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Why Lattice Cryptography

• One of the oldest and most (the most?) 
efficient quantum-resilient alternatives for 
“basic primitives”

– Public key encryption

– Digital signatures

• Many “advanced” primitives can be based on 
these hardness assumptions 
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CRYSTALS: KYBER

CCA KEM (AND ENCRYPTION)



Design Philosophies

• CCA only
– The primitives are already very fast; no need to set 

speed records

• Make adjusting security levels simple – always 
operate over the ring Zq[X]/(X256+1) for q=213-29+1
– If you care about post-quantum security, you can start 

implementing/optimizing/using now

– Scheme can be easily adjusted once more exact 
cryptanalysis is agreed upon



Key Exchange / CCA – Encryption/ 
Authenticated Key Exchange 

CPA-Secure PKE

CCA-Secure KEM

CCA-Secure PKE Key Exchange
Authenticated Key 

Exchange

All “black-box” 
transformations



[HPS ’97]
NTRU Cryptosystem 

over Z[x]/(xn-1)

[Ajt ’96]
CRH over Z

[AD ’97]
Ajtai-Dwork

Cryptosystem

[Reg ’05]
LWE Cryptosystem 

over Z

[Mic ’02]
One-way functions 

over Z[x]/(xn-1)

[LM ‘06]
CRH over arbitrary 
rings.  In particular, 

Z[x]/(xn+1)

[LPR ‘10]
Ring-LWE 

cryptosystem

Minicrypt with WC/AC 
reductions

PKE with WC/AC 
reductions

PKE Development



Giving Credit

• Hoffstein, Pipher, Silverman   
– Cryptosystem Using Polynomial Rings ‘97

• Ajtai, Dwork
– General Lattice Cryptosystem ‘97

• Alekhnovich
– LPN-Based Cryptosystem ‘03 

• Regev
– LWE Cryptosystem ‘05

• Lyubashevsky, Peikert, Regev
– Practical (Ring)-LWE Cryptosystem ‘10
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Hard Apples
• Hoffstein, Pipher, Silverman   
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Hard Apples



The Polynomial Ring Zq[x]/(xd+1)

R = Zq[x]/(xd+1) is a polynomial ring with
• Addition mod q

• Polynomial multiplication mod q and xd+1

Each element of R consists of d elements in Zq

In R:
• small+small = small 

• small*small = small

(Note: If d=1, then R=Zq
*)



Rounding Function

0 [q/2]

-[q/4]

Round1(w)

Roundk(w) = “ Round w to the nearest [q/2] ”

[q/4]



Hard Apples Encryption [LPR ’10]

KeyGen:

A  Rn x n

s,e ψn 

t := As+e

pk: (A,t)

sk: s



Hard Apples Encryption [LPR ‘10]

Public Key / Secret Key 
Generation
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Hard Apples Encryption [LPR ‘10]

KeyGen:

A  Rn x n

s,e ψn 

t := As+e

pk: (A,t)

sk: s

Encrypt(μ):

r’,e’ ψn

f ψ

u’ := r’A+e’

v := r’t + f + [q/2]μ

ciphertext: (u’,v)

Decrypt(u’,v):

w:=v-u’s

μ := Round1(w)

[q/2]



Hard Apples Encryption [LPR ‘10]

-1
Encryption

Public Key / Secret Key 
Generation

Decryption

≈



Practical Security

1 0 0

0 1 0

0 0 1

-1

0

0

0

Best attack is finding the shortest vector in a 
lattice of dimension 2nd+1 



Relation to LWE and Ring-LWE

• In LWE, d=1

– Security completely dependent on n

• In Ring-LWE, n=1

– Security completely dependent on d



Message Space Size

Encryption

message = 1 element in 
R with 0/1 coefficients

d coefficients

Larger d  Larger message

But 256-bit messages are enough  Can set d=256



Hard Apples vs. NTRU

Public key size, ciphertext size, encryption, 
decryption, all approximately the same

NTRU key generation ≈ 10x slower

Main disadvantage of NTRU:   Geometric 
structure of the NTRU lattice [KF ‘17] 

Breaks NTRU for large q, small ψ



Is NTRU Broken?

