
The Liquid Metal Blokus Duo Design

Erik Altman Joshua S. Auerbach David F. Bacon Ioana Baldini
Perry Cheng Stephen J. Fink Rodric M. Rabbah

IBM T. J. Watson Research Center
Yorktown Heights, NY USA

{ealtman,josh,bacon,ioana,perry,sjfink,rabbah}@us.ibm.com

Abstract—This paper describes the Liquid Metal entry in the
2013 ICFPT Design Competition. The Liquid Metal system pro-
vides a high-level language called Lime and a toolchain targeting
FPGAs. Lime allowed us to use standard software development
processes for programming, debugging, and performance tuning
our FPGA design. We believe such iteration and refinement are
far more challenging with low-level languages and design tools
commonly used for FPGA development.

I. INTRODUCTION

The vast majority of hardware designers employ design lan-
guages such as VHDL and Verilog, which provide a lower level
of abstraction than languages used for software development.
Using such tools, FPGA design requires much more time,
effort, and expertise than programming equivalent functionality
in software.

To make hardware design easier, many projects have inves-
tigated hardware synthesis from higher-level languages; see [1]
for a recent survey. To evaluate whether or not high-level
synthesis is viable, we must answer a key question: Using a
high-level language, can a developer design hardware whose
quality matches hardware designed with standard tools?

A design competition provides an attractive laboratory to
test the question for a particular challenge. To this end, we have
developed an entry for the 2013 ICFPT Blokus Duo Design
Competition [2], described in this paper, built with the Liquid
Metal system from IBM Research.

The Liquid Metal system provides a high-level language
and toolchain targeting heterogeneous systems which mix
CPUs, GPUs, and FPGAs. Liquid Metal is based on Lime [3],
a Java-like language enhanced with constructs that express
parallelism and isolation.

II. BACKGROUND

Many previous publications (e.g. [4], [3]) describe various
aspects of Liquid Metal, which provides a language (Lime)
and toolchain for programming heterogeneous systems. In this
section, we briefly review aspects of Liquid Metal germane to
FPGA design.

The Liquid Metal system provides the Lime programming
language with its compiler and runtime system, an Eclipse-
based integrated development environment (Figure 2), and a
built-in integrated build system (Limeforge) that drives vendor
synthesis tools remotely on a separately managed server.

Lime extends Java with constructs to express parallelism,
isolation, bounded types, and stream dataflow. A Lime program

1 p u b l i c i n t e r f a c e P l a y e r {
2 /∗ ∗ R e t u r n s some d e s c r i p t i v e name ∗ /
3 p u b l i c s t r i n g getName () ;
4
5 /∗ ∗ R e s e t s t h e s t a t e o f t h e game t o g ∗ /
6 p u b l i c vo id r e s e t (Game g) ;
7
8 /∗ ∗ Computes t h e n e x t move t o p l a y ∗ /
9 p u b l i c Move nextMove (Move m) ;

10 }

Fig. 1. Blokus Player interface

can run on any Java Virtual Machine, so the programmer
can develop and debug on a standard workstation with no
specialized hardware. The compiler can translate all Lime code
to JVM bytecode, and can additionally compile a subset of the
language to Verilog for execution on an FPGA or simulator.

Lime encourages an incremental development path starting
from Java:

1) Prototype the program in Java,
2) Add Lime constructs to express types and invariants

which allow the compiler to generate Verilog for
selected components,

3) Deploy the program with a JVM and a Verilog
simulator for performance tuning, and

4) Synthesize a bitfile and deploy on an FPGA.

In the case of the FPGA design competition, the entire
Lime Blokus program must run on the FPGA. Concretely, in
Lime, the Blokus player is a stateful object that resides on
the FPGA, and implements the Player interface shown in
Figure 1.

For testing purposes, a Lime driver runs on the host JVM
and calls the Player object, letting the Lime implementation
transparently manage communication between host and device.
For deployment in the contest, the design includes a small
hand-written Verilog module which mediates communication
between a UART interface and the generated Lime object, as
per the contest communication protocol. Lime supports this via
a foreign function interface called the Lime Native Interface.

