Supporting Materials for “Utility-based Gateway Deployment in Multi-domain DTNs”

Ting He, Nikoletta Sofra, Kang-won Lee, and Kin K. Leung

I. INTRODUCTION

In this report, we provide supporting materials for [1], consisting of a complete survey of related DTN routing schemes, proofs of theoretical results, and extended simulations. We refer to [1] for a complete problem formulation and the proposed solutions.

II. TAXONOMY OF DTN ROUTING SCHEMES

A critical difference between inter-domain and intra-domain designs is the heterogeneity of routing scheme. There have been a number of routing schemes for DTN stemming from a wide range of diverse applications. In this section, we categorize the existing DTN routing schemes so as to extract the key parameters for later analysis.

We base our taxonomy on the previous work [2], where routing schemes are categorized according to their resource requirements (storage and contact volume) and relay operation (replication or forwarding). We notice that besides the above criteria, how many copies of a message can exist simultaneously in a domain is also a key factor for performance. Therefore, we further divide schemes under replication into those which constrain the total number of replicas and those which do not. We now apply our taxonomy to related routing schemes in the literature, as shown in Table I.

<table>
<thead>
<tr>
<th>Number of replicas</th>
<th>Previous work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlimited</td>
<td>[3]–[5]</td>
</tr>
<tr>
<td>Unlimited</td>
<td>[6]–[9]</td>
</tr>
<tr>
<td>Limited</td>
<td>[10]–[12]</td>
</tr>
<tr>
<td>Unlimited</td>
<td>[13], [14]</td>
</tr>
<tr>
<td>Unlimited</td>
<td>[2], [15]</td>
</tr>
<tr>
<td>Limited</td>
<td>[16]</td>
</tr>
</tbody>
</table>

III. PROOF OF THEORETICAL RESULTS

In [1], we have presented several theoretical results but omitted the proofs due to space limit. We hereby provide the
missing proofs (all notations are defined as in [1]).

A. Performance Guarantee for Greedy and Backward Greedy Algorithms

In Section III.B in [1], we have established sufficient conditions for the proposed greedy or backward greedy algorithms to be ϵ-close to the optimal solution. The conditions under equal cost are as follows.

Proposition 3.1: Under equal cost, if the conditional utility has bounded variation, i.e., $\exists \epsilon \in (0, 1)$ such that for all $l \in \mathcal{L}$ and $\mathcal{S}_1, \mathcal{S}_2 \subseteq \mathcal{L} \setminus l$ with $|\mathcal{S}_1| = |\mathcal{S}_2|$, then the utilities of the greedy solution

$$\frac{U(l|\mathcal{S}_1)}{U(l|\mathcal{S}_2)} \geq 1 - \epsilon,$$

(1)

then the utilities of the greedy solution \mathcal{L}^g, the backward greedy solution \mathcal{L}^{bg}, and the optimal solution \mathcal{L}^o satisfy

$$\bar{U}^g(\mathcal{L}^g) \geq (1 - \epsilon)\bar{U}^o(\mathcal{L}^o)$$

(2)

$$\bar{U}(\mathcal{L}) - \bar{U}(\mathcal{L}^{bg}) \leq \frac{1}{1 - \epsilon} \left(\bar{U}(\mathcal{L}) - \bar{U}(\mathcal{L}^o) \right).$$

(3)

Proof: Under equal cost, all solutions have equal size $g = |C/c_1|$. For the greedy solution, we can decompose the total utility as

$$\bar{U}(\mathcal{L}^g) = \bar{U}(l_1^g) + \bar{U}(l_2^g|l_1^g) + \ldots + \bar{U}(l_{g-1}^g|l_1^g, \ldots, l_{g-2}^g)$$

(4)

for $i = 0, g$, assuming that l_i^g is the location selected by the greedy solution in the jth iteration. Then by the greedy algorithm, we have that for $j = 1, \ldots, g$,

$$\bar{U}(l_2^g|l_1^g) \geq \bar{U}(l_2^g|l_1^g, l_j^g),$$

and by (1), the right-hand side is in turn bounded as

$$\bar{U}(l_3^g|l_1^g, l_j^g) \geq (1 - \epsilon)\bar{U}(l_3^g|l_1^g, l_j^g).$$

Combining these inequalities and plugging the result into (4) yields that $\bar{U}(\mathcal{L}^g) \geq (1 - \epsilon)\bar{U}(\mathcal{L}^o)$.

