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Dynamic Service Placement for Mobile
Micro-Clouds with Predicted Future Costs
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Abstract—Mobile micro-clouds are promising for enabling performance-critical cloud applications. However, one challenge therein is
the dynamics at the network edge. In this paper, we study how to place service instances to cope with these dynamics, where multiple
users and service instances coexist in the system. Our goal is to find the optimal placement (configuration) of instances to minimize
the average cost over time, leveraging the ability of predicting future cost parameters with known accuracy. We first propose an offline
algorithm that solves for the optimal configuration in a specific look-ahead time-window. Then, we propose an online approximation
algorithm with polynomial time-complexity to find the placement in real-time whenever an instance arrives. We analytically show that
the online algorithm is O(1)-competitive for a broad family of cost functions. Afterwards, the impact of prediction errors is considered
and a method for finding the optimal look-ahead window size is proposed, which minimizes an upper bound of the average actual
cost. The effectiveness of the proposed approach is evaluated by simulations with both synthetic and real-world (San Francisco taxi)
user-mobility traces. The theoretical methodology used in this paper can potentially be applied to a larger class of dynamic resource
allocation problems.

Index Terms—Cloud computing, fog/edge computing, online approximation algorithm, optimization, resource allocation, wireless
networks
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1 INTRODUCTION

Many emerging applications, such as video stream-
ing, real-time face/object recognition, require high data
processing capability. However, portable devices (e.g.
smartphones) are generally limited by their size and
battery life, which makes them incapable of performing
complex computational tasks. A remedy for this is to
utilize cloud computing techniques, where the cloud
performs the computation for its users. In the traditional
setting, cloud services are provided by centralized data-
centers that may be located far away from end-users,
which can be inefficient because users may experience
long latency and poor connectivity due to long-distance
communication [2]. The newly emerging idea of mobile
micro-clouds (MMCs) is to place the cloud closer to end-
users, so that users can have fast and reliable access to
services. A small-sized server cluster hosting an MMC
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Figure 1. Application scenario.

is directly connected to a network component at the net-
work edge. For example, it can be connected to the wire-
less basestation, as proposed in [3] and [4], providing
cloud services to users that are either connected to the
basestation or are within a reasonable distance from it. It
can also be connected to other network entities that are
in close proximity to users. Fig. 1 shows an application
scenario where MMCs coexist with a backend cloud.
MMCs can be used for many applications that require
high reliability or high data processing capability [2].
Similar concepts include cloudlet [2], follow me cloud
[5], fog computing, edge computing [6], small cell cloud
[7], etc. We use the term MMC in this paper.

One important issue in MMCs is to decide which
MMC should perform the computation for a particular
user or a set of users, taking into account user mobility
and other dynamic changes in the network. Providing a
service to a user (or a set of users) requires starting a
service instance, which can be run either in the backend
cloud or in one of the MMCs, and the question is how to
choose the optimal location to run the service instance.
Besides, users may move across different geographical
areas due to mobility, thus another question is whether
we should migrate the service instance from one cloud
(which can be either an MMC or the backend cloud)
to another cloud when the user location or network
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condition changes. For every cloud, there is a cost1

associated with running the service instance in it, and
there is also a cost associated with migrating the service
instance from one cloud to another cloud. The placement
and migration of service instances therefore needs to
properly take into account this cost.

1.1 Related Work
The abovementioned problems are related to appli-

cation/workload placement problems in cloud environ-
ments. Although existing work has studied such prob-
lems under complex network topologies [8], [9], they
mainly focused on relatively static network conditions
and fixed resource demands in a data-center environ-
ment. The presence of dynamically changing resource
availability that is related to user mobility in an MMC
environment has not been sufficiently considered.

When user mobility exists, it is necessary to consider
real-time (live) migration of service instances. For ex-
ample, it can be beneficial to migrate the instance to a
location closer to the user. Only a few existing papers in
the literature have studied this problem [10]–[12]. The
main approach in [10]–[12] is to formulate the mobility-
driven service instance migration problem as a Markov
decision process (MDP). Such a formulation is suitable
where the user mobility follows or can be approximated
by a mobility model that can be described by a Markov
chain. However, there are cases where the Markovian
assumption is not valid [13]. Besides, [10]–[12] either
do not explicitly or only heuristically consider multiple
users and service instances, and they assume specific
structures of the cost function that are related to the loca-
tions of users and service instances. Such cost structures
may be inapplicable when the load on different MMCs
are imbalanced or when we consider the backend cloud
as a placement option. In addition, the existing MDP-
based approaches mainly consider service instances that
are constantly running in the cloud system; they do not
consider instances that may arrive to and depart from
the system over time.

Systems with online (and usually unpredictable) ar-
rivals and departures have been studied in the field
of online approximation algorithms [14], [15]. The goal
is to design efficient algorithms (usually with polyno-
mial time-complexity) that have reasonable competitive
ratios2. However, most existing work focus on prob-
lems that can be formulated as integer linear programs.
Problems that have convex but non-linear objective func-
tions have attracted attention only very recently [16],
[17], where the focus is on online covering problems in
which new constraints arrive over time. Our problem is
different from the existing work in the sense that the
online arrivals in our problem are abstracted as change
in constraints (or, with a slightly different but equivalent

1. The term “cost” in this paper is an abstract notion that can stand
for monetary cost, service access latency of users, service interruption
time, amount of transmission/processing resource consumption, etc.

2. We define the competitive ratio as the maximum ratio of the cost
from the online approximation algorithm to the true optimal cost from
offline placement.

formulation, adding new variables) instead of adding
new constraints, and we consider the average cost over
multiple timeslots. Meanwhile, online departures are not
considered in [16], [17].

Concurrently with the work presented in this paper,
we have considered non-realtime applications in [18],
where users submit job requests that can be processed
after some time. Different from [18], we consider users
continuously connected to services in this paper, which
is often the case for delay-sensitive applications (such as
live video streaming). The technical approach in this pa-
per is fundamentally different from that in [18]. Besides,
a Markovian mobility model is still assumed in [18].

Another related problem is the load balancing in dis-
tributed systems, where the goal is to even out the load
distribution across machines. Migration cost, future cost
parameter prediction and the impact of prediction error
are not considered in load balancing problems [9], [19]–
[22]. We consider all these aspects in this paper, and
in addition, we consider a generic cost definition that
can be defined to favor load balancing as well as other
aspects.

We also note that existing online algorithms with
provable performance guarantees are often of theoretical
nature [14]–[17], which may not be straightforward to
apply in practical systems because these algorithms can
be conceptually complex thus difficult to understand. At
the same time, most online algorithms applied in prac-
tice are of heuristic nature without theoretically prov-
able optimality guarantees [8]; the performance of such
algorithms are usually evaluated under a specific exper-
imentation setting (see references of [8]), thus they may
perform poorly under other settings that possibly occur
in practice [23]. For example, in the machine scheduling
problem considered in [24], a greedy algorithm (which is
a common heuristic) that works well in some cases does
not work well in other cases. We propose a simple and
practically applicable online algorithm with theoretically
provable performance guarantees in this paper, and also
verify its performance with simulation using both syn-
thetic arrivals and real-world user traces.

1.2 Main Contributions
In this paper, we consider a general setting which

allows heterogeneity in cost values, network structure,
and mobility models. We assume that the cost is related
to a finite set of parameters, which can include the
locations and preferences of users, load in the system,
database locations, etc. We focus on the case where there
is an underlying mechanism to predict the future values
of these parameters, and also assume that the prediction
mechanism provides the most likely future values and
an upper bound on possible deviation of the actual value
from the predicted value. Such an assumption is valid
for many prediction methods that provide guarantees on
prediction accuracy. Based on the predicted parameters,
the (predicted) future costs of each configuration can
be found, in which each configuration represents one
particular placement sequence of service instances.
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With the above assumption, we formulate a problem
of finding the optimal configuration of service instances
that minimizes the average cost over time. We define a
look-ahead window to specify the amount of time that
we look (predict) into the future. The main contributions
of this paper are summarized as follows:

1) We first focus on the offline problem of service in-
stance placement using predicted costs within a spe-
cific look-ahead window, where the instance arrivals
and departures within this look-ahead window are
assumed to be known beforehand. We show that this
problem is equivalent to a shortest-path problem
in a virtual graph formed by all possible config-
urations, and propose an algorithm (Algorithm 2
in Section 3.3) to find its optimal solution using
dynamic programming.

2) We note that it is often practically infeasible to know
in advance about when an instance will arrive to
or depart from the system. Meanwhile, Algorithm 2
may have exponential time-complexity when there
exist multiple instances. Therefore, we propose an
online approximation algorithm that finds the place-
ment of a service instance upon its arrival with
polynomial time-complexity. The proposed online
algorithm calls Algorithm 2 as a subroutine for each
instance upon its arrival. We analytically evaluate
the performance of this online algorithm compared
to the optimal offline placement. The proposed on-
line algorithm is O(1)-competitive3 for certain types
of cost functions (including those which are linear,
polynomial, or in some other specific form), under
some mild assumptions.

3) Considering the existence of prediction errors, we
propose a method to find the optimal look-ahead
window size, such that an upper bound on the actual
placement cost is minimized.

4) The effectiveness of the proposed approach is eval-
uated by simulations with both synthetic traces and
real-world mobility traces of San Francisco taxis.

The remainder of this paper is organized as follows.
The problem formulation is described in Section 2. Sec-
tion 3 proposes an offline algorithm to find the optimal
sequence of service instance placement with given look-
ahead window size. The online placement algorithm
and its performance analysis are presented in Section 4.
Section 5 proposes a method to find the optimal look-
ahead window size. Section 6 presents the simulation
results and Section 7 draws conclusions.

2 PROBLEM FORMULATION

We consider a cloud computing system as shown in
Fig. 1, where the clouds are indexed by k ∈ {1, 2, ...,K}.
Each cloud k can be either an MMC or a backend cloud.
All MMCs together with the backend cloud can host
service instances that may arrive and leave the system
over time. A service instance is a process that is executed

3. We say that an online algorithm is c-competitive if its competitive
ratio is upper bounded by c.

Timeslot tT slots

…1 2 3 … …
T slots T slots

Possible migration
… … …

Cost prediction for next T slots

…

Figure 2. Timing of the proposed approach.

for a particular task of a cloud service. Each service
instance may serve one or a group users, where there
usually exists data transfer between the instance and the
users it is serving. A time-slotted system as shown in
Fig. 2 is considered, in which the actual physical time
interval corresponding to each slot t = 1, 2, 3, ... can be
either the same or different.

We consider a window-based control framework,
where every T slots, a controller performs cost prediction
and computes the service instance configuration for the
next T slots. We define these T consecutive slots as
a look-ahead window. Service instance placement within
each window is found either at the beginning of the
window (in the offline case) or whenever an instance
arrives (in the online case). We limit ourselves to within
one look-ahead window when finding the configuration.
In other words, we do not attempt to find the place-
ment in the next window until the time for the current
window has elapsed and the next window starts. Our
solution can also be extended to a slot-based control
framework where the controller computes the next T -
slot configuration at the beginning of every slot, based
on predicted cost parameters for the next T slots. We
leave the detailed comparison of these frameworks and
their variations for future work.

2.1 Definitions
We introduce some definitions in the following. A

summary of main notations is given in Appendix A.

2.1.1 Service Instances
We say a service instance arrives to the system if it

is created, and we say it departs from the system if its
operation is finished. Service instances may arrive and
depart over time. We keep an index counter to assign an
index for each new instance. The counter is initialized
to zero when the cloud system starts to operate4. Upon
a service instance arrival, we increment the counter by
one, so that if the previously arrived instance has index
i, a newly arrived instance will have index i + 1. With
this definition, if i < i′, instance i arrives no later than
instance i′. A particular instance i can only arrive to the
system once, and we assume that arrivals always occur
at the beginning of a slot and departures always occur
at the end of a slot. For example, consider timeslots t =
1, 2, 3, 4, 5, instance i = 2 may arrive to the system at the
beginning of slot t = 2, and depart from the system at
the end of slot t = 4. At any timeslot t, instance i can

4. This is for ease of presentation. In practice, the index can be reset
when reaching a maximum counter number, and the definition of ser-
vice configurations (defined later) can be easily modified accordingly.
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have one of the following states: not arrived, running, or
departed. For the above example, instance i = 2 has not
yet arrived to the system in slot t = 1, it is running in
slots t = 2, 3, 4, and it has already departed in slot t = 5.
Note that an instance can be running across multiple
windows each containing T slots before it departs.

2.1.2 Service Configurations

Consider an arbitrary sequence of consecutive times-
lots t ∈ {t0, t0 + 1, ..., t0 +Q− 1}, where Q is an integer.
For simplicity, assume that the instance with the smallest
index running in slot t0 has index i = 1, and the instance
with the largest index running in any of the slots in
{t0, ..., t0+Q−1} has index M . According to the index as-
signment discussed in Section 2.1.1, there can be at most
M instances running in any slot t ∈ {t0, ..., t0 +Q− 1}.