While developing our Blokus entry, we spent almost all
effort programming and debugging entirely on a laptop using
a JVM. We tuned algorithms and parameters over several
months, gradually improving the player strength by incorporat-
ing stronger ideas. Once we arrived at a candidate implemen-
tation, we spent some time tuning with a simulator to increase
speed, and a little effort tuning data structures to reduce

Require: T is a tree with one node, the current game state
Require: B is an evaluation budget, an integer
Ensure: T is a tree of states, each representing a sequence of moves

level← 0
b← 0
repeat

level← level + 1
j ← number of leaves in T
w ← width(level) (*)
for each leaf lj of T do

k ← number of legal moves in state lj
M = {m1, . . . ,mk} ← each legal move from state lj
b = b+ k
{n1, . . . , nw} ← best w moves in M as per eval fn.
for i = 0 to w do

s← extend state lj with move ni

Add s to T as a leaf of lj
end for

end for
until b > B

Fig. 3. Pseudo-code for search tree construction

resource constraints based on synthesis feedback. We tested
extensively on the final hardware deployment, but needed
no hardware debugging – by construction, the synthesized
hardware behaves identically to compiled JVM bytecode.

Overall, using Lime allowed us to incrementally refine
the algorithms and data structures over time using standard
software development processes. Such iteration and refinement
is much more difficult with low-level design tools.

III. ALGORITHMS

Blokus is a turn-based strategy game, somewhat akin to
Tetris and Go. Due to space constraints, we do not review the
rules of Blokus here; we refer the reader to [2] for the contest
rules.

Our Blokus player uses a minimax algorithm based on
a board evaluation function. The evaluation function scores
a board position based entirely on piece placement, without
lookahead. The minimax search uses the evaluation function
as a subroutine when exploring future moves.

As usual, the minimax algorithm operates over a search
tree of candidate moves. Figure 3 shows pseudo-code for the
search tree construction.

To build a search tree from a board state, the program
examines every legal move, and computes a score for each
move as per the evaluation function. Having evaluated each
possible move, the algorithm picks the top w moves, and
populates a search tree with w branches. Then the process
iterates, expanding the search tree level-by-level, picking the
“best” moves for each player in turn. The iteration proceeds
until a global budget B is reached, where each board evaluation
comprises one unit of work.

As just described, we limit the search based on a budget
B measured in evaluations, which is a deterministic measure
even when running the algorithm in software. For the final
contest implementation, we will likely instead impose a search
budget based on time and the one second response deadline.
This change will allow a more aggressive search, but sacrifices

1 p u b l i c t y p e d e f Row = i n t <16 ∗ 1024>;
2 p u b l i c l o c a l s t a t i c boolean d i f f u s e (Row[1 4] open ,

Row[1 4] g r i d)) {
3 boolean changed = f a l s e ;
4 Row upper = 0 ;
5 Row mid = g r i d [0] ;
6 f o r (i n t <14> i) {
7 Row lower = (i == 13) ? 0n : g r i d [i + 1] ;
8 Row mark = (uppe r | l ower | (mid << 1) | (mid

>>> 1)) & ˜ mid & open [i] ;
9 changed |= mark != 0 ;

10 g r i d [i] |= mark ;
11 uppe r = mid ;
12 mid = lower ;
13 }
14 re turn changed ;
15 }

Fig. 4. Lime code for inner loop of board evaluation function.

the property that testing in software and hardware behave
identically.

Note that the search tree construction populates each level
of the tree with a particular number of positions, indicated
by the width function marked as (*) in Figure 3. The width
function is a tunable parameter which determines the search
tree breadth.

We have experimented with various parameters, and cur-
rently use a “decreasing width” heuristic – the search seeds the
tree with a modest number of initial moves, and the number of
children added per state decreases as the search deepens. After
a few moves of lookahead, the width parameter decays to 1 – at
subsequent levels, the tree only considers the best move from
each position. Thus, the search tree reaches maximum width,
then explores deeper without further search space expansion.
This allows the implementation to statically allocate a data
structure large enough to hold the maximum possible search
tree, obviating the need for dynamic memory management.

Our current evaluation heuristic computes an approxima-
tion of the territory controlled by each player, similar in spirit
to influence computations used for computer Go [5]. In the
evaluation function, a player “influences” squares which it can
immediately occupy with a one-square piece. Additionally,
influence propagates transitively over a finite neighborhood,
where influence can flow from one square to a Manhattan
neighbor, subject to constraints that ensure the player might
occupy the neighbor square sometime in the future.

The evaluation function thus performs a limited 5-point
stencil relaxation over grids of bits which encode influence and
future occupancy possibilities. The stencil calculation com-
putes a 14x14 grid representing squares influenced by a player.
The key operation in the implementation updates a single row
of the grid using bit vector operations over 3 successive rows.
Figure 4 shows the Lime code that implements the inner loop
of the stencil.

IV. DATA STRUCTURES

The Lime code follows a typical object-oriented design,
with classes that correspond to concepts in Blokus such as
color, square, piece, move and board. Figure 5 shows brief
excerpts from the code, to give a flavor of the implementation.