For the backward greedy solution, we similarly decompose the utility gap as

$$\bar{U}(\mathcal{L}) - \bar{U}(\mathcal{L}^i) = \bar{U}(l_1^i|\mathcal{L} \setminus \{l_1^i\}) + \bar{U}(l_2^i|\mathcal{L} \setminus \{l_1^i, l_2^i\}) + \ldots + \bar{U}(l_{L_i-1}^i|\mathcal{L} \setminus \{l_1^i, \ldots, l_{L_i-2}^i\}),$$

(5)

where $i = o, bg$, and l_i^{bg} is the location removed by the backward greedy solution in the jth iteration. By the backward greedy solution, we have that

$$\bar{U}(l_2^o|\mathcal{L} \setminus \{l_1^o, \ldots, l_j^o\}) \leq \bar{U}(l_2^o|\mathcal{L} \setminus \{l_1^o, \ldots, l_{j-1}^o, l_j^o\}),$$

and by (1),

$$\bar{U}(l_3^o|\mathcal{L} \setminus \{l_1^o, \ldots, l_{j-1}^o\}) \leq \frac{1}{1 - \epsilon} \bar{U}(l_3^o|\mathcal{L} \setminus \{l_1^o, \ldots, l_j^o\}).$$

Therefore, $\bar{U}(\mathcal{L}) - \bar{U}(\mathcal{L}^{bg}) \leq \left(\bar{U}(\mathcal{L}) - \bar{U}(\mathcal{L}^o) \right) / (1 - \epsilon)$.

For unequal costs, ϵ-approximation can be guaranteed if the conditional efficiencies have bounded variation, as stated below.

Proposition 3.2: For the greedy solution, if $\exists \epsilon_1 \in \left[c_{\max}/C, 1 \right]$ for $c_{\max} \Delta \max c_j$ such that

$$\bar{U}(l_1^g|S_1) \geq \frac{1 - \epsilon_1}{c_1} \bar{U}(l_2^g|S_2)$$

(6)

for all $l_i \in \mathcal{L}$ and $S_i \subseteq \mathcal{L} \setminus l_i$ ($i = 1, 2$), then

$$\bar{U}(\mathcal{L}^g) \geq (1 - \epsilon_1)\bar{U}(\mathcal{L}^o).$$

(7)

For the backward greedy solution, we can similarly decompose the total utility as

$$\bar{U}(\mathcal{L}^i) = c_1^i \bar{U}(l_1^i|S_1) + c_2^i \bar{U}(l_2^i|S_2) + \ldots + c_{L_i}^i \bar{U}(l_{L_i}^i|S_{L_i-1})$$

(8)

where $i = o, bg$. Let $x_0 = \max \bar{U}(|S|)/c$ denote the maximum conditional efficiency over all locations and condition sets. Each conditional efficiency of the greedy solution is lower bounded by $x_0(1-\epsilon)/c$ by (6), and the sum cost of selected locations is no smaller than $C - c_{\max}$. Thus, the total utility of the greedy solution satisfies

$$\bar{U}(\mathcal{L}^g) \geq (1 - \epsilon_1)Cx_0.$$

On the other hand, it is easy to see that the optimal solution satisfies $\bar{U}(\mathcal{L}^o) \leq Cx_0$. Combining both results yields (7).