We define a Q-by-M matrix denoted by π, where its
(q, i)th (q ∈ {1, ..., Q}) element (π)qi ∈ {0, 1, 2, ...,K}
denotes the location of service instance i in slot tq �
t0 + q − 1 ( “�” stands for “is defined to be equal to”).
We set (π)qi according to the state of instance i in slot
tq , as follows

(π)qi =

{
0, if i is not running in slot tq
k, if i is running in cloud k in slot tq

where instance i is not running if it has not yet arrived
or has already departed. The matrix π is called the
configuration of instances in slots {t0, ..., t0 + Q − 1}.
Throughout this paper, we use matrix π to represent
configurations in different subsets of timeslots. We write
π(t0, t1, ..., tn) to explicitly denote the configuration in
slots {t0, t1, ..., tn} (we have Q = tn−t0+1), and we write
π for short where the considered slots can be inferred
from the context. For a single slot t, π(t) becomes a
vector (i.e., Q = 1).

Remark: The configurations in different slots can ap-
pear either in the same matrix or in different matrices.
This means, from π(t0, ..., t0 + Q − 1), we can get π(t)
for any t ∈ {t0, ..., t0 + Q − 1}, as well as π(t − 1, t) for
any t ∈ {t0 + 1, ..., t0 + Q − 1}, etc., and vice versa. For
the ease of presentation later, we define (π(0))i = 0 for
any i.

2.1.3 Costs

The cost can stand for different performance-related
factors in practice, such as monetary cost (expressed as
the price in some currency), service access latency of
users (in seconds), service interruption time (in seconds),
amount of transmission/processing resource consump-
tion (in the number of bits to transfer, CPU cycles,
memory size, etc.), or a combination of these. As long
as these aspects can be expressed in some form of a cost
function, we can treat them in the same optimization
framework, thus we use the generic notion of cost in
this paper.

We consider two types of costs. The local cost U(t,π(t))
specifies the cost of data transmission (e.g., between each
pair of user and service instance) and processing in slot t

when the configuration in slot t is π(t). Its value can de-
pend on many factors, including user location, network
condition, load of clouds, etc., as discussed in Section 1.2.
When a service instance is initiated in slot t, the local
cost in slot t also includes the cost of initial placement
of the corresponding service instance(s). We then define
the migration cost W (t,π(t − 1),π(t)), which specifies
the cost related to migration between slots t − 1 and
t, which respectively have configurations π(t − 1) and
π(t). There is no migration cost in the very first timeslot
(start of the system), thus we define W (1, ·, ·) = 0. The
sum of local and migration costs in slot t when following
configuration π(t− 1, t) is given by

Cπ(t−1,t)(t) � U(t,π(t)) +W (t,π(t− 1),π(t)) (1)

The above defined costs are aggregated costs for all service
instances in the system during slot t. We will give
concrete examples of these costs later in Section 4.2.1.

2.2 Actual and Predicted Costs
To distinguish between the actual and predicted cost

values, for a given configuration π, we let Aπ(t) denote
the actual value of Cπ(t), and let Dt0

π (t) denote the pre-
dicted (most likely) value of Cπ(t), when cost-parameter
prediction is performed at the beginning of slot t0. For
completeness of notations, we define Dt0

π (t) = Aπ(t) for
t < t0, because at the beginning of t0, the costs of all
past timeslots are known. For t ≥ t0, we assume that the
absolute difference between Aπ(t) and Dt0

π (t) is at most

ε(τ) � max
π,t0

∣∣Aπ(t0 + τ)−Dt0
π (t0 + τ)

∣∣
which represents the maximum error when looking
ahead for τ slots, among all possible configurations π
(note that only π(t0 + τ − 1) and π(t0 + τ) are relevant)
and all possible prediction time instant t0. The function
ε(τ) is assumed to be non-decreasing with τ , because
we generally cannot have lower error when we look
farther ahead into the future. The specific value of ε(τ) is
assumed to be provided by the cost prediction module.

We note that specific methods for predicting future
cost parameters are beyond the scope of this paper,
but we anticipate that existing approaches such as [25],
[26] and [27] can be applied. For example, one simple
approach is to measure cost parameters on the current
network condition, and regard them as parameters for
the future cost until the next measurement is taken.
The prediction accuracy in this case is related to how
fast the cost parameters vary, which can be estimated
from historical records. We regard these cost parameters
as predictable because they are generally related to the
overall state of the system or historical pattern of users,
which are unlikely to vary significantly from its previous
state or pattern within a short time. This is different
from arrivals and departures of instances, which can be
spontaneous and unlikely to follow a predictable pattern.

2.3 Our Goal
Our ultimate goal is to find the optimal configuration

π∗(1, ...,∞) that minimizes the actual average cost over
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a sufficiently long time, i.e.

π∗(1, ...,∞)=arg min
π(1,...,∞)

lim
Tmax→∞

∑Tmax
t=1 Aπ(t−1,t)(t)

Tmax
(2)

However, it is impractical to find the optimal solution to
(2), because we cannot precisely predict the future costs
and also do not have exact knowledge on instance arrival
and departure events in the future. Therefore, we focus
on obtaining an approximate solution to (2) by utilizing
predicted cost values that are collected every T slots.

Now, the service placement problem includes two
parts: one is finding the look-ahead window size T ,
discussed in Section 5; the other is finding the config-
uration within each window, where we consider both
offline and online placements, discussed in Sections 3
(offline placement) and 4 (online placement). The offline
placement assumes that at the beginning of window
T , we know the exact arrival and departure times of
each instance within the rest of window T , whereas the
online placement does not assume this knowledge. We
note that the notion of “offline” here does not imply
exact knowledge of future costs. Both offline and online
placements in Sections 3 and 4 are based on the predicted
costs Dt0

π (t), the actual cost Aπ(t) is considered later in
Section 5.

3 OFFLINE SERVICE PLACEMENT WITH GIVEN
LOOK-AHEAD WINDOW SIZE

In this section, we focus on the offline placement
problem, where the arrival and departure times of future
instances are assumed to be exactly known. We denote
the configuration found for this problem by πoff.

3.1 Procedure
We start with illustrating the high-level procedure of

finding πoff. When the look-ahead window size T is
given, the configuration πoff is found sequentially for
each window (containing timeslots t0, ..., t0 + T − 1), by
solving the following optimization problem:

πoff(t0, ..., t0+T−1) = arg min
π(t0,...,t0+T−1)

t0+T−1∑
t=t0

Dt0
π(t−1,t)(t)

(3)
where Dt0

π (t) can be found based on the parameters
obtained from the cost prediction module. The procedure
is shown in Algorithm 1.

In Algorithm 1, every time when solving (3), we get
the value of πoff for additional T slots. This is sufficient
in practice (compared to an alternative approach that
directly solves for πoff for all slots) because we only
need to know where to place the instances in the current
slot. The value of Dt0

π(t−1,t)(t) in (3) depends on the
configuration in slot t0−1, i.e. π(t0−1), according to (1).
When t0 = 1, π(t0 − 1) can be regarded as an arbitrary
value, because the migration cost W (t, ·, ·) = 0 for t = 1.

Intuitively, at the beginning of slot t0, (3) finds the
optimal configuration that minimizes the predicted cost
over the next T slots, given the locations of instances in
slot t0 − 1. We focus on solving (3) next.

Algorithm 1 Procedure of offline service placement
1: Initialize t0 = 1
2: loop
3: At the beginning of slot t0, find the solution to (3)
4: Apply placements πoff(t0, ..., t0+T −1) in timeslots t0, ..., t0+

T − 1
5: t0 ← t0 + T
6: end loop

t t

t t t

t t t

t
Dt t

Dt t

Dt t

t

t

i
t

Figure 3. Shortest-path formulation with K = 2, M = 2,
and T = 3. Instance i = 1 is running in all slots, instance
i = 2 arrives at the beginning of slot t0 + 1 and is running
in slots t0 + 1 and t0 + 2.

3.2 Equivalence to Shortest-Path Problem
The problem in (3) is equivalent to a shortest-path

problem with Dt0
π(t−1,t)(t) as weights, as shown in Fig. 3.

Each edge represents one possible combination of con-
figurations in adjacent timeslots, and the weight on each
edge is the predicted cost for such configurations. The
configuration in slot t0−1 is always given, and the num-
ber of possible configurations in subsequent timeslots
is at most KM , where M is defined as in Section 2.1.2
for the current window {t0, ..., t0 + T − 1}, and we note
that depending on whether the instance is running in
the system or not, the number of possible configurations
in a slot is either K or one (for configuration 0). Node
B is a dummy node to ensure that we find a single
shortest path, and the edges connecting node B have zero
weights. It is obvious that the optimal solution to (3) can
be found by taking the shortest (minimum-weighted)
path from node π(t0 − 1) to node B in Fig. 3; the nodes
that the shortest path traverses correspond to the optimal
solution πoff(t0, ..., t0 + T − 1) for (3).

3.3 Algorithm
We can solve the abovementioned shortest-path prob-

lem by means of dynamic programming [28]. The algo-
rithm is shown in Algorithm 2, where we use Up(t,m)
and Wp(t,n,m) to respectively denote the predicted lo-
cal and migration costs when π(t) = m and π(t−1) = n.

In the algorithm, Lines 5–16 iteratively find the short-
est path (minimum objective function) for each timeslot.
The iteration starts from the second level of the virtual
graph in Fig. 3, which contains nodes with π(t0). It iter-
ates through all the subsequent levels that respectively
contain nodes with π(t0 + 1), π(t0 + 2), etc., excluding
the last level with node B. In each iteration, the optimal
solution for every possible (single-slot) configuration
m is found by solving the Bellman’s equation of the
problem (Line 11). Essentially, the Bellman’s equation
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Algorithm 2 Algorithm for solving (3)
1: Define variables m and n to represent configurations respectively

in the current and previous iteration (level of graph)
2: Define vectors πm and ξm for all m,n, where πm (correspond-

ingly, ξm) records the optimal configuration given that the con-
figuration at the current (correspondingly, previous) timeslot of
iteration is m

3: Define variables μm and νm for all m to record the sum cost
values from slot t0 respectively to the current and previous slot
of iteration, given that the configuration is m in the current or
previous slot

4: Initialize μm ← 0 and πm ← ∅ for all m
5: for t = t0, ..., t0 + T − 1 do
6: for all m do
7: νm ← μm

8: ξm ← πm

9: end for
10: for all m do
11: n∗ ← argminn {νn + Up(t,m) +Wp(t,n,m)}
12: πm(t0, ..., t− 1) ← ξn∗ (t0, ..., t− 1)
13: πm(t) ← m
14: μm ← νn∗ + Up(t,m) +Wp(t,n∗,m)
15: end for
16: end for
17: m∗ ← argminm μm

18: πoff(t0, ..., t0 + T − 1) ← πm∗ (t0, ..., t0 + T − 1)
19: return πoff(t0, ..., t0 + T − 1)

finds the shortest path between the top node π(t0 − 1)
and the current node under consideration (e.g., node
π(t0+1) = (1, 1) in Fig. 3), by considering all the nodes in
the previous level (nodes π(t0) = (1, 0) and π(t0) = (2, 0)
in Fig. 3). The sum weight on the shortest path between
each node in the previous level and the top node π(t0−1)
is stored in νm, and the corresponding nodes that this
shortest path traverses through is stored in ξm. Based
on νm and ξm, Line 11 finds the shortest paths for all
nodes in the current level, which can again be used for
finding the shortest paths for all nodes in the next level
(in the next iteration).

After iterating through all levels, the algorithm has
found the shortest paths between top node π(t0 − 1)
and all nodes in the last level with π(t0 − T − 1). Now,
Lines 17 and 18 find the minimum of all these shortest
paths, giving the optimal configuration. It is obvious that
output of this algorithm satisfies the Bellman’s principle
of optimality, so the result is the shortest path and hence
the optimal solution to (3).

Complexity: When the vectors πm and ξm are
stored as linked-lists, Algorithm 2 has time-complexity
O

(
K2MT

)
, because the minimization in Line 11 requires

enumerating at most KM possible configurations, and
there can be at most KMT possible combinations of
values of t and m.

4 COMPLEXITY REDUCTION AND ONLINE
SERVICE PLACEMENT

The complexity of Algorithm 2 is exponential in the
number of instances M , so it is desirable to reduce the
complexity. In this section, we propose a method that
can find an approximate solution to (3) and, at the same
time, handle online instance arrivals and departures that
are not known beforehand. We will also show that (3)
is NP-hard when M is non-constant, which justifies the
need to solve (3) approximately in an efficient manner.

4.1 Procedure
In the online case, we modify the procedure given

in Algorithm 1 so that instances are placed one-by-one,
where each placement greedily minimizes the objective
function given in (3), while the configurations of previ-
ously placed instances remain unchanged.

We assume that each service instance i has a max-
imum lifetime Tlife(i), denoting the maximum number
of remaining timeslots (including the current slot) that
the instance remains in the system. The value of Tlife(i)
may be infinity for instances that can potentially stay
in the system for an arbitrary amount of time. The
actual time that the instance stays in the system may be
shorter than Tlife(i), but it cannot be longer than Tlife(i).
When an instance leaves the system before its maximum
lifetime has elapsed, we say that such a service instance
departure is unpredictable.

We use πon to denote the configuration π computed
by online placement. The configuration πon is updated
every time when an instance arrives or unpredictably
departs. At the beginning of the window (before any
instance has arrived), it is initiated as an all-zero matrix.

