percentage of write-only bytes

41 ASPLOS 2012 | March 5, 2012 © 2012 IBM Corporation