For the backward greedy solution, we rewrite the utility gap as

$$\bar{U}(\mathcal{L}) - \bar{U}(\mathcal{L}^i) = c_1^i \bar{U}(l_1^i|\mathcal{L} \setminus \{l_1^i\}) + c_2^i \bar{U}(l_2^i|\mathcal{L} \setminus \{l_1^i, l_2^i\}) + \ldots + c_{L_i}^i \bar{U}(l_{L_i}^i|\mathcal{L} \setminus \{l_1^i, \ldots, l_{L_i-1}^i\})$$

(9)

for $i = o, bg$. Let $y_0 = \min \bar{U}(|S|)/c$ denote the minimum conditional efficiency. For the backward greedy solution, all conditional efficiencies are no more than $(C_0 - C)y_0/(1 - \epsilon_2)(C_0 - C + c_{\max})$ by (8), and the total cost of removed locations is bounded by $C_0 - C + c_{\max}$, which implies

$$\bar{U}(\mathcal{L}) - \bar{U}(\mathcal{L}^{bg}) \leq (C_0 - C)y_0/(1 - \epsilon_2).$$

Meanwhile, note that $\bar{U}(\mathcal{L}) - \bar{U}(\mathcal{L}^o) \geq (C_0 - C)y_0$. Combining both yields (9).

Intuitively, the proposition says that if the performance benefit of deploying a gateway at a location does not depend too much on the locations of the other gateways, then the greedy solution will achieve a utility no more than ϵ fraction.
smaller than the optimal solution, and the backward greedy solution will achieve a utility gap with the full deployment that is at most $1/(1 - \epsilon)$ times the gap for the optimal solution. Similar conclusions can also be made under unequal costs; see Appendix for details. In practice, the above conditions can often be induced by a minimum distance between candidate gateway locations.

B. Analytical Utility Calculation

In Section IV.B, we have provided explicit or even closed-form formulas to analytically calculate the utilities per domain (measured by mean delay or mean number of replicas per message) for several classes of routing schemes. We now present the omitted steps in our derivation.

1) **Source-Gateway Hop, Unlimited Replication:** Under unlimited replication, we have decomposed the expected delay $\mathbb{E}[D_{ur}]$ and the expected number of replicas $\mathbb{E}[R_{ur}]$ into:

$$\mathbb{E}[D_{ur}] = \sum_{j=0}^{N-1} \Pr[T_j \leq D_{ur} < T_{j+1}]$$

$$\mathbb{E}[R_{ur}] = \sum_{j=0}^{N-1} \Pr[T_j \leq D_{ur} < T_{j+1}] + \mathbb{E}[D_{ur}]$$

and used the following lemmas to characterize their values.

Lemma 3.3: For $j = 0, \ldots, N - 1$,

$$\Pr[T_j \leq D_{ur} < T_{j+1}] = \frac{\lambda_j}{(N - j - 1)\lambda_n + \lambda_t} \prod_{i=1}^{j} (N - i)\lambda_n + \lambda_t.$$ \hspace{1cm} (13)

Proof: We use the property of exponential random variables that if X, Y are independent exponential random variables with parameters λ_X, λ_Y, then

$$\Pr[X < Y] = \frac{\lambda_X}{\lambda_X + \lambda_Y}.$$ \hspace{1cm} (14)

We first show by induction that

$$\Pr[D_{ur} \geq T_j] = \sum_{i=1}^{j} \frac{(N - i)\lambda_n}{(N - i)\lambda_n + \lambda_t}, \quad 0 \leq j \leq N - 1.$$ \hspace{1cm} (15)

It trivially holds for $j = 0$. For $j = 1$, since T_1 has rate $(N - 1)\lambda_n$ and D_{ur} has rate λ_t before T_1, (14) implies

$$\Pr[D \geq T_1] = \frac{(N - 1)\lambda_n}{(N - 1)\lambda_n + \lambda_t}.$$ \hspace{1cm} (16)

Suppose the formula holds up to $j - 1$ ($2 \leq j \leq N - 1$). We have

$$\Pr[D_{ur} \geq T_j] = \Pr[D_{ur} \geq T_{j-1}] \cdot \Pr[T_{j-1} - T_j \leq D_{ur} | D_{ur} \geq T_{j-1}].$$

Since conditioned on $D_{ur} \geq T_{j-1}$, the residual delay $D_{ur} - T_{j-1} \sim \text{Exp}(\lambda_t)$ (for $D_{ur} < T_j$), and $T_j - T_{j-1} \sim \text{Exp}(j(N - j)\lambda_n)$, we can apply (14) to obtain

$$\Pr[D_{ur} \geq T_j] = \Pr[D_{ur} \geq T_{j-1}] \cdot \frac{(N - j)\lambda_n}{(N - j)\lambda_n + \lambda_t},$$

which proves (15).