For a specific look-ahead window {t0, ..., t0 + T − 1},
when service instance i arrives in slot t ∈ {t0, ..., t0 +
T − 1}, we assume that this instance stays in the sys-
tem until slot te = min {t+ Tlife(i)− 1; t0 + T − 1}, and
accordingly update the configuration by

πon(t, ..., te) = arg min
π(ta,...,te)

te∑
t=ta

Dt0
π(t−1,t)(t) (4)

s.t. π(t, ..., te) = πon(t, ..., te) except for column i

Note that only the configuration of instance i (which
is assumed to be stored in the ith column of π) is
found and updated in (4), the configurations of all other
instances i′ �= i remain unchanged. The solution to (4)
can still be found with Algorithm 2. The only difference
is that vectors m and n now become scalar values within
{1, ...,K}, because we only consider the configuration
of a single instance i. The complexity in this case be-
comes O(K2T ). At the beginning of the window, all the
instances that have not departed after slot t0 − 1 are
seen as arrivals in slot t0, because we independently
consider the placements in each window of size T . When
multiple instances arrive simultaneously, an arbitrary
arrival sequence is assigned to them; the instances are
still placed one-by-one by greedily minimizing (4).

When an instance i unpredictably departs at the end
of slot t ∈ {t0, ..., t0 + T − 1}, we update πon such that
the ith column of πon(t+ 1, ..., t0 + T − 1) is set to zero.

The online procedure described above is shown in
Algorithm 3. Recall that πon(t, ..., te) and πon(t+1, ..., t0+
T − 1) are both part of a larger configuration matrix
πon(t0, ..., t0 + T − 1) (see Section 2.1.2).

Complexity: When placing a total of M instances, for
a specific look-ahead window with size T , we can find
the configurations of these M instances with complexity
O(K2TM), because (4) is solved for M times, each with
complexity O(K2T ).
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Algorithm 3 Procedure of online service placement
1: Initialize t0 = 1
2: loop
3: Initialize πon(t0, ..., t0 + T − 1) as an all-zero matrix
4: for each timeslot t = t0, ..., t0 + T − 1 do
5: for each instance i arriving at the beginning of slot t do
6: te ← min {t+ Tlife(i)− 1; t0 + T − 1}
7: Update πon(t, ..., te) with the result from (4)
8: Apply configurations specified in the ith column of

πon(t, ..., te) for service instance i in timeslots t, ..., te until
instance i departs

9: end for
10: for each instance i departing at the end of slot t do
11: Set the ith column of πon(t+ 1, ..., t0 + T − 1) to zero
12: end for
13: end for
14: t0 ← t0 + T
15: end loop

Remark: It is important to note that in the above
procedure, the configuration πon (and thus the cost value
Dt0

π(t−1,t)(t) for any t ∈ {t0, ..., t0 + T − 1}) may vary
upon instance arrival or departure. It follows that the T -
slot sum cost

∑t0+T−1
t=t0

Dt0
πon(t−1,t)(t) may vary whenever

an instance arrives or departs at an arbitrary slot t ∈
{t0, ..., t0+T−1}, and the value of

∑t0+T−1
t=t0

Dt0
πon(t−1,t)(t)

stands for the predicted sum cost (over the current win-
dow containing T slots) under the current configuration,
assuming that no new instance arrives and no instance
unpredictably departs in the future. This variation in
configuration and cost upon instance arrival/departure
is frequently mentioned in the analysis presented next.

4.2 Performance Analysis

It is clear that for a single look-ahead window, Al-
gorithm 3 has polynomial time-complexity while Algo-
rithm 1 has exponential time-complexity. In this subsec-
tion, we show the NP-hardness of the offline service
placement problem, and discuss the optimality gap be-
tween the online algorithm and the optimal offline place-
ment. Note that we only focus on a single look-ahead
window in this subsection. The interplay of multiple
look-ahead windows and the impact of the window size
will be considered in Section 5.

4.2.1 Definitions

For simplicity, we analyze the performance for a
slightly restricted (but still general) class of cost func-
tions. We introduce some additional definitions next (see
Appendix A for a summary of notations).

Indexing of Instances: Here, we assume that the
instance with lowest index in the current window
{t0, ..., t0 + T − 1} has index i = 1, and the last instance
that arrives before the current time of interest has index
i = M , where the current time of interest can be any
time within the current window. With this definition,
M does not need to be the largest index in window
{t0, ..., t0 + T − 1}. Instead, it can be the index of any
instance that arrives within {t0, ..., t0+T−1}. The cost of
placing up to (and including) instance M is considered,
where some instances i ≤M may have already departed
from the system.

Possible Configuration Sequence: When considering
a window of T slots, we define the set of all possible con-
figurations of a single instance as a set of T -dimensional
vectors Λ � {(λ1, ..., λT ) : λn ∈ {0, 1, ...,K}, ∀n ∈
{1, ..., T}, where λn is non-zero for at most one block
of consecutive values of n}. We also define a vector
λ ∈ Λ to represent one possible configuration sequence of a
single service instance across these T consecutive slots.
For any instance i, the ith column of configuration matrix
π(t0, ..., t0 + T − 1) is equal to one particular value of λ.

We also define a binary variable xiλ, where xiλ = 1 if
instance i is placed according to configuration sequence
λ across slots {t0, ..., t0 + T − 1} (i.e., the ith column of
π(t0, ..., t0+T −1) is equal to λ), and xiλ = 0 otherwise.
We always have

∑
λ∈Λ xiλ = 1 for all i ∈ {1, ...,M}.

We note that the values of xiλ may vary over time due
to arrivals and unpredictable departures of instances,
which can be seen from Algorithm 3 and by noting the
relationship between λ and π. Before instance i arrives,
xiλ0 = 1 for λ0 = [0, ..., 0] which contains all zeros, and
xiλ = 0 for λ �= λ0. Upon arrival of instance i, we have
xiλ0 = 0 and xiλ1 = 1 for a particular λ1. When instance
i unpredictably departs at slot t′, its configuration se-
quence switches from λ1 to an alternative (but partly
correlated) sequence λ′

1 (i.e., (λ′
1)t = (λ1)t for t ≤ t′ and

(λ′
1)t = 0 for t > t′, where (λ)t denotes the tth element

of λ), according to Line 11 in Algorithm 3, after which
xiλ1 = 0 and xiλ′

1
= 1.

Resource Consumption: We assume that the costs
are related to the resource consumption, and for the
ease of presentation, we consider two types of resource
consumptions. The first type is associated with serving
user requests, i.e., data transmission and processing
when a cloud is running a service instance, which we
refer to as the local resource consumption. The second type
is associated with migration, i.e., migrating an instance
from one cloud to another cloud, which we refer to as
the migration resource consumption.

If we know that instance i operates under configura-
tion sequence λ, then we know whether instance i is
placed on cloud k in slot t, for any k ∈ {1, ...,K} and
t ∈ {t0, ..., t0 + T − 1}. We also know whether instance
i is migrated from cloud k to cloud l (l ∈ {1, 2, ...,K})
between slots t − 1 and t. We use aiλk(t) ≥ 0 to denote
the local resource consumption at cloud k in slot t when
instance i is operating under λ, where aiλk(t) = 0 if
(λ)t �= k. We use biλkl(t) ≥ 0 to denote the migration
resource consumption when instance i operating under
λ is assigned to cloud k in slot t − 1 and to cloud l
in slot t, where biλkl(t) = 0 if (λ)t−1 �= k or (λ)t �= l,
and we note that the configuration in slot t0 − 1 (before
the start of the current window) is assumed to be given
and thus independent of λ. The values of aiλk(t) and
biλkl(t) are either service-specific parameters that are
known beforehand, or they can be found as part of the
cost prediction.

We denote the sum local resource consumption at
cloud k by yk(t) �

∑M
i=1

∑
λ∈Λ aiλk(t)xiλ, and denote

the sum migration resource consumption from cloud k
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to cloud l by zkl(t) �
∑M

i=1

∑
λ∈Λ biλkl(t)xiλ. We may

omit the argument t in the following discussion.
Remark: The local and migration resource consump-

tions defined above can be related to CPU and com-
munication bandwidth occupation, etc., or the sum of
them. We only consider these two types of resource
consumption for the ease of presentation. By applying
the same theoretical framework, the performance gap
results (presented later) can be extended to incorporate
multiple types of resources and more sophisticated cost
functions, and similar results yield for the general case.

Costs: We refine the costs defined in Section 2.1.3
by considering the cost for each cloud or each pair
of clouds. The local cost at cloud k in timeslot t is
denoted by uk,t (yk(t)). When an instance is initiated
in slot t, the local cost in slot t also includes the cost
of initial placement of the corresponding instance. The
migration cost from cloud k to cloud l between slots t−1
and t is denoted by wkl,t (yk(t− 1), yl(t), zkl(t)). Besides
zkl(t), the migration cost is also related to yk(t− 1) and
yl(t), because additional processing may be needed for
migration, and the cost for such processing can be related
to the current load at clouds k and l. The functions
uk,t (y) and wkl,t (yk, yl, zkl) can be different for different
slots t and different clouds k and l, and they can depend
on many factors, such as network condition, background
load of the cloud, etc. Noting that any constant term
added to the cost function does not affect the optimal
configuration, we set uk,t(0) = 0 and wkl,t(0, 0, 0) = 0.
We also set wkl,t(·, ·, 0) = 0, because there is no migration
cost if we do not migrate. There is also no migration cost
at the start of the first timeslot, thus we set wkl,t(·, ·, ·) = 0
for t = 1. With these definitions, the aggregated costs
U(t,π(t)) and W (t,π(t − 1),π(t)) can be explicitly ex-
pressed as

U(t,π(t)) �
K∑

k=1

uk,t (yk(t)) (5)

W(t,π(t−1),π(t))�
K∑

k=1

K∑
l=1

wkl,t(yk(t−1), yl(t), zkl(t)) (6)

We then assume that the following assumption is
satisfied for the cost functions, which holds for a large
class of practical cost functions, such as those related to
the delay performance or load balancing [9].

Assumption 1. Both uk,t(y) and wkl,t(yk, yl, zkl) are con-
vex non-decreasing functions of y (or yk, yl, zkl), satisfying:

• duk,t

dy (0) > 0

• ∂wkl,t

∂zkl
(·, ·, 0) > 0 for t ≥ 2

for all t, k, and l (unless stated otherwise), where duk,t

dy (0) de-
notes the derivative of uk,t with respect to (w.r.t.) y evaluated
at y = 0, and ∂wkl,t

∂zkl
(·, ·, 0) denotes the partial derivative of

wkl,t w.r.t. zkl evaluated at zkl = 0 and arbitrary yk and yl.

Vector Notation: To simplify the presentation, we use
vectors to denote a collection of variables across multiple
clouds, slots, or configuration sequences. For simplicity,
we index each element in the vector with multiple

indexes that are related to the index of the element, and
use the general notion (g)h1h2

(or (g)h1h2h3
) to denote

the (h1, h2)th (or (h1, h2, h3)th) element in an arbitrary
vector g. Because we know the range of each index,
multiple indexes can be easily mapped to a single index.
We regard each vector as a single-indexed vector for the
purpose of vector concatenation (i.e., joining two vectors
into one vector) and gradient computation later.

We define vectors y (with KT elements), z (with
K2T elements), x (with MKT elements), aiλ (with KT
elements), and biλ (with K2T elements), for every value
of i ∈ {1, 2, ...,M} and λ ∈ Λ. Different values of i and λ
correspond to different vectors aiλ and biλ. The elements
in these vectors are defined as follows:

(y)kt � yk(t), (z)klt � zkl(t), (x)iλ � xiλ,

(aiλ)kt � aiλk(t), (biλ)klt � biλkl(t)

As discussed earlier in this section, xiλ may unpre-
dictably change over time due to arrivals and departures
of service instances. It follows that the vectors x, y, and
z may vary over time (recall that y and z are dependent
on x by definition). The vectors aiλ and biλ are constant.

Alternative Cost Expression: Using the above defini-
tions, we can write the sum cost of all T slots as follows

D̃ (x) � D̃ (y, z) �
t0+T−1∑
t=t0

[
K∑

k=1

uk,t (yk(t))

+
K∑

k=1

K∑
l=1

wkl,t (yk(t− 1), yl(t), zkl(t))

]
(7)

where the cost function D̃(·) can be expressed either in
terms of x or in terms of (y, z). The cost function defined
in (7) is equivalent to

∑t0+T−1
t=t0

Dt0
π(t−1,t)(t), readers are

also referred to the per-slot cost defined in (1) for com-
parison. The value of D̃ (x) or, equivalently, D̃ (y, z) may
vary over time due to service arrivals and unpredictable
service instance departures as discussed above.

4.2.2 Equivalent Problem Formulation
With the above definitions, the offline service place-

ment problem in (3) can be equivalently formulated as
the following, where our goal is to find the optimal con-
figuration for all service instances 1, 2, ...,M (we consider
the offline case here where we know when each instance
arrives and no instance will unpredictably leave after
they have been placed):

min
x

D̃ (x) (8)

s.t.
∑
λ∈Λi

xiλ = 1, ∀i ∈ {1, 2, ...,M}

xiλ ∈ {0, 1}, ∀i ∈ {1, 2, ...,M},λ ∈ Λi

where Λi ⊆ Λ is a subset of feasible configuration
sequences for instance i, i.e., sequences that contain those
vectors whose elements are non-zero starting from the
slot at which i arrives and ending at the slot at which i
departs, while all other elements of the vectors are zero.

We now show that (8), and thus (3), is NP-hard even
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in the offline case, which further justifies the need for an
approximation algorithm for solving the problem.

Proposition 1. (NP-Hardness) The problem in (8) in the
offline sense, and thus (3), is NP-hard.

Proof. Problem (8) can be reduced from the partition
problem, which is known to be NP-complete [29, Corol-
lary 15.28]. See Appendix B for details.

