New Territories of Sustainable Batteries by Carbon-Based Materials

Xingfeng Wang, Dr. Clement Bommier, Zhifei Li, Dr. Zhenyu Xing, Dr. Zelang Jian, Dr. Xianyong Wu, and Prof. Xiulei Ji

Department of Chemistry
Oregon State University
- Hydronium ion storage
- Energetics of ion insertion in carbons: anions and cations
Production Scale of Purified Minerals

Vesborg and Jaramillo RSC. Adv. 2012, 2, 7933-7947
Molecular Solids: Hosts for H_3O^+

Xing, Ji et al. Energy Storage Materials, 2016, 2, 63-68
Structural and Computational Studies Confirm Reversible Hydronium Storage

• Hydronium is a meaningful charge carrier for batteries
• Grotthuss mechanism may be applicable
- Hydronium ion batteries
- Energetics of ion insertion in carbons
Dual-Ion Batteries/Dual-Graphite Batteries

The Challenge of DIBs: Cathode Operation Potential Is Simply Too High!
Thermodynamics of Inserting One Anion to Graphite in a Graphite/Metal Cell

If we do not consider the entropy change of desolvation and ohmic IR drop

\[\Delta G = -eV \approx \Delta H = \]
\[(E_{(C+A^-)} + E_{(n+1)M} + \Delta H_{\text{desolv. of } M^+} + \Delta H_{\text{desolv. of } A^-}) - (E_C + E_{nM}) \]

\[\Delta G = -eV \approx \Delta H = \]
\[E_{(C+A^-)} - E_C + E_M + \Delta H_{\text{desolv. of } M^+} + \Delta H_{\text{desolv. of } A^-} \]
Less Dense Hydrocarbons As Anion-Insertion Cathode

Density: 1.47 g cm⁻³ vs 2.23 g cm⁻³ (graphite)

Rodríguez-Pérez, Lerner, Carter, Ji et al. ACS Energy Letters 2016, 1, 719
• Graphite is not uniquely redox amphoteric

• Oxidative insertion can be generic

• The operation potentials correlate more to the solid structures than to the molecules themselves
Na Does Not Intercalate Graphite

LiC$_6$ GIC: 372 mAh/g

NaC$_{64}$ GIC: 35 mAh/g

Ion Size: The Decisive Factor?

Li⁺ Na⁺ K⁺

Stage III Stage II Stage I

Reversible Electrochemical Insertion of K in Graphite

Jian, Ji et al. J. Am. Chem. Soc., 2015, 137, 11566
Luo, Hu et al. Nano Lett. 2015, 15, 7671-7677-175
Reversible Electrochemical Staging of K-GICs

Hard-Soft Composite Carbon: Optimal for Cycling and Rate

Non-Aqueous KIBs: An Emerging Field of Energy Storage

Nazar ACS Energy Lett. 2017, 2, 1122-1127

Ji, Chem. Mater. 2017 In press An invited Perspective

Until June 25, 2017
Why Non-Aqueous K-Ion Batteries?

Favorable potentials

<table>
<thead>
<tr>
<th>Redox Potentials</th>
<th>In Water vs. SHE (V)</th>
<th>In PC vs. SHE (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li⁺/Li</td>
<td>-3.04</td>
<td>-2.79</td>
</tr>
<tr>
<td>Na⁺/Na</td>
<td>-2.71</td>
<td>-2.56</td>
</tr>
<tr>
<td>K⁺/K</td>
<td>-2.94</td>
<td>-2.88</td>
</tr>
<tr>
<td>Rb⁺/Rb</td>
<td>-3.03</td>
<td>-2.95</td>
</tr>
</tbody>
</table>

Compatible with the LIB carbon anode infrastructure

Similar specific energy as NIBs

Komaba et al. Electrochim. Commun. 2015, 60, 172-175
Debated Mechanisms of Na-Ion Storage in Hard Carbon

Slope capacity: Na intercalates turbostratic nanodomains

Plateau Capacity: Na-sorption (nanoplasting) in nanopores

Slope capacity: Na-defects binding

Plateau Capacity: Na intercalates turbostratic nanodomains

Bommier, Ji et al. *Nano Lett.*, 2015, 15, 5888

Hard Carbon and Soft Carbon

Franklin, R. E. Acta Cryst. 1951
If we do not consider the entropy change of desolvation and ohmic IR drop

\[\Delta G = -eV \approx \Delta H = (E_{(C-M^+)} + E_{(n-1)M} + \Delta H_{\text{desolv. of } M^+} + \Delta H_{\text{solv. of } M^+}) - (E_C + E_{nM}) \]

\[\Delta G = -eV \approx \Delta H = (E_{(C-M^+)} - E_M) - E_C \]
Vacancy Defects Lead to High Sloping Potentials

Monovacancy

Divacancy

Large-vacancy

0.529 eV

-1.1 eV

-0.81 eV

-3.00 eV

Decrease Vacancy Defects ➔ Less Sloping Capacity

\[G(r) = \frac{2}{\pi} \int Q(S(Q) - 1) \sin(Qr) \, dQ = 4\pi \rho_0 r (g(r) - 1) \]

Bommier, Ji *Nano Lett.*, 2015, 15, 5888
Increase Vacancy or Heteroatom Defects ➔ More Sloping Capacity

Electrodes	HC	P-HC	B-HC	S-HC
Sodiation | 178 | 245 | 304 | 195
Desodiation | 134 | 157 | 70 | 151

Correlation: sloping capacity and defects

A Design Principle

More defective Expanded Structure

Li, Ji et al. under preparation

Conclusions

- Hydronium ion storage: a promising new area
- Anion insertion into carbon: energetics
- Non-aqueous KIBs competitive to NIBs
- An alternative mechanism for Na-ion storage in hard carbon
Jun Lu, Tianpin Wu, Khalil Amine (Argonne National Laboratory)

P. Alex Greaney (University of California Riverside)

Chongmin Wang (Pacific Northwest National Laboratory)

Dong Su (Brookhaven National Laboratory)

Joerg Neuefeind (Oak Ridge National Laboratory)
Energy Materials Chemistry Group
Acknowledgements

2016 NSF CAREER Award

OSU Venture Capital Fund
Thank you for your attention!

Questions?