Then we note that

$$\Pr[T_j \leq D_{ur} < T_{j+1}] = \Pr[T_j \leq D_{ur}] - \Pr[D_{ur} - T_j < T_{j+1} - T_j | D_{ur} \geq T_j],$$

and by similar arguments as before,

$$\Pr[D_{ur} - T_j < T_{j+1} - T_j | D_{ur} \geq T_j] = \frac{(j + 1)\lambda_t}{(j + 1)(N - j - 1)\lambda_n + \lambda_t}.$$ \hspace{1cm} (17)

Therefore,

$$\Pr[T_j \leq D_{ur} < T_{j+1}] = \frac{\lambda_t}{(N - j - 1)\lambda_n + \lambda_t} \prod_{i=1}^{j} \frac{(N - i)\lambda_n}{(N - i)\lambda_n + \lambda_t}.$$ \hspace{1cm} (18)

Lemma 3.4: For $j = 0, \ldots, N - 1$, $\mathbb{E}[D_{ur}]$ is lower bounded by

$$\frac{1}{(j + 1)\lambda_t} - \frac{1}{(j + 1)(N - j - 1)\lambda_n} + \sum_{i=1}^{j} \frac{1}{i(N - i)}$$

and upper bounded by

$$\frac{1}{(j + 1)\lambda_t} + \frac{1}{\lambda_n} \sum_{i=1}^{j} \frac{1}{i(N - i)}.$$ \hspace{1cm} (19)

Proof: We use the property of exponential random variables that if X, Y are independent exponential random variables with parameters λ_X, λ_Y, then

$$\left(\frac{1}{\lambda_X} \right) = \mathbb{E}[X | X < Y] \leq \frac{1}{\lambda_X}.$$ \hspace{1cm} (20)

We first show by induction that for $j = 0, \ldots, N - 1$,

$$\mathbb{E}[T_j | T_j < D_{ur}] \leq \frac{1}{\lambda_n} \sum_{i=1}^{j} \frac{1}{i(N - i)}.$$ \hspace{1cm} (21)

It trivially holds for $j = 0$. For $j = 1$, since $T_1 \sim \text{Exp}((N - 1)\lambda_n)$ and $D_{ur} \sim \text{Exp}(\lambda_t)$, (20) gives the bounds. For $j > 1$, note that

$$\mathbb{E}[T_j | T_j < D_{ur}] = \mathbb{E}[T_j - T_{j-1} | T_j < D_{ur}] + \mathbb{E}[T_j - T_{j-1} | T_j - T_{j-1} < D_{ur} - T_{j-1}],$$

where the first term on the right-hand side is equal to $\mathbb{E}[T_{j-1} | T_{j-1} < D_{ur}]$, and the second term is bounded in the interval

$$\left[\frac{1}{j(N - j)\lambda_n} + \frac{1}{j(N - j)\lambda_n} \right]$$

according to (20). This proves (21).

3Define $(x)_+$ as $\max(x, 0)$.
We then note that
\[
E[D_{lk}|T_j \leq D_{lk} < T_{j+1}] = E[T_j|T_j \leq D_{lk} < T_{j+1}]
\]
\[+ E[D_{lk} - T_j|0 \leq D_{lk} - T_j < T_{j+1} - T_j],
\]
where the first term is just \(E[T_j|T_j \leq D_{lk}]\) given by (19), and the second term can be bounded in the interval
\[
\left[\frac{1}{(j+1)\lambda_i} - \frac{1}{(j+1)(N-j-1)\lambda_n} + \frac{1}{(j+1)\lambda_i}\right]
\]
by applying (18). Plugging in the above results proves the lemma.