An online version of problem (8) can be constructed
by updating Λi over time. When an arbitrary instance i
has not yet arrived, we define Λi as the set containing an
all-zero vector. After instance i arrives, we assume that
it will run in the system until te (defined in Section 4.1),
and update Λi to conform to the arrival and departure
times of instance i (see above). After instance i departs,
Λi can be further updated so that the configurations
corresponding to all remaining slots are zero.

4.2.3 Performance Gap
As discussed earlier, Algorithm 3 solves (8) in a greedy

manner, where each service instance i is placed to greed-
ily minimize in (8). In the following, we compare the
result from Algorithm 3 with the true optimal result,
where the optimal result assumes offline placement. We
use x and (y, z) to denote the result from Algorithm 3,
and use x∗ and (y∗, z∗) to denote the offline optimal
result to (8).

Lemma 1. (Convexity of D̃(·)) When Assumption 1 is
satisfied, the cost function D̃ (x) or, equivalently, D̃ (y, z) is
a non-decreasing convex function w.r.t. x, and it is also a
non-decreasing convex function w.r.t. y and z.

Proof. According to Assumption 1, uk,t (yk(t)) and
wkl,t (yk(t− 1), yl(t), zkl(t)) are non-decreasing convex
functions. Because yk(t) and zkl(t) are linear mappings
of xiλ with non-negative weights for any t, k, and l, and
also because the sum of non-decreasing convex functions
is still a non-decreasing convex function, the lemma
holds [30, Section 3.2].

In the following, we use ∇x to denote the gradient
w.r.t. each element in vector x, i.e., the (i,λ)th element of
∇xD̃(x) is ∂D̃(x)

∂xiλ
. Similarly, we use ∇y,z to denote the

gradient w.r.t. each element in vector (y, z), where (y, z)
is a vector that concatenates vectors y and z.

Proposition 2. (Performance Gap) When Assumption 1
is satisfied, we have

D̃(x) ≤ D̃(φψx∗) (9)

or, equivalently,

D̃ (y, z) ≤ D̃ (φψy∗, φψz∗) (10)

where φ and ψ are constants satisfying

φ ≥ ∇y,zD̃ (ymax + aiλ, zmax + biλ) · (aiλ,biλ)

∇y,zD̃ (y, z) · (aiλ,biλ)
(11)

ψ ≥ ∇xD̃ (x) · x
D̃(x)

=
∇y,zD̃ (y, z) · (y, z)

D̃ (y, z)
(12)

for any i and λ ∈ Λi, in which ymax and zmax respectively
denote the maximum values of y and z (the maximum is
taken element-wise) after any number of instance arrivals
within slots {t0, ..., t0 + T − 1} until the current time of
interest (at which time the latest arrived instance has index
M ), (aiλ,biλ) is a vector that concatenates aiλ and biλ, and
“·” denotes the dot-product.

Proof. See Appendix C.

Remark: We note that according to the definition of M
in Section 4.2.1, the bound given in Proposition 2 holds
at any time of interest within slots {t0, ..., t0 + T − 1},
i.e., for any number of instances that has arrived to the
system, where some of them may have already departed.

4.2.4 Intuitive Explanation to the Constants φ and ψ
The constants φ and ψ in Proposition 2 are related

to “how convex” the cost function is. In other words,
they are related to how fast the cost of placing a single
instance changes under different amount of existing
resource consumption. Figure 4 shows an illustrative
example, where we only consider one cloud and one
timeslot (i.e., t = 1, T = 1, and K = 1). In this case,
setting φ = dD̃

dy (ymax + amax)
/
dD̃
dy (y) satisfies (11), where

amax denotes the maximum resource consumption of a
single instance. Similarly, setting ψ = dD̃

dy (y) · y
/
D̃(y)

satisfies (12). We can see that the values of φ and ψ need
to be larger when the cost function is more convex. For
the general case, there is a weighted sum in both the
numerator and denominator in (11) and (12). However,
when we look at a single cloud (for the local cost) or a
single pair of clouds (for the migration cost) in a single
timeslot, the above intuition still applies.

So, why is the optimality gap larger when the cost
functions are more convex, i.e., have a larger second
order derivative? We note that in the greedy assignment
procedure in Algorithm 3, we choose the configuration
of each instance i by minimizing the cost under the
system state at the time when instance i arrives, where
the system state represents the local and migration re-
source consumptions as specified by vectors y and z.
When cost functions are more convex, for an alternative
system state (y′, z′), it is more likely that the placement
of instance i (which was determined at system state
(y, z)) becomes far from optimum. This is because if cost
functions are more convex, the cost increase of placing
a new instance i (assuming the same configuration for
i) varies more when (y, z) changes. This intuition is
confirmed by formal results described next.

4.2.5 Linear Cost Functions
Consider linear cost functions in the form of

uk,t(y) = γk,ty (13)

wkl,t (yk, yl, zkl) = κ
(1)
kl,tyk + κ

(2)
kl,tyl + κ

(3)
kl,tzkl (14)

where the constants γk,t, κ
(3)
kl,t > 0 and κ

(1)
kl,t, κ

(2)
kl,t ≥ 0.

Proposition 3. When the cost functions are defined as in (13)
and (14), Algorithm 3 provides the optimal solution.
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Figure 4. Illustration of the performance gap for t = 1, T =
1, and K = 1, where amax denotes the maximum resource
consumption of a single instance. In this example, (11)
becomes φ ≥ φnum

φdenom
, and (12) becomes ψ ≥ ψnum

ψdenom
.

Proof. We have

∇y,zD̃ (ymax + aiλ, zmax + biλ) = ∇y,zD̃ (y, z)

∇y,zD̃ (y, z) · (y, z) = D̃ (y, z)

because the gradient in this case is a constant. Hence,
choosing φ = ψ = 1 satisfies (11) and (12), yielding
D̃(x) ≤ D̃(x∗) which means that the solution from
Algorithm 3 is not worse than the optimal solution.

This implies that the greedy service placement is opti-
mal for linear cost functions, which is intuitive because
the previous placements have no impact on the cost of
later placements when the cost function is linear.

4.2.6 Polynomial Cost Functions
Consider polynomial cost functions in the form of

uk,t(y) =
∑
ρ

γ
(ρ)
k,t y

ρ (15)

wkl,t (yk, yl, zkl) =
∑
ρ1

∑
ρ2

∑
ρ3

κ
(ρ1,ρ2,ρ3)
kl,t yρ1

k y
ρ2

l z
ρ3

kl (16)

where ρ, ρ1, ρ2, ρ3 are integers satisfying ρ ≥ 1, ρ1 + ρ2 +

ρ3 ≥ 1 and the constants γ(ρ)k,t ≥ 0, κ(ρ1,ρ2,ρ3)
kl,t ≥ 0.

We first introduce the following assumption which
can be satisfied in most practical systems with an upper
bound on resource consumptions and departure rates.

Assumption 2. The following is satisfied:
• For all i,λ, k, l, t, there exists a constants amax and bmax,

such that aiλk(t) ≤ amax and biλkl(t) ≤ bmax
• The number of instances that unpredictably leave the

system in each slot is upper bounded by a constant Bd.

Proposition 4. Assume that the cost functions are defined
as in (15) and (16) while satisfying Assumption 1, and that
Assumption 2 is satisfied.

Let Ω denote the maximum value of ρ such that γ(ρ)k,t > 0

or κ(ρ1,ρ2,ρ3)
kl,t > 0, subject to ρ1+ρ2+ρ3 = ρ. The value of Ω

represents the highest order of the polynomial cost functions.
Define Γ(I(M)) � D̃(xI(M))

/
D̃(x∗

I(M)), where I(M)

is a problem input5 containing M instances, and xI(M) and
x∗
I(M) are respectively the online and offline (optimal) results

for input I(M). We say that Algorithm 3 is c-competitive
in placing M instances if Γ � maxI(M) Γ(I(M)) ≤ c for a
given M . We have:

5. A particular problem input specifies the time each instance ar-
rives/departs as well as the values of aiλ and biλ for each i,λ.

• Algorithm 3 is O(1)-competitive.
• In particular, for any δ > 0, there exists a sufficiently

large M , such that Algorithm 3 is
(
ΩΩ + δ

)
-competitive.

Proof. See Appendix D.

Proposition 4 states that the competitive ratio does not
indefinitely increase with increasing number of instances
(specified by M ). Instead, it approaches a constant value
when M becomes large.

When the cost functions are linear as in (13) and (14),
we have Ω = 1. In this case, Proposition 4 gives a
competitive ratio upper bound of 1 + δ (for sufficiently
large M ) where δ > 0 can be arbitrarily small, while
Proposition 3 shows that Algorithm 3 is optimal. This
means that the competitive ratio upper bound given in
Proposition 4 is asymptotically tight as M goes to infinity.

4.2.7 Linear Cost at Backend Cloud

Algorithm 3 is also O(1)-competitive for some more
general forms of cost functions. For example, consider
a simple case where there is no migration resource
consumption, i.e. biλkl(t) = 0 for all i,λ, k, l. Define
uk0,t(y) = γy for some cloud k0 and all t, where γ > 0 is
a constant. For all other clouds k �= k0, define uk,t(y) as
a general cost function while satisfying Assumption 1
and some additional mild assumptions presented be-
low. Assume that there exists a constant amax such that
aiλk(t) ≤ amax for all i,λ, k, t.

Because uk,t(y) is convex non-decreasing and Algo-
rithm 3 operates in a greedy manner, if duk,t

dy (y) > γ,
no new instance will be placed on cloud k, as it incurs
higher cost than placing it on k0. As a result, the maxi-
mum value of yk(t) is bounded, let us denote this upper
bound by ymax

k (t). We note that ymax
k (t) is only dependent

on the cost function definition and is independent of the
number of arrived instances.

Assume uk,t(ymax
k (t)) <∞ and duk,t

dy (ymax
k (t) + amax) <

∞ for all k �= k0 and t. When ignoring the cost at cloud
k0, the ratio Γ(I(M)) does not indefinitely grow with
incoming instances, because among all yk(t) ∈ [0, ymax

k (t)]
for all t and k �= k0, we can find φ and ψ that satisfy
(11) and (12), we can also find the competitive ratio
Γ � maxI(M) Γ(I(M)). The resulting Γ is only dependent
on the cost function definition, hence it does not keep
increasing with M . Taking into account the cost at cloud
k0, the above result still applies, because the cost at k0
is linear in yk0(t), so that in either of (11), (12), or in the
expression of Γ(I(M)), the existence of this linear cost
only adds a same quantity (which might be different in
different expressions though) to both the numerator and
denominator, which does not increase Γ (because Γ ≥ 1).

The cloud k0 can be considered as the backend cloud,
which usually has abundant resources thus its cost-per-
unit-resource often remains unchanged. This example
can be generalized to cases with non-zero migration
resource consumption, and we will illustrate such an
application in the simulations in Section 6.
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5 OPTIMAL LOOK-AHEAD WINDOW SIZE
In this section, we study how to find the optimal

window size T to look-ahead. When there are no errors
in the cost prediction, setting T as large as possible
can potentially bring the best long-term performance.
However, the problem becomes more complicated when
we consider the prediction error, because the farther
ahead we look into the future, the less accurate the
prediction becomes. When T is large, the predicted cost
value may be far away from the actual cost, which can
cause the configuration obtained from predicted costs
Dt0

π (t) with size-T windows (denoted by πp) deviate
significantly from the true optimal configuration π∗ ob-
tained from actual costs Aπ(t). Note that π∗ is obtained
from actual costs Aπ(t), which is different from x∗ and
(y∗, z∗) which are obtained from predicted costs Dt0

π (t)
as defined in Section 4.2. Also note that πp and π∗

specify the configurations for an arbitrarily large number
of timeslots, as in (2). Conversely, when T is small, the
solution may not perform well in the long-term, because
the look-ahead window is small and the long-term effect
of migration is not considered. We have to find the
optimal value of T which minimizes both the impact of
prediction error and the impact of truncating the look-
ahead time-span.

We assume that there exists a constant σ satisfying

max
π(t−1,t)

Wa(t,π(t− 1),π(t)) ≤ σ (17)

for any t, to represent the maximum value of the actual
migration cost in any slot, where Wa(t,π(t − 1),π(t))
denotes the actual migration cost. The value of σ is
system-specific and is related to the cost definition.

To help with our analysis below, we define the sum-
error starting from slot t0 up to slot t0 + T − 1 as

F (T ) �
t0+T−1∑
t=t0

ε(t− t0) (18)

Because ε(t− t0) ≥ 0 and ε(t− t0) is non-decreasing with
t, it is obvious that F (T+2)−F (T+1) ≥ F (T+1)−F (T ).
Hence, F (T ) is a convex non-decreasing function for T ≥
0, where we define F (0) = 0.

5.1 Upper Bound on Cost Difference
In the following, we focus on the objective function

given in (2), and study how worse the configuration πp

can perform, compared to the optimal configuration π∗.

Proposition 5. For look-ahead window size T , suppose that
we can solve (3) with competitive ratio Γ ≥ 1, the upper bound
on the cost difference (while taking the competitive ratio Γ into
account) from configurations πp and π∗ is given by

lim
Tmax→∞

(∑Tmax
t=1 Aπp

(t)

Tmax
−Γ

∑Tmax
t=1 Aπ∗(t)

Tmax

)
≤ (Γ+1)F (T )+σ

T

(19)

Proof. See Appendix E.