Fig. 2. Screenshot from the Liquid Metal IDE

The Lime value type qualifier indicates a class of im-
mutable objects. In the Figure, the Color enumeration (line
1) and the Square class (line 2) are marked as values, which
allows the compiler to aggressively optimize their implemen-
tation without aliasing complications.

A Square represents a square on the Blokus board, and
consists of two values of type int<14> (lines 3,4); int<14>
indicates an integer constrained to the range [0, 13], inclusive.
With this type constraint, the implementation represents a
Square with 8 bits, four for each field. As typical in Java,
the program defines instance methods on Squares (e.g. line
7), which allows a relatively high level of abstraction when
programming application logic using the type (e.g. method
sharesCorner, line 11), without any loss of efficiency in
the implementation. For example, the compiler can translate
the entire sharesCorner method into a (potentially, subject
to timing constraints) single-cycle combinatorial expression in
Verilog, and the expression is inlined into all calling contexts.

Although expressed in a superficially object-oriented style,
the code does not rely on runtime polymorphism – the compiler
can resolve all concrete types and dispatch targets statically.

We believe that most software developers would find this
Java-like programming style more accessible and intuitive than
standard alternatives such as Verilog and VHDL.

V. IMPLEMENTATION

Our contest entry runs on a ML505 board, with a Xilinx
Virtex-5 LX50T FPGA consisting of 7200 slices, 48 DSP48E
slices, and 2160 Kb of BRAM [6].

The Lime compiler compiles the entire Blokus player to
Verilog, which is then synthesized using the Xilinx ISE 14.5
toolchain.

The compiler performs many aggressive optimizations,
including inlining, classical dataflow optimizations, aggressive
scalar replacement, scheduling and resource allocation, range
and bitwidth analysis, strength reduction, if-conversion, loop
optimizations, and branch optimizations. The bulk of the user
logic is generated into a single large finite state machine, which
mirrors the (interprocedural) control-flow graph after optimiza-
tions, adjusted for resource and critical path constraints. The
compiler maps arrays to BRAMs or distributed RAMs; the
design does not utilize on-board SRAM or DRAM.

Previous publications [4], [7] have described Lime con-
structs to express coarse-grain parallel structures, such as
stream graphs and data-parallel loops. Currently, the Blokus
code does not use explicitly parallel constructs – the code
embodies a single, monolithic thread of control. The compiler
extracts and implements fine-grain parallelism within a basic
block based on dependency analysis, and endeavors to form
large basic blocks with techniques similar to if-conversion [8].

We currently set the compiler options to generate a design
for 85 MHz. Table I lists some statistics from the synthesized
design as of this writing.

We believe the maximum frequency is currently limited by
routing delays involving BRAM signals corresponding to the
search tree, and multiplexers arising from the large finite state
machine.

As described earlier, the player is constrained to a fixed
budget of board evaluations, chosen as a parameter to fit within

1 p u b l i c v a l u e enum Colo r { NONE, B , W; }
2 p u b l i c v a l u e c l a s s Square {
3 p u b l i c f i n a l i n t <14> x ;
4 p u b l i c f i n a l i n t <14> y ;
5 p u b l i c Square (i n t <14> x , i n t <14> y) { t h i s . x = x ; t h i s . y = y ; }
6
7 p u b l i c boolean onNor thBorde r () { re turn x == 0 ; }
8 /∗ ∗
9 ∗ Do two Squares s h a r e a c o r n e r ?