In the case when \(\lambda_i\) and \(\lambda_n\) are comparable and \(N\) is large, we can reduce the results into the following closed-form characterization:
\[
E[D_{lk}] \approx \frac{\log N}{N} \left(\frac{1}{\lambda_i} + \frac{1}{\lambda_n}\right), \tag{20}
\]
\[
E[R_{lk}] \approx \frac{1 + N}{2}, \tag{21}
\]
where we have used the approximation that \(\Pr\{T_j \leq D_{lk} < T_{j+1}\} \approx 1/N\) and applied the Harmonic number approximation to the upper bound in Lemma 3.4.

2) Source-Gateway Hop, Limited Replication: The analysis under limited replication schemes is similar to that under unlimited replication. Specifically, the average delay \(E[D_{lk}]\) and the average number of replicas \(E[R_{lk}]\) can be decomposed into:
\[
E[D_{lk}] = \sum_{j=0}^{r-1} \Pr\{T_j \leq D_{lk} < T_{j+1}\} E[D_{lk}|T_j \leq D_{lk} < T_{j+1}]
\]
\[+ \Pr\{D_{lk} \geq T_r\} E[D_{lk}|D_{lk} \geq T_r], \tag{22}
\]
\[
E[R_{lk}] = \sum_{j=0}^{r-1} \Pr\{T_j \leq D_{lk} < T_{j+1}\} (j+1)
\]
\[+ \Pr\{D_{lk} \geq T_r\} (r+1). \tag{23}
\]
A key observation here is that before the last replication at time \(T_r\), the constraint on replication has no effect, and thus all the analysis of \(D_{lk}\) still holds for \(D_{lk}\) conditioned on \(D_{lk} < T_r\). Therefore, (23) can be evaluated by Lemma 3.3 and
\[
\Pr\{D_{lk} \geq T_r\} = \prod_{i=1}^{r} \frac{(N-i)\lambda_n}{(N-i)\lambda_n + \lambda_i}
\]
derived from Lemma 3.3. For (22), the first summation on the right-hand side can be evaluated in the same way as in (11) by Lemma 3.3 and 3.4. The second term can be evaluated by rewriting
\[
E[D_{lk}|D_{lk} \geq T_r] = E[T_r|D_{lk} \geq T_r] + E[D_{lk} - T_r|D_{lk} \geq T_r],
\]
where \(E[T_r|D_{lk} \geq T_r]\) is bounded from both above and below as in (19), and \(E[D_{lk} - T_r|D_{lk} \geq T_r] = 1/((r+1)\lambda_i)\) (because given delivery has not occurred at \(T_r\)), the remaining time till delivery is exponentially distributed with rate \((r+1)\lambda_i\).

For comparable \(\lambda_i\) and \(\lambda_n\), by similar simplification as for unlimited replication, it can be shown that for \(0 < r < N - 1\) (nontrivial replication constraint),
\[
E[D_{lk}] \approx \frac{1}{\lambda_i N} \left\{ \log r + \frac{N - r}{r+1} \right\} + \frac{1}{\lambda_n N^2} \left\{ (r-1) \log (N-1) \right.
\]
\[+ (N-r) \log \frac{r(N-1)}{N-r-1} + \sum_{j=1}^{r-1} \frac{j}{N-j-1} \right\}, \tag{24}
\]
\[
E[R_{lk}] \approx \frac{(r+1)}{N} \left(\frac{r}{N} \right). \tag{25}
\]
We point out that (24) may not be monotone decreasing in \(r\), and additional monotonicity constraint can be imposed to produce a better approximation.

IV. EXTENDED SIMULATION RESULTS

For intra-domain routing schemes, we simulate direct delivery, forwarding, limited replication, and unlimited replication. All schemes try to evenly distribute the message replicas among nodes in order to make the best use of delivery opportunities. Assume that the contact volume consumed for metadata exchange is negligible. Besides the selected results presented in Section V of [1], we have also conducted extended simulations under similar settings. We now present the results.