We assume in the following that the competitive ratio
Γ is independent of the choice of T , and regard it as a

given parameter in the problem of finding optimal T .
This assumption is justified for several cost functions
where there exist a uniform bound on the competitive
ratio for arbitrarily many services (see Sections 4.2.5–
4.2.7). We define the optimal look-ahead window size as the
solution to the following optimization problem:

min
T

(Γ + 1)F (T ) + σ

T
(20)

s.t. T ≥ 1

Considering the original objective in (2), the problem
(20) can be regarded as finding the optimal look-ahead
window size such that an upper bound of the objective
function in (2) is minimized (according to Proposition
5). The solution to (20) is the optimal window size to
look-ahead so that (in the worst case) the cost is closest
to the cost of the optimal configuration π∗.

5.2 Characteristics of the Problem in (20)
We now study the characteristics of (20). To help

with the analysis, we interchangeably use variable T to
represent either a discrete or a continuous variable. We
define a continuous convex function G(T ), where T ≥ 1
is a continuous variable. The function G(T ) is defined in
such a way that G(T ) = F (T ) for all the discrete values
T ∈ {1, 2, ...}, i.e., G(T ) is a continuous time extension of
F (T ). Such a definition is always possible by connecting
the discrete points in F (T ). Note that we do not assume
the continuity of the derivatives of G(T ), which means
that dG(T )

dT may be non-continuous and d2G(T )
dT 2 may have

+∞ values. However, these do not affect our analysis
below. We will work with continuous values of T in
some parts and will discretize it when appropriate.

We define a function θ(T ) � (Γ+1)G(T )+σ
T to represent

the objective function in (20) after replacing F (T ) with
G(T ), where T is regarded as a continuous variable. We
take the logarithm of θ(T ), yielding

ln θ = ln ((Γ + 1)G(T ) + σ)− lnT (21)

Taking the derivative of ln θ, we have

d ln θ

dT
=

(Γ + 1)dG(T )
dT

(Γ + 1)G(T ) + σ
− 1

T
(22)

We set (22) equal to zero, and rearrange the equation,
yielding

Φ(T ) � (Γ + 1)T
dG(T )

dT
− (Γ + 1)G(T )− σ = 0 (23)

We have the following proposition and its corollary,
their proofs are given in Appendix F.

Proposition 6. Let T0 denote a solution to (23), if the
solution exists, then the optimal look-ahead window size T ∗

for problem (20) is either 
T0� or �T0, where 
x� and �x
respectively denote the floor (rounding down to integer) and
ceiling (rounding up to integer) of x .

Corollary 1. For window sizes T and T + 1, if θ(T ) <
θ(T + 1), then the optimal size T ∗ ≤ T ; if θ(T ) > θ(T + 1),
then T ∗ ≥ T + 1; if θ(T ) = θ(T + 1), then T ∗ = T .
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Algorithm 4 Binary search for finding optimal window
size
1: Initialize variables T− ← 1 and T+ ← Tm

2: repeat
3: T ← �(T− + T+) /2�
4: if θ(T ) < θ(T + 1) then
5: T+ ← T
6: else if θ(T ) > θ(T + 1) then
7: T− ← T + 1
8: else if θ(T ) = θ(T + 1) then
9: return T //Optimum found

10: end if
11: until T− = T+

12: return T−

5.3 Finding the Optimal Solution
According to Proposition 6, we can solve (23) to

find the optimal look-ahead window size. When G(T )
(and F (T )) can be expressed in some specific analytical
forms, the solution to (23) can be found analytically. For
example, consider G(T ) = F (T ) = βTα, where β > 0

and α > 1. In this case, T0 =
(

σ
(Γ+1)β(α−1)

) 1
α

, and
T ∗ = argminT∈{�T0�,	T0
} θ (T ). One can also use such
specific forms as an upper bound for a general function.

When G(T ) (and F (T )) have more general forms,
we can perform a search on the optimal window size
according to the properties discussed in Section 5.2.
Because we do not know the convexity of θ(T ) or Φ(T ),
standard numerical methods for solving (20) or (23) may
not be efficient. However, from Corollary 1, we know
that the local minimum of θ(T ) is the global minimum,
so we can develop algorithms that use this property.

The optimal window size T ∗ takes discrete values, so
we can perform a discrete search on T ∈ {1, 2, ..., Tm},
where Tm > 1 is a pre-specified upper limit on the
search range. We then compare θ(T ) with θ(T + 1) and
determine the optimal solution according to Corollary 1.
One possible approach is to use binary search, as shown
in Algorithm 4, which has time-complexity of O (log Tm).

Remark: The exact value of Γ may be difficult to find
in practice, and (19) is an upper bound which may have
a gap from the actual value of the left hand-side of
(19). Therefore, in practice, we can regard Γ as a tuning
parameter, which can be tuned so that the resulting
window size T ∗ yields good performance. For a similar
reason, the parameter σ can also be regarded as a tuning
parameter in practice.

6 SIMULATION RESULTS
In the simulations, we assume that there exist a back-

end cloud (with index k0) and multiple MMCs. A service
instance can be placed either on one of the MMCs or on
the backend cloud. We first define

R(y) �
{

1
1− y

Y
, if y < Y

+∞, if y ≥ Y
(24)

where Y denotes the capacity of a single MMC. Then,
we define the local and migration costs as in (5), (6), with

uk,t(yk(t)) �
{
g̃yk(t), if k = k0

yk(t)R(yk(t)) + grk(t), if k �= k0
(25)

wkl,t(yk(t− 1), yl(t), zkl(t))

�
{
h̃zkl(t), if k = k0 or/and l = k0

zkl(t) (R(yk(t)) +R(yl(t))) + hskl(t), else
(26)

where yk(t) and zkl(t) are sum resource consumptions
defined as in Section 4.2.1, rk(t) is the sum of the
distances between each instance running on cloud k
and all users connected to this instance, skl(t) is the
distance between clouds k and l multiplied by the
number migrated instances from cloud k to cloud l, and
g̃, g, h̃, h are simulation parameters (specified later). The
distance here is expressed as the number of hops on the
communication network.

Similar to Section 4.2.7 (but with migration cost here),
we consider the scenario where the connection status to
the backend cloud remains relatively unchanged. Thus,
in (25) and (26), uk,t(·) and wkl,t(·, ·, ·) are linear in yk(t)
and zkl(t) when involving the backend cloud k0. When
not involving the backend cloud, the cost functions have
two terms. The first term contains R(·) and is related
to the queuing delay of data processing/transmission,
because R(·) has a similar form as the average queueing
delay expression from queueing theory. The additional
coefficient yk(t) or zkl(t) scales the delay by the total
amount of workload so that experiences of all instances
(hosted at a cloud or being migrated) are considered.
This expression is also a widely used objective (such as
in [9]) for pushing the system towards a load-balanced
state. The second term has the distance of data trans-
mission or migration, which is related to propagation
delay. Thus, both queueing and propagation delays are
captured in the cost definition above.

Note that the above defined cost functions are het-
erogeneous, because the cost definitions are different
depending on whether the backend cloud is involved
or not. Therefore, we cannot directly apply the existing
MDP-based approaches [10]–[12] to solve this problem.
We consider users continuously connected to service
instances, so we also cannot apply the technique in [18].

6.1 Synthetic Arrivals and Departures
To evaluate how much worse the online placement

(presented in Section 4) performs compared to the opti-
mal offline placement (presented in Section 3), we first
consider a setting with synthetic instance arrivals and
departures. For simplicity, we ignore the migration cost
and set g = 0 to make the local cost independent of
the distance rk(t). We set Y = 5, g̃ = 3, and the total
number of clouds K = 5 among which one is the
backend cloud. We simulate 4000 arrivals, where the
local resource consumption of each arrival is uniformly
distributed within interval [0.5, 1.5]. Before a new in-
stance arrives, we generate a random variable H that
is uniformly distributed within [0, 1]. If H < 0.1, one
randomly selected instance that is currently running in
the system (if any) departs. We only focus on the cost in
a single timeslot and assume that arrival and departure
events happen within this slot. The online placement
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Figure 5. Results with synthetic traces: (a) objective func-
tion value, (b) average performance ratio.

greedily places each instance, while the offline placement
considers all instances as an entirety. We compare the
cost of the proposed online placement algorithm with
a lower bound of the cost of the optimal placement.
The optimal lower bound is obtained by solving an
optimization problem that allows every instance to be
arbitrarily split across multiple clouds, in which case the
problem becomes a convex optimization problem due to
the relaxation of integer constraints.

The simulation is run with 100 different random
seeds. Fig. 5 shows the overall results. We see that
the cost is convex increasing when the number of ar-
rived instances is small, and it increases linearly when
the number of instances becomes large, because in the
latter case, the MMCs are close to being overloaded
and most instances are placed at the backend cloud.
The fact that the average performance ratio (defined as
mean

(
D̃(x)

)/
mean

(
D̃(x∗)

)
) converges with increas-

ing number of instances in Fig. 5(b) supports our anal-
ysis in Section 4.2.7.

6.2 Real-World Traces
To further evaluate the performance while considering

the impact of prediction errors and look-ahead window
size, we perform simulations using real-world San Fran-
cisco taxi traces obtained on the day of May 31, 2008
[31], [32]. Similar to [12], we assume that the MMCs are
deployed according to a hexagonal cellular structure in
the central area of San Francisco (the center of this area
has latitude 37.762 and longitude −122.43). The distance
between the center points of adjacent cells is 1000 m.
We consider K−1 = 91 cells (thus MMCs), one backend
cloud, and 50 users (taxis) in total and not all the users
are active at a given time. A user is considered active if
its most recent location update was received within 600 s
from the current time and its location is within the area
covered by MMCs. Each user may require at most one
service at a time from the cloud when it is active, where
the duration that each active user requires (or, does not
require) service is exponentially distributed with a mean
value of 50 slots (or, 10 slots). When a user requires
service, we assume that there is a service instance for
this particular request (independent from other users)
running on one of the clouds. The local and migration
(if migration occurs) resource consumptions of each such

instance are set to 1. We assume that the online algorithm
has no knowledge on the departure time of instances
and set Tlife = ∞ for all instances. Note that the taxi
locations in the dataset are unevenly distributed, so it
is still possible that one MMC hosts multiple services
although the maximum possible number of instances
(50) is smaller than the number of MMCs (91). The
distance metric (for evaluating rk(t) and skl(t)) is defined
as the minimum number of hops between two locations
on the cellular structure. The physical time correspond-
ing to each slot is set to 60 s. We set the parameters
Γ = 1.5, σ = 2, Y = 5, g̃ = h̃ = 3, g = h = 0.2. The cost
prediction error is assumed to have an upper bound in
the form of F (T ) = βTα (see Section 5.3), where we
fix α = 1.1. The prediction error is generated randomly
while ensuring that the upper bound is satisfied.

The simulation results are shown in Fig. 6. In Fig.
6(a), we can see that the result of the proposed online
placement approach (E) performs close to the case of
online placement with precise future knowledge (D),
where approach D assumes that all the future costs
as well as instance arrival and departure times are
precisely known, but we still use the online algorithm
to determine the placement (i.e., we greedily place each
instance), because the offline algorithm is too time con-
suming due to its high complexity. The proposed method
E also outperforms alternative methods including only
placing on MMCs and never migrate the service in-
stance after initialization (A), always following the user
when the user moves to a different cell (B), as well
as always placing the service instance on the backend
cloud (C). In approaches A and B, the instance placement
is determined greedily so that the distance between
the instance and its corresponding user is the shortest,
subject to the MMC capacity constraint Y so that the
costs are finite (see (24)). The fluctuation of the cost
during the day is because of different number of users
that require the service (thus different system load). In
Fig. 6(b), we show the average cost over the day with
different look-ahead window sizes and β values (a large
β indicates a large prediction error), where the average
results from 8 different random seeds are shown. We
see that the optimal window size (T ∗) found from the
method proposed in Section 5 is close to the window
size that brings the lowest cost, which implies that the
proposed method for finding T ∗ is reasonably accurate.

Additional results on the amount of computation time
and floating-point operations (FLOP) for the results in
Fig. 6(a) are given in Appendix G.

7 CONCLUSIONS
In this paper, we have studied the dynamic service

placement problem for MMCs with multiple service
instances, where the future costs are predictable within a
known accuracy. We have proposed algorithms for both
offline and online placements, as well as a method for
finding the optimal look-ahead window size. The perfor-
mance of the proposed algorithms has been evaluated
both analytically and using simulations with synthetic
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Figure 6. Results with real-world traces (where the costs
are summed over all clouds, i.e., the A(t) values): (a)
Actual costs at different time of a day, where β = 0.4 for
the proposed method E. The arrows point to the average
values over the whole day of the corresponding policy. (b)
Actual costs averaged over the whole day.

instance arrival/departure traces and real-world user
mobility traces of San Francisco taxis. The simulation
results support our analysis.

Our results are based on a general cost function that
can represent different aspects in practice. As long as
one can assign a cost for every possible configuration,
the proposed algorithms are applicable, and the time-
complexity results hold. The optimality gap for the on-
line algorithm has been analyzed for a narrower class of
functions, which is still very general as discussed earlier
in the paper.

The theoretical framework used for analyzing the
performance of online placement can be extended to
incorporate more general cases, such as those where
there exist multiple types of resources in each cloud. We
envision that the performance results are similar. We also
note that our framework can be applied to analyzing a
large class of online resource allocation problems that
have convex objective functions.
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APPENDIX A
SUMMARY OF NOTATIONS

The main notations used in this paper are summarized
in Table 1.

