Corey Liam Lammie, Julian Büchel, et al.
ISCAS 2025
The emerging brain-inspired computing paradigm known as hyperdimensional computing (HDC) has been proven to provide a lightweight learning framework for various cognitive tasks compared to the widely used deep learning-based approaches. Spatio-temporal (ST) signal processing, which encompasses biosignals such as electromyography (EMG) and electroencephalography (EEG), is one family of applications that could benefit from an HDC-based learning framework. At the core of HDC lie manipulations and comparisons of large bit patterns, which are inherently ill-suited to conventional computing platforms based on the von-Neumann architecture. In this work, we propose an architecture for ST signal processing within the HDC framework using predominantly in-memory compute arrays. In particular, we introduce a methodology for the in-memory hyperdimensional encoding of ST data to be used together with an in-memory associative search module. We show that the in-memory HDC encoder for ST signals offers at least 1.80times energy efficiency gains, 3.36times area gains, as well as 9.74times throughput gains compared with a dedicated digital hardware implementation. At the same time it achieves a peak classification accuracy within 0.04% of that of the baseline HDC framework.
Corey Liam Lammie, Julian Büchel, et al.
ISCAS 2025
Michele Martemucci, Benedikt Kersting, et al.
ISCAS 2021
Manuel Le Gallo, Abu Sebastian, et al.
Nature Electronics
Manuel Le Gallo
NVMTS 2023