A. Evaluation on Synthetic Data

1) Evaluation of Utility Computation: For a network of \(N\) nodes, we generate contact traces according to i.i.d. exponential inter-contact times, where the contact rates are \(\lambda_n\) per node pair and \(\lambda_i\) per node-gateway pair (assume a single gateway). New messages arrive according to a Poisson process of rate \(\lambda\) and are uniformly distributed among the nodes. We simulate two versions for each scheme: constrained and unconstrained versions. For the constrained version, assume the buffer size is \(B\) messages, the contact volume is one message (in either direction), and messages not delivered after TTL (Time-To-Live) time are dropped (their delays are considered as TTL). Delivery follows FCFS; replication/forwarding prefers to balance buffer occupancies within the buffer size and contact volume constraints. Replication/forwarding is not allowed if the receiving node’s buffer is full (i.e., no packet is dropped except due to TTL expiration). For the unconstrained version, we ignore all the above constraints. The unconstrained version is used to verify the analytical results, whereas the constrained version tests how well the results approximate the actual utilities.

In Fig. 1, we plot the average delays for direct delivery, forwarding, and unlimited replication schemes with and without resource constraints as functions of the node-gateway contact rate \(\lambda_i\) and compare them with the analytical results. The unconstrained schemes achieve smaller delays on the average than their constrained counterparts by eliminating queueing...
delays, even though their maximum allowable delays are unbounded. Moreover, although our analytical results underestimate the delays under resource constraints, the values are reasonably close, especially at relatively high contact rates.

For limited replication\(^5\), the performance can vary between those of forwarding and unlimited replication depending on how many contemporary replicas are allowed. Therefore, we plot the results as functions of the maximum number of replicas per message; see Fig. 2–3. As the scheme becomes more aggressive by increasing \(r\), the average delay decreases sharply while the average number of generated replicas increases, indicating a tradeoff between performance and resource consumption. In particular, a single replication can already reduce the delay by more than 40\%. The unconstrained version again outperforms the constrained counterpart in delay at the cost of generating more replicas per message. As we compare the simulation results with our analytical approximation in (24, 25), we see that the approximation follows the actual values closely.

2) Evaluation of Gateway Placement: We simulate two domains of \(N_i\) (\(i = 1, 2\)) nodes each performing localized random walks on a \(G \times G\) grid [19]. As illustrated in Fig. 4, there is a “home cell” in each domain, and nodes randomly move to one of their neighboring cells (including the current cell) with higher probabilities to move towards the home cell. Specifically, the transition probability to move to a neighboring cell \(i\) is proportional to \(e^{-\tau d_i}\), where \(d_i\) is the taxicab distance between cell \(i\) and the home cell, and \(\tau > 0\) is a tightness parameter (the larger \(\tau\) is, the more localized the mobility is). We randomly choose \(L \leq G^2\) cells as candidate gateway locations and deploy \(g < L\) gateways. Assume nodes and gateways can only communicate when they are in the same cell, with unlimited bandwidth and buffer size (the unconstrained case). New messages arrive in each slot with probability \(\lambda\) (\(0 < \lambda \leq 1\)) and are uniformly distributed among the nodes in domain 1 with random destinations in domain 2. We implement two methods to compute the utility: simulations and analytical calculation\(^7\). For each method, we deploy gateways according to the optimal (i.e., brute-force search) or the suboptimal solutions (i.e., greedy and backward greedy algorithms). We deploy gateways according to one data set (contacts and traffic arrivals) and test its performance on another data set generated independently. For comparison, we also simulate random deployment as well as the oracle-assisted deployment. The oracle strategy is similar to the optimal strategy in that it deploys gateways via brute-force search based on utilities simulated from a given data set, but it also evaluates its performance on the same data set. By using the same data set for training and testing, the strategy essentially assumes that all the arrival and the contact processes are known beforehand, hence giving an oracle-assisted performance upper bound.