APPENDIX B
PROOF OF PROPOSITION 1

We show that problem (8) can be reduced from the
partition problem, which is known to be NP-complete
[29, Corollary 15.28]. The partition problem is defined
as follows.

Definition 1. (Partition Problem) Given positive integers
v1, v2, ..., vM , is there a subset S ⊆ {1, 2, ...,M} such that∑

j∈S vj =
∑

j∈Sc vj , where Sc is the complement set of S?

Similarly to the proof of [29, Theorem 18.1], we define
a decision version of the bin packing problem, where we
assume that there are M items each with size

ai �
2vi∑M
j=1 vj

for all i ∈ {1, 2, ...,M}, and the problem is to determine
whether these M items can be packed into two bins each
with unit size (i.e., its size is equal to one). It is obvious
that this bin packing decision problem is equivalent to
the partition problem.

To solve the above defined bin packing decision prob-
lem, we can set t0 = 1, T = 1, and K = 2 in (8). Because
we attempt to place all items, we set Λi = {1, 2} for all
i. By definition, wkl,t(·, ·, ·) = 0 for t = 1. We omit the
subscript t in the following as we only consider a single
slot. We define aiλk = ai for all λ, k, and define

uk(y) =

{
εy, if y ≤ 1
2ε
c (y − 1) + ε, if y > 1

(27)

where c � 1∑M
j=1 vj

, and ε > 0 is an arbitrary constant.
Because vi is a positive integer for any i, we have that

ai

c = 2vi is always a positive integer, and 1
c =

∑M
j=1 vj

is also always a positive integer. It follows that y can
only be integer multiples of c (where we recall that y
is the sum of ai for those items i that are placed in the
bin), and there exists a positive integer c′ �

∑M
j=1 vj

such that c′c = 1. Thus, when y > 1, we always have
y−1 ≥ c. Therefore, the choice of uk(y) in (27) guarantees
that uk(yk) ≥ 3ε > 2ε whenever bin k (k ∈ {1, 2}) exceeds
its size, and

∑2
k=1 uk (yk) ≤ 2ε when no bin has exceeded

its size. At the same time, uk(y) satisfies Assumption 1
as long as c ≤ 2.

By the definition of c, we always have c ≤ 2 because∑M
j=1 vj ≥ 1. To solve the bin packing decision problem

defined above (thus the partition problem), we can solve
(8) with the above definitions. If the solution is not
larger than 2ε, the packing is feasible and the answer
to the partition problem is “yes”; otherwise, the packing
is infeasible and the answer to the partition problem is
“no”. It follows that problem (8) is “at least as hard as”
the partition problem, which proves that (8) is NP-hard.

APPENDIX C
PROOF OF PROPOSITION 2

We first introduce a few lemmas, with results used
later in the proof.

Lemma 2. For any instance j and configuration sequence λ,
we have

∂D̃

∂xjλ
(x) = ∇y,zD̃ (y, z) · (ajλ,bjλ) (28)

Proof.

∂D̃

∂xjλ
(x) =

t0+T−1∑
t=t0

[
K∑

k=1

∂D̃

∂yk(t)
(x) · ∂yk(t)

∂xjλ
(x)+

K∑
k=1

K∑
l=1

∂D̃

∂zkl(t)
(x) · ∂zkl(t)

∂xjλ
(x)

]

=

t0+T−1∑
t=t0

[
K∑

k=1

∂D̃

∂yk(t)
(x) · ajλk(t)+

K∑
k=1

K∑
l=1

∂D̃

∂zkl(t)
(x) · bjλkl(t)

]
= ∇y,zD̃ (y, z) · (ajλ,bjλ)

where we recall that yk(t) and zkl(t) are functions of xjλ
for all j and λ, thus they are also functions of vector
x.

Lemma 3. For any instance j and configuration sequence λ,
we have

∇xD̃ (x) · x = ∇y,zD̃ (y, z) · (y, z) (29)

Proof.

∇xD̃ (x) · x

=

M∑
j=1

∑
λ∈Λ

∂D̃

∂xjλ
(x) · xjλ

=

M∑
j=1

∑
λ∈Λ

∇y,zD̃ (y, z) · (ajλ,bjλ) · xjλ

= ∇y,zD̃ (y, z) ·
⎛⎝ M∑

j=1

∑
λ∈Λ

(ajλ,bjλ) · xjλ
⎞⎠

= ∇y,zD̃ (y, z) · (y, z)
where the second step follows from Lemma 2, the last
step follows from the definition of vectors y, z,ajλ,bjλ.

We introduce some additional notations that are used
in the proof below. Recall that the values of vectors x,
y, and z may vary over time due to service arrivals and
departures. Let x(j)

j , y(j)
j , and z

(j)
j respectively denote the

values of x, y, and z immediately after instance j is placed;
and let x(j)

j−1, y(j)
j−1, and z

(j)
j−1 respectively denote the val-

ues of x, y, and z immediately before instance j is placed.
We note that the values of x, y, and z may change after
placing each instance. Therefore, the notions of “before”,
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Table 1
Summary of main notations

Notation Description

� Defined to be equal to

· Dot-product

K Total number of clouds

k, l ∈ {1, 2, ...,K} Cloud index

t Timeslot index

T Size of look-ahead window

M Total/maximum number of service instances under consideration

i Service instance index

π(t0, ..., tn) Configuration matrix for slots {t0, ..., tn}, written in π for short

U(t,π(t)) Local cost in slot t

W (t,π(t− 1),π(t)) Migration cost between slots t− 1 and t

Cπ(t−1,t)(t) Sum of local and migration costs in slot t when following configuration π(t− 1, t)

Aπ(t−1,t)(t) Actual cost (actual value of Cπ(t−1,t)(t))

Dt0
π(t−1,t)(t) Predicted cost (predicted value of Cπ(t−1,t)(t) when prediction is made at slot t0)

ε(τ) Equal to maxπ(t−1,t),t0

∣∣∣Aπ(t−1,t)(t0 + τ)−Dt0
π(t−1,t)(t0 + τ)

∣∣∣, the maximum error when
looking ahead for τ slots

Λ Set of all possible configuration sequences

λ ∈ Λ Configuration sequence (when considering a particular instance i, it is equal to the ith
column of π)

Λi ⊆ Λ Subset of configuration sequences that conform to the arrival and departure times of
instance i

xiλ Binary variable specifying whether instance i operates in configuration sequence λ

aiλk(t) Local resource consumption at cloud k in slot t when instance i is operating under
configuration sequence λ

biλkl(t) Migration resource consumption when instance i operating under configuration sequence
λ is assigned to cloud k in slot t− 1 and to cloud l in slot t

yk(t) Equal to
∑M

i=1

∑
λ∈Λ aiλk(t)xiλ, sum local resource consumption at cloud k

zkl(t) Equal to
∑M

i=1

∑
λ∈Λ biλkl(t)xiλ, sum migration resource consumption from cloud k to

cloud l

uk,t (yk(t)) Local cost at cloud k in timeslot t

wkl,t (yk(t− 1), yl(t), zkl(t)) Migration cost from cloud k to cloud l between slots t− 1 and t

(g)h1h2
(or (g)h1h2h3

) The (h1, h2)th (or (h1, h2, h3)th) element in an arbitrary vector or matrix g

y Vector with elements (y)kt � yk(t)

z Vector with elements (z)klt � zkl(t)

x Vector with elements (x)iλ � xiλ

aiλ Vector with elements (aiλ)kt � aiλk(t)

biλ Vector with elements (biλ)klt � biλkl(t)

D̃ (x), D̃ (y, z) Sum (predicted) cost of all T slots, defined in (7)

φ, ψ Parameters related to the performance gap, defined in (11) and (12)

Γ Competitive ratio of Algorithm 3

σ Parameter related to the migration cost, defined in (17)

F (T ) Equal to
∑t0+T−1

t=t0
ε(t− t0), the sum-error starting from slot t0 up to slot t0 + T − 1

G(T ) The continuous time extension of F (T ), see Section 5.2

θ(T ) Equal to (Γ+1)G(T )+σ
T

, the upper bound in (19) after replacing F (T ) with G(T )
Note: The timeslot argument t may be omitted in some parts of the discussion for simplicity. Vector elements are referred to
with multiple indexes, but we regard vectors as single-indexed vectors for the purposes of vector concatenation (i.e., joining

two vectors into one vector) and gradient computation.
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“after”, and “time” (used below) here correspond to the
sequence of service instance placement, instead of the
actual physical time.

We then introduce vectors that only consider the
placement up to the jth service instance, which are
necessary because the proof below uses an iterative
approach. Let xj , yj , and zj respectively denote the
values of x, y, and z at any time after placing instance
j (where instance j can be either still running in the
system or already departed) while ignoring the placement
of any subsequent instances j′ > j (if any). This means,
in vector xj , we set (xj)iλ � xiλ for any i ≤ j and
λ, and set (xj)iλ � 0 for any i > j and λ, although
the value of xiλ at the current time of interest may be
non-zero for some i > j and λ. Similarly, in vectors yj

and zj , we only consider the resource consumptions up
to instance j, i.e., (yj)kt �

∑j
i=1

∑
λ∈Λ aiλk(t)xiλ and

(zj)klt �
∑j

i=1

∑
λ∈Λ biλkl(t)xiλ for any k, l, and t.

We assume that the last service instance that has
arrived before the current time of interest has index M ,
thus x = xM , y = yM , and z = zM .

Because an instance will never come back after it has
departed (even if an instance of the same type comes
back, it will be given a new index), we have yj−1 ≤
y
(j)
j−1 and zj−1 ≤ z

(j)
j−1, where the inequalities are defined

element-wise for the vector.
Define vj � D̃

(
y
(j)
j , z

(j)
j

)
− D̃

(
y
(j)
j−1, z

(j)
j−1

)
to denote

the increase in the sum cost D̃(y, z) (or, equivalently,
D̃(x)) at the time when placing service j. Note that after
this placement, the value of D̃ (yj , zj) − D̃ (yj−1, zj−1)
may vary over time, because some services i ≤ j may
leave the system, but the value of vj is only taken when
service j is placed upon its arrival.

Lemma 4. When Assumption 1 is satisfied, for any M , we
have

D̃ (xM ) ≤
M∑
j=1

vj (30)

Proof. Assume that service j takes configuration λ0 af-
ter its placement (and before it possibly unpredictably
departs), then y

(j)
j − y

(j)
j−1 = ajλ0

and z
(j)
j − z

(j)
j−1 =

bjλ0
. For any time after placing instance j we define

Δyj � yj − yj−1 and Δzj � zj − zj−1. We always
have Δyj = ajλ0 , Δzj = bjλ0 , if instance j has not yet
departed from the system, and Δyj = Δzj = 0 if j has
already departed from the system.

Noting that D̃ (yj , zj) is convex non-decreasing (from
Lemma 1), we have

D̃ (yj , zj)− D̃ (yj−1, zj−1)

= D̃ (yj−1 +Δyj , zj−1 +Δzj)− D̃ (yj−1, zj−1)

≤ D̃
(
y
(j)
j−1 +Δyj , z

(j)
j−1 +Δzj

)
− D̃

(
y
(j)
j−1, z

(j)
j−1

)
(31)

≤ D̃
(
y
(j)
j−1 + ajλ0

, z
(j)
j−1 + bjλ0

)
− D̃

(
y0
j−1, z

0
j−1

)
(32)

= D̃
(
y
(j)
j , z

(j)
j

)
− D̃

(
y
(j)
j−1, z

(j)
j−1

)
= vj

where inequality (31) is because yj−1 ≤ y
(j)
j−1, zj−1 ≤

z
(j)
j−1 (see discussion above) and due to the convex

non-decreasing property of D̃ (yj , zj); inequality (32) is
because Δyj ≤ ajλ0

, Δzj ≤ bjλ0
and also due to the

non-decreasing property of D̃ (yj , zj).
We now note that D̃ (x0) = 0, where x0 = 0 and 0 is

defined as a vector with all zeros, thus y0 = z0 = 0. We
have

M∑
j=1

vj ≥
M∑
j=1

[
D̃ (yj , zj)− D̃ (yj−1, zj−1)

]
= D̃ (xM )− D̃ (x0) = D̃ (xM )

Lemma 5. When Assumption 1 is satisfied, for any j and λ,
we have

vj ≤ φ
∂D̃

∂xjλ
(xM ) (33)

where φ is a constant satisfying (11).

Proof. Assume that service j takes configuration λ0 af-
ter its placement (and before it possibly unpredictably
departs). Because we perform a greedy assignment in
Algorithm 3, we have

vj = D̃
(
y
(j)
j , z

(j)
j

)
− D̃

(
y
(j)
j−1, z

(j)
j−1

)
= D̃

(
y
(j)
j−1 + ajλ0 , z

(j)
j−1 + bjλ0

)
− D̃

(
y
(j)
j−1, z

(j)
j−1

)
≤ D̃

(
y
(j)
j−1 + ajλ, z

(j)
j−1 + bjλ

)
− D̃

(
y
(j)
j−1, z

(j)
j−1

)
for any λ ∈ Λi.

