Elliott H. Lieb, Arthur Y. Sakakura
Physical Review
A gas of one-dimensional Bose particles interacting via a repulsive delta-function potential has been solved exactly. All the eigenfunctions can be found explicitly and the energies are given by the solutions of a transcendental equation. The problem has one nontrivial coupling constant,. When is small, Bogoliubov's perturbation theory is seen to be valid. In this paper, we explicitly calculate the ground-state energy as a function of and show that it is analytic for all, except =0. In Part II, we discuss the excitation spectrum and show that it is most convenient to regard it as a double spectrum not one as is ordinarily supposed. © 1963 The American Physical Society.
Elliott H. Lieb, Arthur Y. Sakakura
Physical Review
Elliott H. Lieb
Physical Review
Werner Liniger
IEEE Transactions on Circuits and Systems
Werner Liniger, Farouk Odeh
Physical Review