Fig. 5 compares the calculated end-to-end delays with the actual simulated delays under various combinations of routing probability \(\lambda\) (\(0 < \lambda \leq 1\)).

\(^5\)We have simulated binary spray for the constrained version of limited replication and centralized spray for the unconstrained version. Binary spray without resource constraints yields performance between the two (not shown).

\(^6\)That is, \(p_i = p_i' \prod_{\text{neither}} p_{i,j}' = e^{-\tau d_i}\).

\(^7\)Single-domain average delays and numbers of replicas are calculated based on sample contact rates and then summed up to approximate the end-to-end utilities.
schemes. We see that although the contact processes in this case are not Poisson, the calculated delays still approximate the trend of the actual delays reasonably well.

Using delay as the utility measure, we plot the performance of various deployment strategies as a function of the number of deployed gateways in Fig. 6 under unlimited replication in domain 1 and direct delivery in domain 2. From the results, we see that: (i) the proposed strategies (greedy/backward greedy algorithm based on calculated delay) perform almost as well as the optimal strategy (optimal algorithm based on simulated delay); (ii) the proposed strategies significantly outperform random deployment. The first observation is due to the facts that the calculated delays approximate the simulated ones closely, and the greedy and the backward greedy algorithms perform almost as well as brute-force search. The oracle strategy assumes the future contact and traffic traces to be completely known at the deployment phase, and thus its performance is absolutely the best among all deployment strategies. Since the contacts and traffic at run time may be different from those during deployment, the gap between the proposed strategies and the oracle strategy represents the inherent variation in the underlying networks rather than a deficiency of the strategies. Similar observations have been made under other routing schemes, as shown in Fig. 7–8 (backward greedy algorithm provides similar results as greedy algorithm and is thus omitted), as well as the utility measure of the number of replicas per message, as shown in Fig. 9.

Fig. 4. Two domains performing localized random walks on a grid (with wrapping boundaries). Nodes in different domains can only communicate through gateways.
B. Evaluation on Traces

In order to evaluate the performance of the framework proposed under realistic conditions, we have conducted a series of trace-driven simulations. UMass DieselNet [20] is a mobile network testbed consisting of wi-fi nodes mounted to buses in the area of Amherst, MA. Contacts of mobile nodes to various access points as well as contacts between mobile nodes have been logged. When using traces collected over such a scenario, there is a series of practical concerns that need to be taken into account. We observed for example, that mobile to mobile contacts were very sparse, especially when compared with the contacts of the mobile nodes with the whole set of the Access Points. In addition, the contact traces are highly heterogeneous for different mobile nodes, as it obviously depends on the mobility pattern of each one. For this reason, we had to use only a subset of the fore mentioned trace, comprising the peak hours (7 am-7 pm) of 8 days. More specifically, the trace used describes the contacts among 3 mobile nodes per day and between these mobile nodes and 10 access points, which form our candidate solution set. The choice was made based on appearance consistency (i.e. the APs chosen should have come in contact with a mobile node on every day of the traces used), sufficiency of the number of contacts per day and elimination of nodes that demonstrated extremely large gaps in communication. All contacts between the same pair of nodes or node and gateway that were closer than 60 sec to each other were merged in one contact, as in [21]. At the same time we try to keep the time correlation of contacts between the chosen APs and the mobile nodes to a minimum. Finally, as we are evaluating the efficiency of approximation algorithms, the candidate solution set can not be very extensive, so that we can compute the optimal solution and use it as a benchmark.

1) Contact Distribution: To facilitate a better understanding of the trace used, we are plotting the Complimentary Cumulative Distribution Function of the pairwise inter-contact times between mobile nodes in Fig. 10, while the CCDF of the contacts between every mobile node and the APs (the set of the APs is viewed as a merged node in this context) is shown in Fig. 11. In both figures, we are comparing the empirically calculated probability with the analytical calculation under the assumption of exponentially distributed inter-contact times, where the mean of the distribution is estimated by the data available. For the case of mobile to merged gateway contacts, the empirical CCDF has a heavier tail than expected; this might be due to the fact that contacts between a mobile node and the different gateways are correlated in time, appearing in bursts, thus resulting in a big number of small inter-contact times when the node is in a “hot” area.