Then, we have

D̃
(
y
(j)
j−1 + ajλ, z

(j)
j−1 + bjλ

)
− D̃

(
y
(j)
j−1, z

(j)
j−1

)
≤ ∇y,zD̃

(
y
(j)
j−1 + ajλ, z

(j)
j−1 + bjλ

)
· (ajλ,bjλ) (34)

≤ ∇y,zD̃ (ymax + ajλ, zmax + bjλ) · (ajλ,bjλ) (35)

≤ φ∇y,zD̃ (yM , zM ) · (ajλ,bjλ) (36)

= φ
∂D̃

∂xjλ
(xM ) (37)

where “·” denotes the dot-product. The above relation-
ship is explained as follows. Inequality (34) follows from
the first-order conditions of convex functions [30, Section
3.1.3]. The definition of ymax and zmax in Proposition
2 gives (35). The definition of φ in (11) gives (36).
Equality (37) follows from Lemma 2. This completes the
proof.

Using the above lemmas, we now proof Proposition 2.

Proof. (Proposition 2) Due to the convexity of D̃(x), from
the first-order conditions of convex functions [30, Section
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3.1.3], we have

D̃(φψx∗
M )− D̃(xM )

≥ ∇xD̃ (xM ) · (φψx∗
M − xM ) (38)

= φψ∇xD̃ (xM ) · x∗
M −∇xD̃ (xM )xM (39)

=

M∑
i=1

∑
λ∈Λ

φψx∗iλ
∂D̃

∂xiλ
(xM )−∇xD̃ (xM ) · xM (40)

= ψ

(
M∑
i=1

∑
λ∈Λ

x∗iλφ
∂D̃

∂xiλ
(xM )− ∇xD̃ (xM ) · xM

ψ

)
(41)

where x∗iλ is the (i,λ)th element of vector x∗
M . From

Lemma 5, we have

Eq. (41) ≥ ψ

(
M∑
i=1

∑
λ∈Λ

x∗iλvi −
∇xD̃ (xM ) · xM

ψ

)
(42)

= ψ

(
M∑
i=1

vi
∑
λ∈Λ

x∗iλ − ∇xD̃ (xM ) · xM

ψ

)
(43)

From the constraint
∑

λ∈Λ x
∗
iλ = 1 and the definition of

ψ, we get

Eq. (43) = ψ

(
M∑
i=1

vi − ∇xD̃ (xM ) · xM

ψ

)
(44)

≥ ψ

(
M∑
i=1

vi − D̃(xM )

)
(45)

≥ 0 (46)

where the last equality follows from Lemma 4. This gives
(9).

Equation (10) follows from the fact that yk,j(t) and
zkl,j(t) are both linear in xiλ.

The last equality in (12) follows from Lemma 3 and the
fact that D̃ (x) = D̃ (y, z) as well as x = xM , y = yM ,
and z = zM .

APPENDIX D
PROOF OF PROPOSITION 4
Lemma 6. For polynomial functions Ξ1(y) and Ξ2(y) in the
general form:

Ξ1(y) �
Ω∑

ρ=0

ω
(ρ)
1 yρ

Ξ2(y) �
Ω∑

ρ=0

ω
(ρ)
2 yρ

where the constants ω(ρ)
1 ≥ 0 and ω

(ρ)
2 ≥ 0 for 0 ≤ ρ < Ω,

while ω(Ω)
1 > 0 and ω(Ω)

2 > 0, we have

lim
y→+∞

Ξ1(y)

Ξ2(y)
=
ω
(Ω)
1

ω
(Ω)
2

Proof. When Ω = 0, we have

lim
y→+∞

Ξ1(y)

Ξ2(y)
=
ω
(0)
1

ω
(0)
2

When Ω > 0, we note that limy→+∞ Ξ1(y) = +∞ and
limy→+∞ Ξ2(y) = +∞, because ω

(Ω)
1 > 0 and ω

(Ω)
2 > 0.

We apply the L’Hospital’s rule and get

lim
y→+∞

Ξ1(y)

Ξ2(y)
= lim

y→+∞

dΞ1(y)
dy

dΞ2(y)
dy

= lim
y→+∞

∑Ω
ρ=1 ρω

(ρ)
1 yρ−1∑Ω

ρ=1 ρω
(ρ)
2 yρ−1

(47)

Suppose we have

lim
y→+∞

Ξ1(y)

Ξ2(y)
= lim

y→+∞

∑Ω
ρ=n

(∏n−1
m=0(ρ−m)

)
ω
(ρ)
1 yρ−n∑Ω

ρ=n

(∏n−1
m=0(ρ−m)

)
ω
(ρ)
2 yρ−n

(48)

which equals to (47) for n = 1. For 1 ≤ n < Ω, we note
that Ω − n > 0, hence the numerator and denominator
in the right hand-side (RHS) of (48) still respectively
approach +∞ when y → +∞ (because ω

(Ω)
1 > 0 and

ω
(Ω)
2 > 0). Let Ψ(n) denote the RHS (48), we can reapply

the L’Hospital’s rule on Ψ(n), yielding

Ψ(n) = lim
y→+∞

∑Ω
ρ=n+1

(∏(n+1)−1
m=0 (ρ−m)

)
ω
(ρ)
1 yρ−(n+1)∑Ω

ρ=n+1

(∏(n+1)−1
m=0 (ρ−m)

)
ω
(ρ)
2 yρ−(n+1)

= Ψ(n+ 1)

which proofs that (48) holds for 1 ≤ n ≤ Ω. Therefore,

lim
y→+∞

Ξ1(y)

Ξ2(y)
= Ψ(Ω) =

ρ!ω
(Ω)
1

ρ!ω
(Ω)
2

=
ω
(Ω)
1

ω
(Ω)
2

Lemma 7. For variables 0 ≤ y ≤ y′, 0 ≤ yk ≤ y′k, 0 ≤ yl ≤
y′l, 0 ≤ zkl ≤ z′kl, we always have

duk,t
dy

(y) ≤ duk,t
dy

(y′) (49)

∂wkl,t

∂Υ
(yk, yl, zkl) ≤ ∂wkl,t

∂Υ
(y′k, y

′
l, z

′
kl) (50)

where Υ stands for either yk, yl, or zkl.

Proof. We note that

duk,t
dy

(y) =
∑
ρ

ργ
(ρ)
k,t y

ρ−1

from which (49) follows directly because γ
(ρ)
k,t ≥ 0. We

then note that
∂wkl,t

∂yk
(yk, yl, zkl) =

∑
ρ1

∑
ρ2

∑
ρ3

ρ1κ
(ρ1,ρ2,ρ3)
kl,t yρ1−1

k yρ2

l z
ρ3

kl

from which (50) follows for Υ = yk because κ(ρ1,ρ2,ρ3)
kl,t ≥

0. Similarly, (50) also follows for Υ = yl and Υ = zkl.

Lemma 8. Let Ω denote the maximum value of ρ such that
either γ(ρ)k,t > 0 or κ(ρ1,ρ2,ρ3)

kl,t > 0, where ρ1 + ρ2 + ρ3 = ρ.
Assume that the cost functions are defined as in (15) and (16),
then for any constants δ > 0, B ≥ 0, there exist sufficiently
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large values of y, yk, yl, zkl, such that
duk,t

dy (y +B)
duk,t

dy (y)
≤ 1 + δ (51)

duk,t

dy (y) · y
uk,t(y)

≤ Ω+ δ (52)

∂wkl,t

∂Υ (yk +B, yl +B, zkl +B)
∂wkl,t

∂Υ (yk, yl, zkl)
≤ 1 + δ (53)

∂wkl,t

∂Υ (yk, yl, zkl) ·Υ
wk,t(yk, yl, zkl)

≤ Ω+ δ (54)

for any k, l, t, where Υ stands for either yk, yl, or zkl.

Proof. Let Ω′ denote the maximum value of ρ such that
γ
(ρ)
k,t > 0, we always have Ω′ ≤ Ω. We note that

duk,t

dy (y +B)
duk,t

dy (y)
=

∑Ω′

ρ=1 ργ
(ρ)
k,t (y +B)

ρ−1∑Ω′
ρ=1 ργ

(ρ)
k,t y

ρ−1
(55)

duk,t

dy (y) · y
uk,t(y)

=

∑Ω′

ρ=1 ργ
(ρ)
k,t y

ρ∑Ω′
ρ=1 γ

(ρ)
k,t y

ρ
(56)

According to Lemma 6, we have

lim
y→+∞

duk,t

dy (y +B)
duk,t

dy (y)
=

Ω′γ(Ω
′)

k,t

Ω′γ(Ω
′)

k,t

= 1 (57)

lim
y→+∞

duk,t

dy (y) · y
uk,t(y)

=
Ω′γ(Ω

′)
k,t

γ
(Ω′)
k,t

= Ω′ (58)

where we note that after expanding the numerator in
the RHS of (55), the constant B does not appear in the
coefficient of yΩ

′−1.

Now, define a variable q > 0, and we let yk = ζ1q, yl =
ζ2q, zkl = ζ3q, where ζ1, ζ2, ζ3 > 0 are arbitrary constants.
Using ζ1, ζ2, ζ3, and q, we can represent any value of
(yk, yl, zkl) > 0. With this definition, we have

wkl,t (q) � wkl,t (ζ1q, ζ2q, ζ3q)

=
∑
ρ1

∑
ρ2

∑
ρ3

κ
(ρ1,ρ2,ρ3)
kl,t ζρ1

1 ζρ2

2 ζρ3

3 qρ1+ρ2+ρ3

=

Ω′′∑
ρ=1

(κ′)(ρ)kl,tq
ρ (59)

where the constant

(κ′)(ρ)kl,t �
∑

{(ρ1,ρ2,ρ3):ρ1+ρ2+ρ3=ρ}
κ
(ρ1,ρ2,ρ3)
kl,t ζρ1

1 ζρ2

2 ζρ3

3

and Ω′′ is defined as the maximum value of ρ such that
(κ′)(ρ)kl,t > 0, we always have Ω′′ ≤ Ω. Note that (59) is in
the same form as (15). Following the same procedure as
for obtaining (57) and (58), we get

lim
q→+∞

dwkl,t

dq (q +B′)
dwkl,t

dq (q)
=

Ω′′γ(Ω
′′)

k,t

Ω′′γ(Ω
′′)

k,t

= 1 (60)

lim
q→+∞

dwkl,t

dq (q) · q
wk,t(q)

=
Ω′′γ(Ω

′′)
k,t

γ
(Ω′′)
k,t

= Ω′′ (61)

where B′ � B
min{ζ1;ζ2;ζ3} .

According to the definition of limits, for any δ > 0,
there exist sufficiently large values of y and q (thus
yk, yl, zkl), such that

duk,t

dy (y +B)
duk,t

dy (y)
≤ 1 + δ (62)

duk,t

dy (y) · y
uk,t(y)

≤ Ω′ + δ (63)

dwkl,t

dq (q +B′)
dwkl,t

dq (q)
≤ 1 + δ (64)

dwkl,t

dq (q) · q
wk,t(q)

≤ Ω′′ + δ (65)

for any k, l, t.
Because

dwkl,t

dq (q +B′)
dwkl,t

dq (q)
=

dwkl,t

d(ζq) (q +B′)
dwkl,t

d(ζq) (q)

dwkl,t

dq
(q) · q = dwkl,t

d(ζq)
(q) · ζq

for any ζ > 0, we can also express the bounds (64) and
(65) in terms of yk, yl, zkl, yielding

∂wkl,t

∂Υ (yk + ζ1B
′, yl + ζ2B

′, zkl + ζ3B
′)

∂wkl,t

∂Υ (yk, yl, zkl)
≤ 1 + δ (66)

∂wkl,t

∂Υ (yk, yl, zkl) ·Υ
wk,t(yk, yl, zkl)

≤ Ω′′ + δ (67)

where Υ stands for either yk, yl, or zkl. According to the
definition of B′, we have B ≤ ζ1B

′, B ≤ ζ2B
′, B ≤ ζ3B

′.
From Lemma 7, we have

∂wkl,t

∂Υ
(yk +B, yl +B, zkl +B)

≤ ∂wkl,t

∂Υ
(yk + ζ1B

′, yl + ζ2B
′, zkl + ζ3B

′) (68)

Combining (68) with (66) and noting that Ω′ ≤ Ω and
Ω′′ ≤ Ω, together with (62), (63), and (67), we get (51)–
(54).

Lemma 9. For arbitrary values ϑ1,n ≥ 0 and ϑ2,n ≥ 0 for
all n = 1, 2, ..., N , where ϑ1,n and ϑ2,n are either both zero
or both non-zero and there exists n such that ϑ1,n and ϑ2,n
are non-zero, if the following bound is satisfied:

max
{n∈{1,...,N}:ϑ1,n �=0,ϑ2,n �=0}

ϑ1,n
ϑ2,n

≤ Θ

then we have ∑N
n=1 ωnϑ1,n∑N
n=1 ωnϑ2,n

≤ Θ

for any ωn ≥ 0.



22

Proof. Because ϑ1,n ≤ Θϑ2,n for all n, we have
N∑

n=1

ωnϑ1,n ≤
N∑

n=1

ωnΘϑ2,n

yielding the result.

Lemma 10. When Assumption 2 is satisfied and the window
size T is a constant, there exists a constant B ≥ 0 such that

(ymax + aiλ, zmax + biλ)− (y, z) ≤ Be (69)
for any i and any λ ∈ Λi, where e � [1, ..., 1] is a vector of
all ones that has the same dimension as (y, z).