• No.  For a small modulus as used in encryption, it’s still 
secure.

• No attack in the past 20 years actually threatened NTRU or 
Hard Apples
– (Even the recent incorrect quantum algorithm of Eldar and Shor 

didn’t break these schemes)

• But … advanced schemes (like FHE) where q must be large 
will be broken if based on NTRU

• Geometric structure could be exploited further 



SIMPLE EFFICIENCY IMPROVEMENTS



Rounding Function

0 [q/2]

0

-[q/4]

[q/4]

[q/2]

Round1(w)

Round2(w)

Roundk(w) = “ Round w to the nearest q/2k ”

|w - Roundk(w)| < q/2k+1



Hard Apples Encryption [LPR ‘10]

KeyGen:

A  Rn x n

s,e ψn 

t := As+e

pk: (A,t)

sk: s

Encrypt(μ):

r’,e’ ψn

f ψ

u’ := r’A+e’

v := r’t+f+[q/2]μ

ciphertext: (u’,v)

Decrypt(u’,v):

w:=v-u’s

μ := Round1(w)

[q/2]

w := v-u’s = r’e – e’s + f + [q/2]μ

Each coefficient of |r’e – e’s + f| should be less than q/4



Hard Apples Encryption [LPR ‘10]

KeyGen:

A  Rn x n

s,e ψn 

t := As+e

pk: (A,t)

sk: s

Encrypt(μ):

r’,e’ ψn

f ψ

u’ := r’A+e’

v := Roundk(r’t+f+[q/2]μ)

ciphertext: (u’,v)

Decrypt(u’,v):

w:=v-u’s

μ := Round1(w)

[q/2]

w := v-u’s = r’e – e’s + f + [q/2]μ + εv

Each coefficient of |εv | is at most q/2k+1

Each coefficient of |r’e – e’s + f| should be less than q/4 - q/2k+1



INTERLUDE: COMPARISON WITH 
“RECONCILIATION-BASED” KEM 

(Preview:  This is not better than PKE)



Reconciliation

0 [q/2]0 1

Player 1 gets a random value x mod q
Player 2 gets some value y such that |x-y mod q|<ε

Player 1 and 2 want to secretly agree on 1 bit.
This is not possible without additional communication

Upon receiving x, player 1 sends a “hint” to player 2 such that:
1.  x and y can agree on a bit
2.  anyone who only sees the hint cannot guess the bit
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Reconciliation

0 [q/2]

0 [q/2]

0 1

a
a
b

b

Player 1 gets a random value x mod q
Player 2 gets some value y such that |x-y mod q|<ε

Player 1 and 2 want to secretly agree on 1 bit.
This is not possible without additional communication

Upon receiving x, player 1 sends a “hint” to player 2 such that:
1.  x and y can agree on a bit
2.  anyone who only sees the hint cannot guess the bit

0 [q/2]
a

a
b

b

a

If ε < q/8, then Player 2 will know which half x is in 



Allowing for Larger ε

0 [q/2]

0 [q/2]

0 1

a
a
b

b
0 [q/2]

a
a
b

b

a

If ε < q/8, then Player 2 will know which half x is in 

0 [q/2]

a

a
b

b
c

c

d

d
0 [q/2]

a

a
b

b
c

c

d

d

If ε < 3q/16, then Player 2 will know which half x is in 

a

k “hint bits”  if ε < q/4 - q/2k+2, then Player 2 will know which half x is in



KEM Based on Reconciliation [D ’12, P’14] 

KeyGen:

A  Rn x n

s,e ψn 

t := As+e

pk: (A,t’)

sk: s’

Encapsulate():

r’,e’ ψn

f ψ

u’ := r’A+e’

v := HintBitsk(r’t + f)

=HintBitsk(r’As + r’e + f)

ciphertext: (u’,v)

λ := Round1(v)

Decapsulate(u’,v):

w:=u’s

( = r’As + e’s )