2) Accuracy of Utility Calculation: In the following, we are considering all nodes of one day to belong to the same domain. We are then matching the days into 4 inter-domain pairs, and are using the contact traces to simulate direct delivery or unlimited replication routing schemes. Aiming to evaluate the merit of the analytical calculations of utility for the case of overall delay and number of packets, we are simulating all possible gateway combinations when the number of gateways deployed varies from 2 to 8 (out of 10), and plotting the mean calculated and simulated utilities as these vary for different number of deployed gateways. We have performed 4 Monte Carlo runs for every possible gateway combination based
on the different contact traces; in addition, for the case of simulated utility, 10 different Monte Carlo runs on traffic realizations have been run (every node of domain 1 sends messages to nodes of the other domain, at the rate of 5 packets per hour; the destinations are picked randomly among the nodes of domain 2). Fig. 12 shows the mean end-to-end delay when both domains use direct delivery or unlimited replication routing schemes. For simulation, messages that have not been delivered until the end of the simulation are considered delivered at the minimum of (i) the last contact of the node carrying the message or (ii) the last contact time observed for the destination node; this is necessary as not all of the nodes’ trace spans across the exact same time period. Fig. 13 compares the calculated with the simulated utility when the metric concerned is the mean number of replicas per packet.

![Fig. 12. Comparison of simulated and calculated end-to-end delay for direct delivery (“DD”) and unlimited replication (“UR”) schemes; we have scaled the calculated delays by a constant factor of 0.7171 for direct delivery and 0.4859 for unlimited replication to fit the simulated values.](image)

![Fig. 13. Comparison of simulated and calculated number of replicas per packet, together with a scaled version of the calculated values by a constant factor 0.9267. Both domains use unlimited replication.](image)

3) Performance of Gateway Placement Strategies: In order to evaluate the gateway placement algorithms, we are using every pair of domains to acquire solution sets based on three different methods, namely the greedy and the backward greedy algorithms as well as the optimal algorithm (brute-force search). As two different metrics can be used, i.e. the calculated or the simulated value of utility, every pair of domains will give 6 different, but not necessarily distinct solution sets. The evaluation consists of simulating the deployment of the suggested solution sets on the other three pairs of domains (namely the training set is not part of the testing set). Every method will be tested against 120 different Monte Carlo runs (4 deployment solutions × 3 pairs of contact traces × 10 different traffic realizations). Simulation settings are the same as above. We are plotting the simulated end-to-end utilities acquired when evaluating the 6 different methods with respect to the number of gateways deployed. As a benchmark, we are also plotting the mean end-to-end utilities averaged over all the possible combinations of gateways (which defines the average performance of random placement), as well as the maximum utility (i.e., the minimum delay) that can be achieved under oracle deployment, defined as the value of the utility when the deployment is evaluated on the training data set.

![Fig. 14. Evaluation of proposed methods for direct delivery schemes, when minimizing overall delay.](image)

Fig. 14 shows the mean delay when both domains use direct delivery schemes. All the methods based on the calculated utilities yield the same results (more specifically, the backward greedy algorithm yields exactly the same results as the optimal algorithm, while the greedy algorithm has very slight deviations). The methods based on the simulated utilities yield different results most of the times. Although there is no clear pattern in the relative performance of the two groups of methods, it is encouraging to see that the solutions of the methods based on analytical utility calculation perform equally well as the ones based on simulation. We also observe that the proposed methods yield better results than random placement, especially when the number of deployed gateways is small. As the number of deployed gateways increases, the deployment solutions converge, all converging to a full deployment. Similar results are obtained for the unlimited replication scheme (see Fig. 15) (for unlimited replication, calculation-based methods work better than simulation-based ones for the majority of the cases) and for the minimization of the mean number of replicas per packet (see Fig. 16).
REFERENCES