Proof. We note that

(ymax + aiλ, zmax + biλ)− (y, z)

≤ (ymax + amaxey, zmax + bmaxez)− (y, z) (70)
≤ (amax (BdT + 1) ey, bmax (BdT + 1) ez) (71)
≤ max {amax (BdT + 1) ; bmax (BdT + 1)} · e (72)

where ey � [1, ..., 1] and ez � [1, ..., 1] are vectors of
all ones that respectively have the same dimensions as
y and z. Inequality (70) follows from the boundedness
assumption in Assumption 2. Inequality (71) follows by
noting that the gap between (ymax, zmax) and (y, z) is
because of instances unpredictably leaving the system
before their maximum lifetime, and that there are at
most T slots, at most Bd instances unpredictably leave
the system in each slot (according to Assumption 2).
Inequality (72) is obvious (note that the maximum is
taken element-wise).

By setting B = max {amax (BdT + 1) ; bmax (BdT + 1)},
we prove the result.

We now proof Proposition 4.

Proof. (Proposition 4) We note that D̃ (y, z) sums up
uk,t(yk) and wkl,t (yk, yl, zkl) over t, k, l, as defined in (7).

The numerator in the RHS of (11) can be expanded
into a sum containing terms of either

duk,t
dy

((ymax + aiλ)kt)

or
∂wkl,t

∂Υ
((ymax + aiλ)kt , (ymax + aiλ)lt , (zmax + biλ)klt)

where Υ stands for either yk(t), yl(t), or zkl(t), with
either aiλk(t) or biλkl(t) as weights. Because Assumption
2 is satisfied, according to (69) in Lemma 10, we have

(ymax + aiλ)kt ≤ yk(t) +B

(zmax + biλ)klt ≤ zkl(t) +B

for all k, l, t. From Lemma 7, we have
duk,t
dy

(yk(t) +B) ≥ duk,t
dy

((ymax + aiλ)kt)

and
∂wkl,t

∂Υ
(yk(t) +B, yl(t) +B, zkl(t) +B)

≥ ∂wkl,t

∂Υ
((ymax + aiλ)kt , (ymax + aiλ)lt , (zmax + biλ)klt)

Therefore, if

φ ≥ ∇y,zD̃ ((y, z) +Be) · (aiλ,biλ)

∇y,zD̃ (y, z) · (aiλ,biλ)
(73)

then (11) is always satisfied. Similarly to the above, the
numerator in the RHS of (73) can be expanded into
a sum containing terms of either duk,t

dy (yk(t) +B) and
∂wkl,t

∂Υ (yk(t) +B, yl(t) +B, zkl(t) +B) with either aiλk(t)
or biλkl(t) as weights.

Again, the denominator in the RHS of (11) (or equiv-
alently, (73)) can be expanded into a sum containing
terms of either duk,t

dy (y(t)) or ∂wkl,t

∂Υ (yk(t), yl(t), zkl(t)),
with either aiλk(t) or biλkl(t) as weights.

For any given i,λ, the terms duk,t

dy (yk(t) + B)

and duk,t

dy (yk(t)) have the same weight aiλk(t),
and ∂wkl,t

∂Υ (yk(t) + B, yl(t) + B, zkl(t) + B) and
∂wkl,t

∂Υ (yk(t), yl(t), zkl(t)) have the same weight biλkl(t).
According to Lemmas 8 and 9, for any δ > 0, there exist
sufficiently large values of y and z, such that

RHS of (73) ≤ 1 + δ

Following a similar reasoning, we know that, for any
δ > 0, there exist sufficiently large values of y and z,
such that

RHS of (12) ≤ Ω+ δ

We assume sufficiently large y, z in the following, in
which case we can set φ = 1 + δ and ψ = Ω + δ while
satisfying (73) (thus (11)) and (12).

We then note that from (15), (16), and the definition of
Ω, we have

D̃(φψx∗) ≤ (φψ)ΩD̃(x∗)

= ((1 + δ)(Ω + δ))ΩD̃(x∗)

=
(
ΩΩ + δ′

)
D̃(x∗)

where δ′ � δΩ + δ + δ2 > 0 is an arbitrary constant
(because δ is an arbitrary constant). The first inequality
is because of φ, ψ ≥ 1 and D̃(φψx∗) is a polynomial of
φψx∗ with maximum order of Ω, where we note that y
and z are both linear in x.

We then have

D̃(x)

D̃(x∗)
≤ D̃(φψx∗)

D̃(x∗)
= ΩΩ + δ′ (74)

Until now, we have shown that (74) holds for suffi-
ciently large y and z. According to Assumption 2, the
number of instances that unpredictably leave the system
in each slot is upper bounded by a constant Bd. It follows
that y and z increases with M when M is larger than
a certain threshold. Therefore, there exists a sufficiently
large M , so that we have a sufficiently large y and z that
satisfies (74).
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Hence, the competitive ratio upper bound can be
expressed as

Γ � max
I(M)

Γ(I(M)) ≤ ΩΩ + δ′ (75)

for sufficiently large M .
According to the definition of the big-O notation, we

can also write
Γ = O(1) (76)

because Ω and δ′ are both constants in M .

APPENDIX E
PROOF OF PROPOSITION 5

Define Tmax > 1 as an arbitrarily large timeslot index.
We note that there are

⌊
Tmax
T

⌋
full look-ahead windows of

size T within timeslots from 1 to Tmax, where 
x� denotes
the integral part of x. In the last window, there are Tmax−
T · ⌊Tmax

T

⌋
slots. We have

F

(
Tmax − T ·

⌊
Tmax

T

⌋)
≤ Tmax − T · ⌊Tmax

T

⌋
T

F (T ) (77)

because F (T ) is convex non-decreasing and F (0) = 0.
For the true optimal configuration π∗, according to

the definitions of ε(τ) and F (T ), the difference in the
predicted and actual sum-costs satisfies

Tmax∑
t=1

Dπ∗(t)−
Tmax∑
t=1

Aπ∗(t)

≤
⌊
Tmax

T

⌋
F (T ) + F

(
Tmax − T ·

⌊
Tmax

T

⌋)
≤ Tmax

T
F (T ) (78)

where the last inequality follows from (77). Similarly, for
the configuration πp obtained from predicted costs, we
have

Tmax∑
t=1

Aπp
(t)−

Tmax∑
t=1

Dπp
(t) ≤ Tmax

T
F (T ) (79)

In the following, we establish the relationship between
π∗ and πp. Assume that, in (3), we neglect the migration
cost at the beginning of each look-ahead window, i.e.
we consider each window independently and there is
no migration cost in the first timeslot of each window,
then we have

Tmax∑
t=1

Dπp(t) ≤ Γ

Tmax∑
t=1

Dπ∗(t)

where the constant Γ ≥ 1 is the competitive ratio of
solving (3). This holds because there is no connection
between different windows, thus the optimal sequences
(considering predicted costs) obtained from (3) constitute
the optimal sequence up to a factor Γ for all timeslots
[1, Tmax]. Now we relax the assumption and consider
the existence of migration cost in the first slot of each
window. Note that we cannot have more than

⌊
Tmax
T

⌋
+1

windows and the first timeslot t = 1 does not have

migration cost. Thus,
Tmax∑
t=1

Dπp(t) ≤ Γ

Tmax∑
t=1

Dπ∗(t) +
Tmax

T
σ (80)

The bound holds because regardless of the configuration
in slot t0 − 1, the migration cost in slot t0 cannot exceed
σ.

By multiplying Γ on both sides of (78) and summing
up the result with (80), we get

Tmax∑
t=1

Dπp
(t)− Γ

Tmax∑
t=1

Aπ∗(t) ≤ Tmax

T
(ΓF (T ) + σ) (81)

Summing up (79) with (81), dividing both sides by Tmax,
and taking the limit on both sides yields the proposition.

APPENDIX F
PROOF OF PROPOSITION 6 AND COROLLARY 1

Taking the derivative of Φ(T ), we get

dΦ

dT
= (Γ + 1)T

d2G(T )

dT 2
≥ 0 (82)

where the last inequality is because G(T ) is convex. This
implies that Φ(T ) is non-decreasing with T . Hence, there
is at most one consecutive interval of T (the interval may
only contain one value) such that (23) is satisfied. We
denote this interval by [T−, T+], and a specific solution
to (23) is T0 ∈ [T−, T+].

We note that d ln θ
dT and Φ(T ) have the same sign,

because d ln θ
dT ≶ 0 yields Φ(T ) ≶ 0 and vice versa, which

can be seen from (22) and (23). When T < T−, we have
Φ(T ) < 0 and hence d ln θ

dT < 0; when T > T+, we have
Φ(T ) > 0 and hence d ln θ

dT > 0. This implies that ln θ, thus
θ(T ), keeps decreasing with T until the optimal solution
is reached, and afterwards it keeps increasing with T . It
follows that the minimum value of θ(T ) is attained at
T ∈ [T−, T+]. Because T0 ∈ [T−, T+] and T ∗ is a discrete
variable, we complete the proof of the proposition.

Noting that we do not consider the convexity of θ(T )
in the above analysis, we can also conclude the corollary.

APPENDIX G
ADDITIONAL SIMULATION RESULTS

We study the computational overhead of the pro-
posed algorithm for obtaining service configurations
corresponding to the results shown in Fig. 6(a). The
simulations were run in MATLAB on a laptop with
Intel(R) Core(TM) i5-4300U CPU, 4 GB memory, and 64-
bit Windows 10. We focus on the computation time and
amount of floating-point operations (FLOP) for every
computation of the next T -slot configuration for one
instance. We compare the performance between the pro-
posed approach (E) and the precise future knowledge
scenario (D). We do not compare against MMC-only and
backend cloud-only approaches (A, B, and C) because
those approaches are much simpler but produce a sig-
nificantly higher cost than approaches D and E (see Fig.
6(a)) thus it is not fair to compare their computational
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Table 2
Statistics of computation time and FLOP count

Performance measure Approach Sum Mean Std. dev. Maximum

Computation time (seconds)
Prec. fut. knowledge (D) 4.46× 103 4.39 4.78 50.9

Proposed (E) 6.45× 103 1.84 0.72 3.22

FLOP count
Prec. fut. knowledge (D) 1.71× 1010 1.68× 107 1.85× 107 2.03× 108

Proposed (E) 2.14× 1010 6.08× 106 2.43× 106 7.56× 106
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Figure 7. Cumulative distribution functions (CDF) of com-
putation time and FLOP count.

overheads. The FLOP counts are obtained using the
toolbox in [A1] (references for appendices are listed at
the end of this document).

We collected statistics of the computation time and
FLOP count for each execution of the algorithm to
compute the next T -slot configuration when using ap-
proaches D and E. Fig. 7 shows the cumulative dis-
tribution function (CDF), where CDF(x) is defined as
the percentage of observations (i.e., computation time or
FLOP count) that has a value smaller than or equal to x.
Table 2 lists the sum (for all executions), mean, standard
deviation, and maximum values.

We see that in terms of computation time, the pro-
posed approach (E) can find the configuration within
1.84 s on average. Recalling that each timeslot corre-
sponds to a physical time of 60 s and the configuration
for multiple timeslots is usually found by a single exe-
cution of the algorithm, the time needed for running the
algorithm is relatively short.

We note that because we ran the simulation in MAT-
LAB and our code is not optimized for performance,
our results are pessimistic and the algorithm should run
much faster with a better optimized code written in C,
for instance. This can be seen by the fact that the average
FLOP count of the proposed approach is only 6.08× 106

while modern personal computers can easily complete
over 109 floating-point operations per second (FLOPS),
see the experimental results in [A2] for example. Server
machines will be even more powerful. This means that
if we fully utilize the resource of a personal computer,
the proposed algorithm should be able to find the con-
figuration (for a single instance) within 0.01 s. Such a
timescale will be sufficient for deploying newly arrived
instances on the cloud in real time. From this FLOP
count comparison, we can conclude that the proposed
algorithm only consumes a small amount of processing
capability, so it is applicable in practice and scalable to
a reasonably large amount of users.

We further note that the proposed algorithm may ben-
efit from parallelization and performing the computation
on GPUs. For example, parallelization is possible for the
“for all” loops between Lines 6 and 9 and also between
Lines 10 and 15 in Algorithm 2. This can further expedite
the process of finding configurations.

Comparing approach D with the proposed approach
(E), Table 2 shows that the mean, standard deviation,
and maximum values of the proposed approach is lower
than those of approach D. This is because the proposed
approach uses the optimal look-ahead window size,
which is usually much smaller than the total number of
timeslots in which the instance remains active, whereas
approach D is assumed to have precise knowledge of
the future and therefore takes into account the entire
duration in which the instance is active. According to
the complexity analysis in Section 3.3, considering more
timeslots in the optimization causes higher algorithmic
complexity, thus explaining the result.

When looking at the sum values in Table 2, the
proposed approach has a similar but slightly larger
computation time and FLOP count than approach D.
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This is because approach D is assumed to know exactly
when an instance departs from the system, whereas the
proposed approach does not have this knowledge and
may consider additional slots after instance departure
as part of the optimization process. However, the gap is
not large because the proposed approach has a relatively
small look-ahead window; the instance departure be-
comes known to the proposed approach at the beginning
of a new look-ahead window.

The fact that the mean and maximum values (in
Table 2) of the proposed approach are much smaller than
those of approach D also makes the proposed approach
more suitable for real-time requests, because it can ap-
ply a configuration quickly after instance arrival. More
importantly, we recall that approach D is impractical
because it assumes precise prediction of future costs and
instance departure times.
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