10 ∗ /
11 p u b l i c s t a t i c boolean s h a r e s C o r n e r (Square sq1 , Square y) {
12 i f (! sq1 . onNor thBorde r () && ! sq1 . o n E a s t B o r d e r () && sq1 . n o r t h e a s t () == y) { re turn true ; }
13 i f (! sq1 . onNor thBorde r () && ! sq1 . onWestBorder () && sq1 . n o r t h w e s t () == y) { re turn true ; }
14 i f (! sq1 . onSou thBorde r () && ! sq1 . o n E a s t B o r d e r () && sq1 . s o u t h e a s t () == y) { re turn true ; }
15 i f (! sq1 . onSou thBorde r () && ! sq1 . onWestBorder () && sq1 . s o u t h w e s t () == y) { re turn true ; }
16 re turn f a l s e ;
17 }
18 }
19 p u b l i c f i n a l v a l u e c l a s s P i e c e I n f o {
20 t y p e d e f Block = ‘ (i n t <5>, i n t <5>) ;
21 . . .
22 / / p i e c e names are s t a n d a r d : h t t p : / / c 2 s t r a t e g y . wordpres s . com / 2 0 1 1 / 0 4 / 1 0 / p i e c e−names /
23 / / b u t t h e p r e c i s e c e l l s are d i c t a t e d by : h t t p : / / l u t . eee . u−r yu ky u . ac . j p / dc13 / r u l e s . h tm l .
24 f i n a l s t a t i c P i e c e I n f o ONE = new P i e c e I n f o (new Block [[4]] { C , C , C , C }) ;
25 f i n a l s t a t i c P i e c e I n f o TWO = new P i e c e I n f o (new Block [[4]] { SOUTH, C , C , C }) ;
26 f i n a l s t a t i c P i e c e I n f o I3 = new P i e c e I n f o (new Block [[4]] { NORTH, SOUTH, C , C }) ;
27 f i n a l s t a t i c P i e c e I n f o V3 = new P i e c e I n f o (new Block [[4]] { NORTH, EAST , C , C }) ;
28 f i n a l s t a t i c P i e c e I n f o I4 = new P i e c e I n f o (new Block [[4]] { NORTH, SOUTH, SS , C }) ;
29 f i n a l s t a t i c P i e c e I n f o L4 = new P i e c e I n f o (new Block [[4]] { NORTH, SOUTH, SW, C }) ;
30
31 }
32 /∗ ∗
33 ∗ R e p r e s e n t s t h e p l a c e m e n t o f a p i e c e on t h e board
34 ∗ /
35 p u b l i c f i n a l v a l u e c l a s s Move {
36 p u b l i c Colo r c o l o r ;
37 p u b l i c P i e c e p i e c e ;
38 p u b l i c Trans fo rm t r a n s f o r m ;
39 p u b l i c Square c e n t e r ;
40
41 }

Fig. 5. Lime code excerpts

Lime Lines of Code 4,231
Lines of Verilog generated 24,657
Lines of Hand-Written Verilog 186
Frequency 85 MHz
LUTs 15917 (55.3% of device)
Flip Flops 11050 (38.4% of device)
18Kb BRAMs 65 (54.2% of device)
DSPs 14 (29.2% of device)

TABLE I. STATISTICS DESCRIBING THE SYNTHESIZED DESIGN

the one second maximum response time as per the contest
rules. Currently a single board evaluation takes roughly 8000
cycles including associated bookkeeping, and we budget 5000
evaluations per move. These parameters may change as we
tune the algorithms and compiler.

VI. RESULTS

We look forward to the competition to learn the results of
this experiment. We thank the contest organizers for their hard
work, and for the opportunity to participate.

REFERENCES

[1] D. F. Bacon, R. Rabbah, and S. Shukla, “FPGA programming for the
masses,” Commun. ACM, vol. 56, no. 4, pp. 56–63, Apr. 2013. [Online].
Available: http://doi.acm.org/10.1145/2436256.2436271

[2] “ICFPT 2013 design competition.” [Online]. Available: http://lut.eee.u-
ryukyu.ac.jp/dc13/

[3] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah, “Lime:
a Java-compatible and synthesizable language for heterogeneous
architectures,” in OOPSLA, Oct. 2010, pp. 89–108. [Online]. Available:
http://doi.acm.org/10.1145/1869459.1869469

[4] J. Auerbach, D. F. Bacon, I. Burcea, P. Cheng, S. J. Fink,
R. Rabbah, and S. Shukla, “A compiler and runtime for
heterogeneous computing,” in Proceedings of the 49th Annual
Design Automation Conference, 2012, pp. 271–276. [Online]. Available:
http://doi.acm.org/10.1145/2228360.2228411

[5] B. Bouzy and T. Cazenave, “Computer Go: An AI-oriented survey,” Arti-
ficial Intelligence, vol. 132, no. 1, pp. 39 – 103, 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0004370201001278

[6] Xilinx, “Virtex-5 family overview.” [Online]. Available:
http://www.xilinx.com/support/documentation/data sheets/ds100.pdf

[7] C. Dubach, P. Cheng, R. Rabbah, D. F. Bacon, and S. J. Fink, “Compiling
a high-level language for GPUs: (via language support for architectures
and compilers),” in Proceedings of the 33rd ACM SIGPLAN conference
on Programming Language Design and Implementation, 2012, pp. 1–12.
[Online]. Available: http://doi.acm.org/10.1145/2254064.2254066

[8] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion
of control dependence to data dependence,” in Proceedings of
the 10th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, 1983, pp. 177–189. [Online]. Available:
http://doi.acm.org/10.1145/567067.567085