λ := Reconc(w,v)

0 [q/2]0 1 0 [q/2]
a

a
b

b



Comparing Encryption and 
Reconciliation KEM

Public Key Encryption

To encrypt 256-bit message:

ndlog q + dk + 256 bits  

KEM

To share 256-bit key:

ndlog q + dk bits 

In practice, the KEM is about 256 bits ≈ 3% shorter, but … 

both the Encryption scheme and KEM are only passively-secure 

Passive-
Secure KEM

Passive-
Secure PKE

CCA-Secure 
KEM

(u’, v, λ + μ) Fujisaki-Okamoto

256 bits added back!



Start with KEM or PKE?

For our application, there is no difference
PKE is just simpler and more direct

Maybe one can go from KEM to something useful and save a 
little bit … perhaps with error correction, but I’m not sure

But it’s definitely not as stated in [P ‘14]:

“As compared with the previous most efficient ring-LWE cryptosystems and 
KEMs, the new reconciliation mechanism reduces the ciphertext length by 
nearly a factor of two, because it replaces one of the ciphertext’s two Rq

elements with an R2 element.”

naïve



Interlude: Non-Interactive “Diffie-
Hellman”-like Key Exchange

Common randomness A

Player 1 Public Key:  t1 = As1+e1

Player 2 Public Key:  t2 = s2A+e2

Joint key:  HighBits (s2t1) = HighBits(t2s1)

0 [q/2]0 1 0 [q/2]0 1

Error happens with probability ≈ |s2e1| / q ≈ |e2s1 | / q
PK sizes of (probably) more than 40 - 50 KB
Double that if s1A is not As1

using Ring-LWE is twice as efficient as using Module-LWE 



Varieties of Hard Apples

• Use LWE instead of Ring-LWE / Module-LWE  (Frodo)

Pros: No algebraic structure to try and exploit in attacks

Cons:  10x slower, 10x larger public key, 10x larger ciphertext (when trying to minimize size 
of public key + ciphertext)

• Use Ring-LWE (i.e. set n=1) instead of Module-LWE (with flexible n)  (New Hope Light)

Pros: A little faster 

Cons: Less flexible (if the degree is a power of 2), smaller n could affect practical security

• Use rounding instead of adding random errors  (Lizard,NTRU-Prime)

Pros: A little faster

Cons: Unclear if deterministic noise leads to new attacks (a very aggressive version of LWR)

• Use a ring Z[X]/(f(x)) for a different f(x)    (NTRU-Prime)

Pros: Algebraic attacks could be less obvious than for f(x)=xd+1

Cons: A little slower,  slightly larger “expansion factor” , no algebraic structure that’s useful 
for some advanced applications   



FURTHER PKE EFFICIENCY IMPROVEMENTS



Hard Apples Encryption [LPR ‘10]

KeyGen:

A  Rn x n

s,e ψn 

t := Roundα(As+e)

pk: (A,t)

sk: s

Encrypt(μ):

r’,e’ ψn

f ψ

u’ := Roundα(r’A+e’)

v := Roundk(r’t+f+[q/2]μ)

ciphertext: (u’,v)

Decrypt(u’,v):

w:=v-u’s

μ := Round1(w)

[q/2]

w := v-u’s = r’e – e’s + f + [q/2]μ + εv + r’εt + εu’s 

Set the size for security Larger ε smaller pk / ciphertext … 
but larger decryption error 
Need to manually optimize



Added “Benefit” of Rounding

KeyGen:

A  Rn x n

s,e ψn 

t := Roundα(As+e)

pk: (A,t)

sk: s

Encrypt(μ):

r’,e’ ψn

f ψ

u’ := Roundα(r’A+e’)

v := Roundk(r’t+f+[q/2]μ)

ciphertext: (u’,v)

Decrypt(u’,v):

w:=v-u’s

μ := Round1(w)

[q/2]

Introduces more noise – makes lattice reduction harder

But this noise is deterministic – we choose not to rely on it for hardness



Kyber CCA-KEM Stats

medium recommended very high

dimension of A 2 x 2 3 x 3 4 x 4

pk size 736 bytes 1088 bytes 1440 bytes

ciphertext size 832 bytes 1184 bytes 1536 bytes

quantum security 102 161 218

key gen cycles 85K

enc cycles 125K

dec cycles 135K

Ring Rq[X]/(X256+1),  q = 213-29+1 



CRYSTALS: DILITHIUM

DIGITAL SIGNATURE SCHEME



Design Philosophy

• Make it simple to securely implement 
everywhere – only uniform sampling

• Public key size is also important  – want to 
minimize (sig size + pk size)

• Make adjusting security levels simple – always 
operate over the ring Zq[X]/(X256+1) 



Fiat-Shamir with Aborts [Lyu ‘09]

Public Key / Secret Key 
Generation

H(    ,μ)



Fiat-Shamir with Aborts [Lyu ‘09]

Public Key / Secret Key 
Generation

H(    ,μ)
Perform Rejection Sampling
1. Remove dependence on
2. Keep coefficients small 



Fiat-Shamir with Aborts [Lyu ‘09]

As1+s2=t

Sign(μ)

y1,y2  D with small coefficients

c := H(Ay1+y2, μ)

z1 := y1 + cs1 , z2 := y2 + cs2

RejectionSample(z1, z2, cs1, cs2)

Signature = (z1, z2, c)

Verify(z1, z2, c, μ)

Check that z1, z2 have small 
coefficients

and

c=H(Az1+z2 - ct , μ)



Security Proof

Can simulate signing (by programming H) 
because the distribution (z1, z2, c) is 
independent of the secret key.

Can extract two signatures such that 

Az1+z2 - ct = Az1‘+z2‘ - c't

A(z1 - z1‘) + (z2 - z2‘) - (c - c’)t = 0

Found a short vector in a lattice



Observations
A(z1 - z1‘) + (z2 - z2‘) - (c - c’)t = 0

A(z1 - z1‘) - (c - c’)t ≈ 0

Still found a short vector… but now don’t have to output z2

signature shrunk by about 50% [GLP ‘12, BG ‘14]

A(z1 - z1‘) - (c - c’)t ≈ 0

A(z1 - z1‘) - (c - c’)(t1 + t0) ≈ 0

A(z1 - z1‘) - (c - c’)t1 ≈ 0

Still found a short vector… but now don’t have to have t0 in the public 
key  public key shrunk by > 50% [DLLSSS ‘17]

High-Order Bits of t



Dilithium Sketch

A:=XOF(ρ), t:=As1+s2

Public key:  ρ,t1

Sign(μ)

y  D with uniform small coefficients
c := H(HighBits(Ay), μ)
z := y + cs1

RejectionSample(z, cs1, cs2)
(Must hold: HighBits(Ay)=HighBits(Az-ct))

Create a hint h such that
HighBits(Az-ct1) & h HighBits(Az-ct)

Signature = (z, h, c)

Verify((z, h, c), μ)

Use Az-ct1 and h to get
w:= HighBits(Az-ct)

Check that z has small
coefficients 

and 
c=H(w,μ)



Dilithium Sketch

A:=XOF(ρ), t:=As1+s2

Public key:  ρ,t1

Sign(μ)

y  D with uniform small coefficients
c := H(HighBits(Ay), μ)
z := y + cs1

RejectionSample(z, cs1, cs2)
(Must hold: HighBits(Ay)=HighBits(Az-ct))

Create a hint h such that
HighBits(Az-ct1) & h HighBits(Az-ct)

Signature = (z, h, c)

Verify((z, h, c), μ)

Use Az-ct1 and h to get
w:= HighBits(Az-ct)

Check that z has small
coefficients 

and 
c=H(w,μ)

100 bytes allows to save over 2000 bytes in the pk



Dilithium Stats

Medium Recommended Very High

dimension of A 4 x 3 5 x 4 6 x 5

pk size 1184 bytes 1472 bytes 1760 bytes

sig size 2043 bytes 2700 bytes 3365 bytes

BKZ block size 340 475 595

classical security 100 140 174

quantum security 91 125 158

key gen cycles 160K 250K 320K

signature cycles 640K 1000K 840K

verification cycles 205K 300K 400K

Ring Rq[X]/(X256+1),  q = 223 - 213 + 1 



Comparing to BLISS [DDLL ‘13]

BLISS Medium Recommended

dimension of A 4 x 3 5 x 4

pk size 875 bytes 1184 bytes 1472 bytes

sig size 820 bytes 2043 bytes 2700 bytes

BKZ block size 280 340 475

classical security claimed 192, why? 100 140

quantum security 91 125

Most practical attack using BKZ 2.0 [CN ’11] takes > 2192  time

This was a useful number for comparing with current schemes, e.g. RSA, EC-DSA 

Now, we want to be more conservative – (e.g. assume exponential-space sieving is OK)  



Higher Security BLISS
(back-of-envelope calculations)

• Using Z[X]/(X1024+1) instead of Z[X]/(X512+1)

– Public Key ≈ 2100 bytes

– Signature ≈ 1700 bytes

– Security > 160 quantum

• Using Z[X]/(f(x)) for with deg(f) ≈ 768

– Public Key ≈ 1500 bytes

– Signature ≈ 1300 bytes

– Security ≈ 128 quantum



BLISS vs. Dilithium

= Public keys around the same size

+ BLISS Signatures half the size (save≈1.5KB)

+ Dilithium No Gaussian (rejection) sampling

+ Dilithium Security easily adjusted (same ring)

+ Dilithium Based on Module-LWE vs. NTRU

+ Dilithium Same framework as ZK proofs



Random Oracle Model vs.
Quantum Random Oracle Model

H is a cryptographic hash function

Theorem statements of the form: 

“If an adversary, having restricted access to H, 
can break a primitive S then the reduction can 
either solve some hard problem P or break H.”

H should be chosen such that it can’t be 
broken by a quantum algorithm.



Black Box Access to H

• Random Oracle Model – give x, receive H(x)

• Quantum Random Oracle – give superposition of 
(x1,…,xk), receive H(superposition(x1,…,xk))

Main open question: Is there a “natural” scheme 
that is ROM-secure, but is QROM insecure?



ROM vs. QROM

• Similar to the ROM vs. Standard model debate

For encryption – getting QROM is cheap
– add 256 bits
– increases ciphertext by 3%

For signatures – getting QROM is more expensive
– use “Katz-Wang” idea [AFLT ‘12], [TESLA] over rings
– increases signature size by a factor of 2, public key 

by a factor of 15, and around 10 times slower
– signature + pk size approaches hash-based signatures



Looking Ahead

• For more “advanced cryptography” (e.g. 
privacy applications, e-voting, etc.), we need 
zero-knowledge proofs

• Prove knowledge of short s1,s2 such that 
As1+s2=t

• Same “Fiat-Shamir with Aborts” technique

• Bimodal Gaussians from BLISS don’t help 
much (in BLISS, A is picked such that As1+s2=0)



CONCLUSIONS



If You Want Quantum Security Now

For encryption / key exchange: 
– Use Kyber
– Very, very good chance that it’s fine
– If some parameters need adjusting later, it’s very easy

For digital signatures
– Not crucial at this point for many applications
– If you’re signing something for the long-term future, 

and 40KB sigs is not a problem, use (stateless) hash-
based sigs e.g. SPHINCS

– If you need something smaller, could use Dilithium



Research Directions

• Cryptanalysis!!!

• Understand whether QROM is relevant in 
practical attacks and threatens Fiat-Shamir
– If yes, then: 

• We could consider hash-and-sign signatures.  They’re small, 
but a lot of Gaussian sampling and floating-point arithmetic

• Or just do hash-based signatures and that’s it
• Zero-knowledge proofs will be quite impractical

– If things remain as they are, then:
• Create practical advanced primitives – lots of work to do 

here! 


